
A Development Process Based on Variability
Modeling for Building Adaptive Software

Architectures

Ngoc-Tho Huynh
IRISA / Université Européenne

de Bretagne / TELECOM

Bretagne, Brest, France

tho.huynh@telecom-bretagne.eu

Maria-Teresa Segarra
IRISA / Université Européenne

de Bretagne / TELECOM

Bretagne, Brest, France

mt.segarra@telecom-bretagne.eu

Antoine Beugnard
IRISA / Université Européenne

de Bretagne / TELECOM

Bretagne, Brest, France

antoine.beugnard@telecom-bretagne.eu

Abstract—Adaptive software is a class of software which is able
to dynamically modify at runtime its own internal structure and
hence its behavior in response to changes in its operating envi-
ronment. Adaptive software development has been an emerging
research area of software engineering in the last decade. Many
existing approaches use techniques issued from software product
lines (SPLs) to develop adaptive software. They propose tools,
frameworks or languages to build adaptive software architectures
(ASAs) but do not guide developers on the process of using
them. In this paper, we propose an adaptive software architecture
development process to guide developers building an ASA. One
of the important activities of this development process is software
specification based on models. In our process, we propose to use
the models and basic tools of Common Variability Language
(CVL, proposed as an OMG standard) to generate an ASA and
a subprocess to specify these models.

I. INTRODUCTION

M
AINTENANCE phase is one important stage of a

software development process. Maintenance aims at

evolving and updating software to meet new requirements or to

satisfy new conditions in the software execution context. In or-

der to be maintained and evolved, software is usually stopped,

then updated, and finally restarted. However, in certain cir-

cumstances, stopping the software is unacceptable, e.g., cloud

gaming, medical, and finance systems as stopping the software

has consequences for business, or even dangerous for humans.

One solution to solve this problem is to add dynamic recon-

figuration mechanisms to modify the software architecture at

runtime. Several works are interested in determining when the

architecture reconfiguration can occur [1], [2]. Other works

are interested in tools and methods to develop an ASA [3],

[4], [5]. Particularly, they allow specifying variation points

in the software architecture. A variation point is a particular

point in the architecture specification where choices can be

realized. In SPL, variation points are specified in a variability

model. Such a model describes commonality and variability

of the product line. Commonality represents common parts of

all products in the family. Variability represents the parts that

may be different in different software products [6]. A product

contains all the common parts and the choices made on all the

variation points. Once all the variation points are resolved (a

choice has been made for all of them), the variability model

is said to be configured.

Many existing works use techniques issued from SPLs to

develop adaptive software [7], [8]. These works use a vari-

ability model to specify the software variability and propose

the mapping between the variability model and the software

architecture. When the variability model is configured, the

corresponding component architecture is deduced. During soft-

ware execution, a new configuration of the variability model

can be decided and the corresponding software architecture

deduced. Then, by calculating the differences between the

current and the new architecture, reconfiguration actions are

identified. However, these approaches do not specify a soft-

ware development process to guide developers to build the

adaptive software architecture.

To deal with the above limitation, we are working on a

development process to guide developers to specify informa-

tion needed to generate an ASA. In this paper, we focus on

identifying the information to be specified in a development

process. All along the development process we use CVL meta-

models [9] to manage variability and propose a subprocess to

describe how to specify this variability.

The remainder of the paper is structured as follows. Section

II describes the CVL approach. Our general development

process for building an ASA is presented in Section III.

Section IV focuses on the variability modeling stage of our

process and how a variability model is configured in order to

generate an adaptive software. Related work is discussed in

Section V then the paper concludes.

II. COMMON VARIABILITY LANGUAGE

CVL [9] is a domain-independent language, and also an

approach for specifying and configuring variability. We use

CVL in our approach for two main reasons:

• CVL has been proposed as an OMG standard and we

think it will be largely used in the near future.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1715–1718

DOI: 10.15439/2016F170

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1715

• It proposes a MOF-based variability language which

means that any MOF-based product model can be easily

extended with variability information using CVL.

An overview of the CVL approach is depicted in Figure

1. The base model is used to specify the elements of the

architecture that does not contain any information about vari-

ability. Variability information is specified in the variability

model. In order to generate the configuration of a specific

product, the resolution model consists of VSpecResolutions

each determining a decision for a VSpec.

