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Abstract—In this paper we present a solution to the AAIA’16
Data Mining Challenge. The goal of the challenge was to
predict, from multivariate time series data, periods of increased
seismic activity which may cause life-threatening accidents in
underground coal mines. Our solution is based on Recurrent
Neural Network with Long Short-Term Memory cells. It requires
almost no feature engineering, which makes it easily applicable
to other domains with multivariate time series data. The method
achieved the 5th place in the AAIA’16 competition, out of 203

teams.

I. INTRODUCTION

U
NDERGROUND coal mine workers are exposed to a

life-threatening danger in a form of seismic events. To

improve workers’ safety, it is crucial to predict those phenom-

ena in advance. However, knowledge-based safety monitoring

systems that are currently deployed in coal mines sometimes

fail to forecast such occurrences early enough. The goal of

the AAIA’16 Data Mining Challenge: Predicting Dangerous

Seismic Events in Active Coal Mines competition [12] was

to design methods that could improve reliability of seismic

activity prediction.

The task is an instance of a classification problem with

unbalanced data provided in a form of multivariate, non-

stationary time series. We present a solution based on Re-

current Neural Network with Long Short-Term Memory cells.

The proposed model is generic and does not rely on the domain

knowledge. It requires only minimal feature preprocessing and

no feature engineering or feature selection steps. The solution

achieved a competitive 5th place in the AAIA’16 competition.

The rest of the paper is organized as follows. In Section II

we give an overview of the related work. The details of the

AAIA’16 challenge are described in Section III. Section IV

gives a brief introduction to Recurrent Neural Networks and

Long Short-Term Memory cells. In Section V we describe

the details of our architecture, training and model selection.

Finally, Section VI summarizes the paper.

II. RELATED WORK

Seismic hazard and rock bursts pose a threat to miners’

lives and overall safety of the coal mining operation. One

of the techniques for addressing this problem is to monitor

the sensor readings’ with automated algorithms. Originally,

natural earthquake seismology approaches have been used

to deal with the problem [3]. Mine-induced seismicity can

be assessed using mechanisms of mine tremors, such as

magnitude, moment, stress drop and seismic efficiency [16]

or using seismic tomography [10]. More recently, typical ma-

chine learning approaches have been used – such as Random

Forests [4] and other nonlinear methods [5], including Support

Vector Machines or Naive Bayes Classifier.

The recent IJCRS 2015 Data Challenge competition [13]

provided an opportunity to compare different approaches on

the data set coming from coal mining. Although the goal

was a bit different (to predict dangerous levels of methane

concentration), the data shared similar characteristics – being

an example of a time series, multivariate prediction problem

with concept drift. Most of the top solutions relied heavily

on feature engineering, either manual or automatic, such as:

automatic variable construction [1], window-based feature

engineering [8], hand-crafted features [15] or thousands of

automatically generated features [21][22].

III. CHALLENGE DESCRIPTION

A. Data

The aim of the AAIA’16 competition was to predict relative

likelihood of seismic events in coal mines based on the

recorded measurements. It is an instance of supervised learning

classification task, with most of the data given in a form

of non-stationary multivariate time series. The data is split

into 5 training sets and a single test set. All the training sets

together contain 133, 151 records, while the test set contains

3, 860 records. Each record describes a period of 24 hours and

consists of:

• an identifier of the main working site and 12 characteris-

tics related to the whole period of 24 hours, such as total

energy of seismic bumps registered in the last 24 hours,

• 22 times series with 24 numeric per-hour aggregated

measurements, such as energy of the strongest seismic

bump within a given hour.

Thus, in total each record contains 541 values. As men-

tioned previously, the records are grouped into 5 training sets

and a single test set. The subsequent training sets correspond

to later periods, adjacent records in them overlap by 1 hour

and are given in a chronological order. The test set contains

records that come from period later than the last training set,

its records are non-overlapping and given in random order.

A label is given for each record in the training set while

for the test set such label is missing – it is the goal of the
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competition to forecast those values. The label is a categorical

variable that can be either normal or warning. Value warning

indicates that a total seismic energy measured within 8-hour

period after the time covered by the record exceeded the

warning threshold of 50, 000 Joules. For each record in the

test set, the numeric predictions are to be made about those

(hidden) values.

Additionally, there is an extra „meta-data” set that describes

main working sites included in the training and test sets. It

contains information such as the height of the main working

site or the latest geological assessment. We note that the

training and test sets are highly unbalanced, with respect to

both the main working site attribute (Figure 1) and the labels

(Table I).

B. Evaluation

The competition score is defined as an area under the ROC

curve. It is calculated based on predictions of label values,

made for all 3, 860 test set records. Each prediction is a

number, where a higher value denotes that the true label value

is more likely to be warning.

