Optimizing the parameters of Sugeno based adaptive neuro fuzzy using artificial bee colony: A Case study on predicting the wind speed
Fatma Helmy Ismail, Mohamed Abdel Aziz, Aboul Ella Hassanien
DOI: http://dx.doi.org/10.15439/2016F516
Citation: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 645–651 (2016)
Abstract. This paper presents an approach based on Artificial Bee Colony (ABC) to optimize the parameters of membership functions of Sugeno based Adaptive Neuro-Fuzzy Inference System (ANFIS). The optimization is achieved by Artificial Bee Colony (ABC) for the sake of achieving minimum Root Mean Square Error of ANFIS structure. The proposed ANFIS-ABC model is used to build a system for predicting the wind speed. To ensure the accuracy of the model, a different number of membership functions has been used. The experimental results indicate that the best accuracy achieved is 98\% with ten membership functions and least value of RMSE which is 0.39.
References
- Jang J. S. R. Adaptive network based fuzzy inference systems. IEEE Transactions on systems man and cybernetics 1993, p. 665-685.
- Capovilla CE, Casella IRS, Filho AJS, Azcue-Puma JL, Jacomini RV, Ruppert E. A wind energy generator for smart grid applications using wireless-coded neuro-fuzzy power control. Comput Math Appl 2014;68:2112-23.
- De Giorgi MG, Ficarella A, Tarantino M. Error analysis of short term wind power prediction models. Appl Energy 2011;88:1298-311.
- Haque A. U., Mandal P., Kaye M. E., Meng J, Chang J, Senjyu T. A new strategy for predicting short-term wind speed using soft computing models. Renew Sustain Energy Rev 2012;16:4563-73.
- D. Petković, Ž. Ćojbašič, V. Nikolić, Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renew Sustain Energy Rev 2013;28:191-5.
- Jafarian M, Ranjbar AM. Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine. Renew Energy 2010;35:2008-14.
- Lin WM, Hong CM, Cheng FS. Fuzzy neural network output maximization control for sensorless wind energy conversion system. Energy 2010;35:592-601.
- Lin WM, Hong CM, Cheng FS. Design of intelligent controllers for wind generation system with sensorless maximum wind energy control. Energy Convers Manag 2011;52:1086-96.
- Mohandes M, Rehman S, Rahman SM. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 2011;88:4024-32.
- De Giorgi MG, Ficarella A, Tarantino M. Error analysis of short term wind power prediction models. Appl Energy 2011;88:1298-311.
- Monfared M, Rastegar H, Kojabadi HM. A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 2009;34:845-8.
- Karaboga, D.; Akay, B. A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31, 6185.
- D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization 39(2007) 171459.
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687697.
- Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108132.
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459471.
- Kang, F.; Li, J.; Xu, Q. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. 2009, 87, 861870.
- Sonmez, M. Discrete optimum design of truss structures using artificial bee colony algorithm. Struct. Multidiscip. Optim. 2011, 43, 8597.
- Samanta, S.; Chakraborty, S. Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2011, 24, 946957.