Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 8

Proceedings of the 2016 Federated Conference on Computer Science and Information Systems

Utilizing an ensemble of SVMs with GMM voting-based mechanism in predicting dangerous seismic events in active coal mines

DOI: http://dx.doi.org/10.15439/2016F122

Citation: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 235238 ()

Full text

Abstract. This paper presents an application of a Gaussian Mixture Model-based voting mechanism for an ensemble of Support Vector Machines (SVMs) to the problem of predicting dangerous seismic events in active coal mines. The author proposes a method of preparing an ensemble of SVMs with different parameters and using the``wisdom of the crowd'' for a classification problem. Experiments performed during the research showed an improvement in the quality of the classification after the mixture of Gaussian distributions was applied as votes distribution. The author also proposes a method of data selection for long sequences of measurement arranged chronologically with highly unbalanced occurrence of the positive class in the two-class classification problem. Finally, using the proposed model to solve the problem defined by the organizers of AAIA'16 DM showed an increase in the stability of the ensemble classifier and an improvement in the quality of the classification problem solution.

References

  1. Aaia’16 data mining challenge: Predicting dangerous seismic events in active coal mines. https://knowledgepit.fedcsis.org/contest/view.php?id=112
  2. M. Sikora, Z. Krzystanek, B. Bojko, and K. Śpiechowicz, “Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings,” Journal of Mining Science, vol. 47, no. 4, pp. 493–505, 2011. http://dx.doi.org/10.1134/S1062739147040125.
  3. M. Kozielski, A. Skowron, Ł. Wróbel, and M. Sikora, Beyond Databases, Architectures and Structures: 11th International Conference, BDAS 2015, Ustroń, Poland, May 26-29, 2015, Proceedings. Cham: Springer International Publishing, 2015, ch. Regression Rule Learning for Methane Forecasting in Coal Mines, pp. 495–504. ISBN 978-3-319-18422-7. http://dx.doi.org/10.1007/978-3-319-18422-7_44
  4. M. Sikora and B. Sikora, “Improving prediction models applied in systems monitoring natural hazards and machinery,” International Journal of Applied Mathematics and Computer Science, vol. Vol. 22, no. 2, pp. 477–491, 2012. http://dx.doi.org/10.2478/v10006-012-0036- 3. http://www.degruyter.com/view/j/amcs.2012.22.issue-2/v10006-012-0036-3/v10006-012-0036-3.xml
  5. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297. http://dx.doi.org/10.1007/BF00994018.
  6. V. Kecman, Support Vector Machines: Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, ch. Support Vector Machines – An Introduction, pp. 1–47. ISBN 978-3-540-32384-6. http://dx.doi.org/10.1007/10984697_1
  7. S. E. Jelali, A. Lyhyaoui, and A. R. Figueiras-Vidal, “Applying emphasized soft targets for gaussian mixture model based classification.” in IMCSIT. IEEE, 2008. http://dx.doi.org/10.1109/IMCSIT.2008.4747229. ISBN 978-83-60810-14-9 pp. 131–136.
  8. T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The elements of statistical learning : data mining, inference, and prediction, ser. Springer series in statistics. New York: Springer, 2009. ISBN 978-0-387-84857-0 Autres impressions : 2011 (corr.), 2013 (7e corr.).
  9. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN 0387310738
  10. D. Meyer, F. Leisch, and K. Hornik, “The support vector machine under test,” Neurocomputing, vol. 55, no. 1âĂ¿2, pp. 169 – 186, 2003. http://dx.doi.org/http://dx.doi.org/10.1016/S0925-2312(03)00431-4 Support Vector Machines. http://www.sciencedirect.com/science/article/pii/S0925231203004314
  11. M. Ochab and W. Wajs, “Bronchopulmonary dysplasia prediction using support vector machine and libsvm,” in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. P. M. Ganzha, L. Maciaszek, Ed., vol. 2. IEEE, 2014. http://dx.doi.org/10.15439/2014F111 pp. pages 201–208.
  12. S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector machines with gaussian kernel,” Neural Computation, vol. 15, no. 7, pp. 1667–1689, Jul. 2003. http://dx.doi.org/10.1162/089976603321891855.
  13. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society: Series B, vol. 39, pp. 1–38, 1977. http://dx.doi.org/10.2307/2984875.
  14. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Pearson Education, 2003, ch. 13. Uncertainty, pp. 466–486. ISBN 0137903952
  15. C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27, May 2011. http://dx.doi.org/10.1145/1961189.1961199.