Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 8

Proceedings of the 2016 Federated Conference on Computer Science and Information Systems

Approximation of the actual spatial distribution of the b-matrix in diffusion tensor imaging with bivariate polynomials

, ,

DOI: http://dx.doi.org/10.15439/2016F457

Citation: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 943946 ()

Full text

Abstract. The aim of this work was to find an analytical expression describing the b-matrix spatial distribution (BSD) in diffusion tensor imaging, obtained by means of simple calibration to a water isotropic phantom.

References

  1. P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging.” Biophysical Journal, 1994. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1275686/
  2. ——, “Estimation of the effective self-diffusion tensor from the NMR spin echo,” Journal of Magnetic Resonance. Series B, 1994.
  3. D. Le Bihan and H. Johansen-Berg, “Diffusion MRI at 25: Exploring brain tissue structure and function,” NeuroImage, 2012. http://dx.doi.org/10.1016/j.neuroimage.2011.11.006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1053811911012857
  4. J.-D. Tournier, S. Mori, and A. Leemans, “Diffusion tensor imaging and beyond,” Magnetic Resonance in Medicine, 2011. http://dx.doi.org/10.1002/mrm.22924. [Online]. Available: http://onlinelibrary.wiley.com.atoz.wbg2.bg.agh.edu.pl/doi/10.1002/mrm.22924/abstract
  5. P. J. Basser and D. K. Jones, “Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review,” NMR in Biomedicine, 2002. http://dx.doi.org/10.1002/nbm.783. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/nbm.783/abstract
  6. M. Neeman, J. P. Freyer, and L. O. Sillerud, “A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging,” Magnetic Resonance in Medicine, 1991. http://dx.doi.org/10.1002/mrm.1910210117. [Online]. Available: http://onlinelibrary.wiley.com.wiley-online-library.wbg2.bg.agh.edu.pl/doi/10.1002/mrm.1910210117/abstract
  7. A. L. Alexander, J. S. Tsuruda, and D. L. Parker, “Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients,” Magnetic Resonance in Medicine, 1997. http://dx.doi.org/10.1002/mrm.1910380623. [Online]. Available: http://onlinelibrary.wiley.com.wiley-online-library.wbg2.bg.agh.edu.pl/doi/10.1002/mrm.1910380623/abstract
  8. K. M. Hasan, D. L. Parker, and A. L. Alexander, “Comparison of gradient encoding schemes for diffusion-tensor MRI,” Journal of Magnetic Resonance Imaging, 2001. http://dx.doi.org/10.1002/jmri.1107. [Online]. Available: http://onlinelibrary.wiley.com.atoz.wbg2.bg.agh.edu.pl/doi/10.1002/jmri.1107/abstract
  9. D. K. Jones, “The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study,” Magnetic Resonance in Medicine, 2004. http://dx.doi.org/10.1002/mrm.20033. [Online]. Available: http://onlinelibrary.wiley.com.atoz.wbg2.bg.agh. edu.pl/doi/10.1002/mrm.20033/abstract
  10. A. Özcan, “(Mathematical) Necessary conditions for the selection of gradient vectors in DTI,” Journal of Magnetic Resonance, 2005. http://dx.doi.org/10.1016/j.jmr.2004.10.013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1090780704003544
  11. M. E. Bastin, “Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation,” Magnetic Resonance Imaging, 1999. http://dx.doi.org/10.1016/S0730-725X(99)00026-0. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0730725X99000260
  12. M. A. Horsfield, “Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images,” Magnetic Resonance Imaging, 1999. http://dx.doi.org/10.1016/S0730-725X(99)00077-6. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0730725X99000776
  13. A. T. Krzyżak and Z. Olejniczak, “Improving the accuracy of PGSE DTI experiments using the spatial distribution of b matrix,” Magnetic Resonance Imaging, 2015. http://dx.doi.org/10.1016/j.mri.2014.10.007. [Online]. Available: http://www.mrijournal.com/article/S0730725X1400318X/abstract
  14. A. Einstein and R. Fürth, Investigations on the theory of Brownian movement, New York, N.Y., 1956.
  15. E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” The Journal of Chemical Physics, 1965. http://dx.doi.org/10.1063/1.1695690. [Online]. Available: http://scitation.aip.org/content/aip/journal/jcp/42/1/10.1063/1.1695690
  16. K. Kłodowski and A. T. Krzyżak, “Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences,” Magnetic Resonance Imaging, 2016. http://dx.doi.org/10.1016/j.mri.2015.12.010. [Online]. Available: http://www.mrijournal.com/article/S0730725X15003057/abstract