Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 8

Proceedings of the 2016 Federated Conference on Computer Science and Information Systems

Studying the influence of object size on the range of distance measurement in the new Depth From Defocus method

, ,

DOI: http://dx.doi.org/10.15439/2016F136

Citation: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 817822 ()

Full text

Abstract. The article presents results achieved during researching the new distance measuring method that is a part of Depth From Defocus techniques. The method has been developed to determine the shape of the flaccid diaphragm used in the Ventricular Assist Device (VAD). The shape is determined on the basis of distance measured between the CCD sensor plate of the camera and objects (markers) located on the flaccid diaphragm. Experiments were carried out using a stationary camera and circular markers with a diameter from 3 mm to 9 mm. The goal of this paper is to present the influence of the object (marker) size on the distance range measured between the camera and diaphragm used in the external pneumatic prosthetic heart.

References

  1. K. Murawski, “Method of Measurement the Distance to an Object Based on One Shot Obtained from a Motionless Camera with a Fixed-Focus Lens”, Acta Physica Polonica A, 127, 6, pp. 1591 – 1595, 2015. http://dx.doi.org/10.12693/APhysPolA.127.1591
  2. K. Murawski, “Method of measuring the distance using the cameras”, Patent Application No. P.408076, 2014, (in Polish).
  3. H. Wang, J. Hu, “Active stereo method for three-dimensional shape measurement”, Optical Engineering, 51, 6, pp. 1–8, 2012. http://dx.doi.org/10.1117/1.OE.51.6.063602
  4. SY. Chen, YF. Li, “Finding Optimal Focusing Distance and Edge Blur Distribution for Weakly Calibrated 3-D Vision”, IEEE Transactions on Industrial Informatics, 9, 3, pp. 1680-1687, 2013. http://dx.doi.org/10.1109/TII.2012.2221471
  5. F. Bonin-Font, A. Burguera, A. Ortiz, G. Oliver, “A Monocular Mobile Robot Reactive Navigation Approach Based on the Inverse Perspective Transformation”, ROBOTICA, 31, pp. 225 – 249, 2013. http://dx.doi.org/10.1017/S0263574712000252
  6. A. de La Bourdonnaye, R. Doskočil, V. Křivánek, “Practical Experience with Distance Measurement Based on Single Visual Camera”, Advances in Military Technology, 7, 2, 49 – 56, 2012.
  7. http://tdserver1.fnal.gov/darve/mu_cool/pressuretest/Basics_of_Photo grammetry.pdf, (2015).
  8. K. Yue, Z. Li, M. Zhang, S. Chen, “Transient full-field vibration measurement using spectroscopical stereo photogrammetry”, OPTICS EXPRESS, 18, no. 26, pp. 26866 – 26871, 2010. http://dx.doi.org/10.1364/OE.18.026866
  9. Y. Morimoto, A. Masaya, M. Fujigaki, D. Asai, Applied Measurement Systems, chapter 7, 137, ISBN 978-953-51-0103-1, 2012.
  10. R. B. Rusu, A. Aldoma, S. Gedikli, M. Dixon, “3D Point Cloud Processing: PCL”, Tutorial at IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), 2011.
  11. A. Saxena, H. Koppula, R. Newcombe, X. Ren, “RGB-D: Advanced Reasoning with Depth Cameras”, Workshop in conjunction with Robotics: Science and Systems (RSS), 2013.
  12. Red.: J. Sarna, R. Kustosz, E. Woźniewska, M. Gonsior, A. Jarosz, K. Szymańska, D. Hansel, E. Krzak, “Program Polskie Sztuczne Serce”, ISBN 978-83-63310-16-5, 2013.
  13. T. Pustelny, G. Konieczny, Z. Opilski, M. Gawlikowski, “Measuring systems for pulsatile heart assist pumps ReligaHeart® - measuring system movement of the diaphragm”, Polish artificial heart, the development of design, qualification tests, preclinical and clinical, ISBN 978-83-63310-12-7, pp. 22 – 36, 2013, (in Polish).
  14. P. Gibinski, G. Konieczny, E. Maciak, Z. Opilski, T. Pustelny, “Acoustic device for measuring instantaneous blood volume in cardiac support chamber i.e. pneumatic heart assist driving chamber, has sensor supporting heart in openings, and audio amplifier connected with volume unit of blood-cell support”, Patent No. PL394074-A1.
  15. G. Konieczny, T. Pustelny, P. Marczyński, “Quasi-Dynamic Testing of an Optical Sensor for Measurements of the Blood Chamber Volume in the POLVAD Prosthesis”, Acta Physica Polonica A, 124, 3, pp. 483-485, 2013. http://dx.doi.org/10.12693/APhysPolA.124.483
  16. D. Komorowski, M. Gawlikowski, “Preliminary investigations regarding the blood volume estimation in pneumatically controlled ventricular assist device by pattern recognition”, Computer recognition systems 2, ASC 45, pp. 558 – 565, 2007. http://dx.doi.org/10.1007/978-3-540-75175-5_70
  17. R. Kustosz, A. Jarosz, M. Gawlikowski, A. Kapis, M. Gonsior, “The role and perspectives of development of the Polish air pump heart assist on the market of heart prosthetic”, Polish artificial heart, the development of design, qualification tests, preclinical and clinical, ISBN 978-83-63310-12-7, 2013, (in Polish).
  18. K. Murawski, T. Pustelny, M. Murawska, “System and method of determining the shape of diaphragm of pneumatic extracorporeal heart assist pump”, Patent Application No. P.414104, 2015, (in Polish).
  19. K. Murawski, D. Białas, M. Rękas, “Measurement of Corneal Neovascularisation with the use of Image Processing Techniques”, Acta Physica Polonica A, vol. 127, 6, pp. 1732 – 1736, 2015. http://dx.doi.org/10.12693/APhysPolA.127.1732
  20. K. Różanowski, K. Murawski, “An Infrared Sensor for Eye Tracking in a Harsh Car Environment”, Acta Physica Polonica A, 122, 5, pp. 874 – 879, 2012. http://dx.doi.org/10.12693/APhysPolA.122.874
  21. K. Murawski, R. Różycki, P. Murawski, A. Matyja, M. Rekas, An Infrared Sensor for Monitoring Meibomian Gland Dysfunction, Acta Physica Polonica A, 124, 3, 517 – 520, 2013. http://dx.doi.org/10.12693/APhysPolA.124.517