The contestants submit their predictions during the com-

petition. However, before the competition is concluded, the

contestants know only the score computed over preliminary

test set – a part of the whole test set that contains approxi-

mately 25% of the data. This subset is chosen randomly by

the organizers and is the same for all the contestants. It is not

revealed to the participants which of the test records belong to

it. The contestants can select a single final solution, possibly

guided by the scores obtained on the preliminary test set. The

final score, however, is computed over the final test set, which

consists of the remaining approximately 75% of the test data.

This score is shown only after the end of the contest and is

used to compute the final standings – the highest-scoring team

is declared the winner.
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Fig. 1. The frequencies of different main working sites in the training sets.
Some sites appear only in the test set.

TABLE I
DISTRIBUTION OF LABELS ACROSS THE TRAINING SETS

tr. set 1 tr. set 2 tr. set 3 tr. set 4 tr. set 5
normal 78722 13137 13047 12744 12538

warning 1171 181 269 568 774

IV. DEEP RECURRENT NEURAL NETWORK

A. Recurrent Neural Networks

Recurrent Neural Network (RNN) is a type of artificial

neural network in which dependencies between nodes form

a directed cycle. This allows the network to preserve a state

between subsequent time steps. We focus on a simple RNN

with a single, self-connected hidden layer.

RNNs process all elements from a sequence one-by-one,

and the output at every time step depends on all previous

inputs. This is a fundamental difference from feedforward net-

works, where the network’s output depend only on the current

element. It has an important theoretical implication: RNNs

are capable of approximating arbitrary well any measurable

sequence-to-sequence mapping [9].

Since RNNs contain loops, the standard backpropagation

algorithm does not work. Instead, a backpropagation through

time algorithm is used [20]. The idea behind this method is to

unroll the network over N time steps, and copy the parameters

N times. The RNN parameters are shared across all time steps,

which makes them trainable and allows generalization.

Since the number of unrolled steps can be arbitrary, RNNs

are particularly suited for modeling sequential data, where the

length of the input is not fixed or can be very long. Recurrent

nets have shown impressive results in many NLP tasks. One

particularly successful variant of RNN is a recurrent network

with LSTM cells, which we describe below.

B. Long Short-Term Memory

One important problem with training RNNs is the vanishing

gradient, which can occur when values smaller than 1.0
are multiplied at each time step during the backpropagation

through time. For some activation functions, the maximal

value of the derivative is small. For example, the derivative of

commonly used sigmoid function is never bigger than 0.25. As

a result, after N time steps the gradient is multiplied by a value

less than or equal to 0.25N , which quickly becomes very small

as N increases. While using some activation functions (eg.

ReLU [17]) can reduce the likelihood of vanishing gradients,

there is a special architecture designed to address this problem:

Long Short-Term Memory (LSTM).

The LSTM is better at storing and accessing information

than standard RNN [11]. The LSTM block consists of a self-

connected memory cell and 3 gates named: input, output and

forget. The gates control the access to the cell and can be

interpreted as "read", "write" and "reset" operations in the

standard computer’s memory. The network learns to control

the gates and decides to update and/or use the value at any

given time step. Since all the components are built from
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differentiable functions, the gradients can be computed for

the whole system and it is possible to train it end-to-end

using backpropagation. There are several variants of LSTM

that slightly differ in connectivity structure and activation

functions. Below we describe the definitions of the input,

output and forget gates that we used.

Let ht ∈ R
n be a hidden state, ct ∈ R

n be a vector

of memory cells of the network and let xt be the input

at the time step t. Let Wi,Wf ,Wu,Wo be matrices and

bi, bf , bu, bo the respective bias terms. We define LSTM as

a transformation that takes 3 inputs (ht−1, ct−1, xt) and

produces 2 outputs (ht and ct). In all equations below ⊙ is

element-wise multiplication. We assume also that ⊕ is an

operation that aggregates ht−1 and xt. We used plain sum,

but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information

should be removed from the cell is defined as:

ft = sigm(Wf ∗ [ht−1 ⊕ xt] + bf ) (1)

The input modulation gate value it and the cell update ut are

defined as:

it = sigm(Wi ∗ [ht−1 ⊕ xt] + bi)

ut = tanh(Wu ∗ [ht−1 ⊕ xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if

xt can be ignored, it will be close to 0. Knowing the values

above, the new cell value ct is computed as:

ct = ft ⊙ ct−1 + it ⊙ gt (3)

The last step is to compute ht, the output passed to the next

LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ∗ [ht−1 ⊕ xt] + bo)

ht = ot ⊙ tanh(ct)
(4)

The LSTM networks have been successfully applied to real-

world problems, including language modeling [18], handwrit-

ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing

Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.

Such approach, while effective in practice, makes the model

less generalizable as the feature engineering steps depend on

the problem at hand. Our goal was to create a model that

learns everything from the raw data and does not rely on the

domain knowledge. To this end, we limit our preprocessing

only to the following two operations:

• Data normalization, in regards to mean and standard

deviation. This is a standard Machine Learning

procedure, and as such it should be applicable to almost

any problem. The normalization makes easier both

optimization of the loss function and the regularization,
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Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22

per-hour measurements. The ith per-hour measurement is marked as x
i.

After processing N time steps, the last hidden state hN ∈ R
50 of the

LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s ∈ R

12 of per-record characteristics and the vector
e ∈ R

10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,

the ratio of positive to negative examples is highly

skewed. To make it more balanced, we sample with

repetition from the set of positive examples and add

them to the training set. We experimented with different

upsampling ratios and achieved best results for increasing

the number of positives by 10− 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We

use a single-layer LSTM model that is processing 24 hourly

aggregated measurements. At every time step, the hidden state

of the LSTM (hi ∈ R
50) is connected to the previous state

hi−1 and the normalized measurement values from the ith

hour (xi in the picture). After processing the whole sequence,

the network’s final hidden state hN encodes all measurements

in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.

The vector s contains 12 per-record characteristics described

in Section III-A. The vector e is an 10-dimensional embedding

of the working site id. The values of the embedding vectors

are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-

vised classifier (2-layer feedforward network in this case). We

apply sigmoid on the network’s output to ensure the predicted

value is in the range [0, 1] and can be interpreted as the

probability of the warning label. The Binary Cross Entropy

loss is used as the cost function.
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TABLE II
WORKING SITES CHARACTERISTICS

site id region name bed name assessment mapped to
146 Partia F 416 a N/A
149 Partia F 418 b N/A
155 Partia H 502 b N/A
171 Partia F 409 a 146
264 Z 405/2 b N/A
373 G-1 707/2 b N/A
437 G-1 712/1-2 b N/A
470 Z 405/2 c 264
. . . . . . . . . . . . . . . . . . . .

777 9 504 b N/A
793 0 405 b N/A
799 9 504 a 777

C. Training

We initialize all model’s parameters by sampling uniformly

from [−0.1, 0.1]. The optimization of the loss function is done

using Adam algorithm [14] with a learning rate of 0.0005 and

ε parameter equal to 10−10. The training is run for 5 full passes

(epochs) over the training data. After each epoch, the learning

rate is multiplied by 0.63 and the training set is randomly

shuffled.

We apply standard l2 regularization of the weights with

λ = 0.01. To avoid exploding gradient problem, the gradi-

ents are clipped globally to the value of 1. The model was

implemented in Torch [2] and trained using a single GPU.

D. Model selection

Model selection was a significant challenge in the AAIA’16

competition. Recall from Section III-A that the time periods

in the training data are overlapping. As a result, the standard

cross-validation on a random split of the data tends to be over-

optimistic. Also, there is a significant concept drift between

the 5 provided training sets. The k-th training set was collected

in a time period right after the set (k − 1)th. We also know

that the last training set was collected before the test set.

To address the problem of overlapping periods and to make

the local evaluation as close to the final one as we can, we

decided to use 5-fold cross-validation, with one training file

being one fold. The average of the AUC scores was the final

score we assigned to the model. We completely ignored the

leaderboard score, as it proved to be very misleading in the

past for this type of data [13].

E. Dealing with unknown sites

As described in Section V-B, our architecture computes

embedding vectors for every working site id. However, recall

from Fig. 1 that some of those identifiers exist only in the

test data and not in the training data. We used the following

method to fix this problem: we looked at the working site

metadata and manually mapped 8 missing ids to existing ids

that share similar characteristics. An example is presented in

Table II which contains a subset of the metadata file. The id

171 is mapped to 146 because the region name and geological

assessment is the same for those two sites. Similarly, id 799
is mapped to 777 because of the same region and bed names.

The above approach can be automated by joining (in SQL

sense) the training data with the metadata on working site

id attribute and then embedding different categorical variables

(region/bed name, etc). This would remove the need of manual

mapping of the missing ids and potentially improve the quality

as well. However, we did not manage to try this approach

during the competition.

F. Ensembling

From the begin of the competition, our main design decision

was to create a competitive solution that consist of only one

model trained from the raw data. However, the practice of

machine learning competitions shows that ensembling of many

different models is an easy way of improving the final score.

We decided to do a simple rank average ensembling with a

logistic regression model. More precisely, we use two models:

RNN (described in section V) and LR (logistic regression) to

evaluate records from the test set in the following way.

Let rankX(record) denote the rank of the prediction given

to the record by model X, among all predictions by model

X on the test set. Then, the final prediction is computed as

follows:

pred(record) =
rankRNN (record) + rankLR(record)

2

By employing this technique we moved our solution one place

up on the leaderboard.

VI. CONCLUSION

In this paper we presented a solution to AAIA’16 data

mining challenge based on a Recurrent Neural Network with

LSTM cells. It achieved a competitive score of 0.934 and the

5th place in the competition.

Compared to other methods (see Section II), our solution

does not rely heavily on many hand-crafted features. Instead,

it learns feature representation from the raw sensor data with a

minimal feature engineering. It is a similar method to the one

that we used in the previous IJCRS’15 competition, where

our model achieved the 6th place. Top performance in both

competitions suggests that our approach is versatile and can

be successfully applied to different multivariate time series

problems.
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