Variability

Model

Base Model

Product

Model

Resolution

Model

CVL Execution

Legend

MOF-based DSL modelsMOF-based DSL models

CVL modelsCVL models

Fig. 1. CVL approach

In CVL, a variability model consists of three main parts:

• VSpec tree. A VSpec tree consists of VSpecs which are

similar to features in feature models (FMs) [10]. There

are four types of VSpecs: Choice, Variable, VClassifier

and CompositeVSpec. A Choice allows to specify bi-

nary selections (true/false). A Variable should be used

to specify a parameter which value may change. A

VClassifier allows to specify a min and max number of

instances of the VSpec. Finally, CompositeVSpec is used

for modularity purposes.

• Variation points. A variation point links a VSpec to the

corresponding elements in the base model.

• OCL constraints. CVL supports the definition of OCL

constraints among VSpecs of a VSpec tree that cannot

be directly captured by hierarchical relations.

Let CVL model denote the three models: the base model,

the variability model, and the resolution model.

CVL offers tools and meta-models to specify variability of

a product family but it does not offer a method to specify

the variability model and the base model. Additionally, the

product is generated without runtime variability.

III. A DEVELOPMENT PROCESS FOR BUILDING AN

ADAPTIVE SOFTWARE ARCHITECTURE

In order to help engineers on developing adaptive software,

we propose a development process that includes variability

as a first-class stage. Although our process is based on CVL

models and meta-models, other tools and frameworks may

be used. The process we propose encompasses the variability

specification issue to generate the architecture of the product.

On the other hand, a reconfiguration process (at runtime) is

out of the scope of this paper, but appears in the process in

order to give an overview of the whole picture.

Our process is based on SPL engineering. The SPL en-

gineering distinguishes two phases: domain engineering and

application engineering [11] (see Figure 2).

A
p

p
li

ca
ti

o
n

e

n
g

in
e

e
ri

n
g

Variability

model
Base model

Importing

Planning

StateTransfer

Model
refers to

New Extended

Resolution model

Monitoring

Analysing
Adaptive

product

Reconfiguration

plan

D
e

si
g

n
 t

im
e

R
u

n
-t

im
e

Manual programing
and Composing

AdapSwAG tool

AdapSwAG tool: Adaptive Software Architecture Generation tool

D
o

m
a

in

e
n

g
in

e
e

ri
n

g

Extended

Resolution

model

CVL model

Product model

Implementation

artifacts

Implementation

artifact skeleton

applied on

Reconfigurator

Generating

refers to

Fig. 2. General Adaptive Software Architecture Development Process

Domain engineering is the process responsible for defining

the commonality and variability of the product line. The

variability model and the base model are artifacts of this phase.

The base model in our approach corresponds to a component-

based architecture model specified by using an architecture

description language (ADL).

Application engineering refers to the process of actually

combining the artifacts obtained during the domain engineer-

ing phase, in order to generate a software product. In our

approach, this phase is partitioned into two subprocesses: one

at design time and another one at runtime.

At design time, a resolution model is specified to configure

the variability model. This resolution model is extended from

the CVL resolution meta-model for generating the necessary

elements in an ASA. Generating the architecture is realized by

our Adaptive Software Architecture Generation (AdapSwAG)

tool. As depicted in Figure 2, the input of this tool is the

CVL model and its output is a particular architecture (the

product model). Compared to the CVL execution of the CVL

approach, the software architecture generated by AdapSwAG

tool includes part of its initial variability, and is specified in the

same language as the base model. Based on the product model

and a given target platform, a text generation module generates

implementation artifacts skeleton. Each of them corresponds

to a component specified in the product model and consists

of component implementations, a component specification,

and a configuration file. Once the implementation artifacts

skeleton is generated, implementation artifacts that are either

available or should be developed are integrated into it to

build operational components. This task is performed by an

application engineer. The result is an adaptive product that

can be executed in the target platform.

If the product embeds variability, then, its architecture may

change at runtime, and the components state affected by the

changes should be migrated to the new ones. As the semantic

of this state is component-specific, the state migration task is

never completely automated. Thus, engineers have to specify

a state transfer model that gives actions to effectively migrate

state between components. The state transfer model represents

the state mapping between previous components and the new

1716 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

ones in the product model. It is specified at design time and

used at runtime.

At runtime, because of new user requirements or execution

environment changes, a change decision may be made. In

this case, a new resolution model (new configuration) must

be specified. This configuration may be either defined by

engineers or computed thanks to analysis activities by a deci-

sion module integrated into the adaptive product. The current

resolution model, the new one, and the state transfer model

are processed to generate a reconfiguration plan that refers to

the product model. Finally, the reconfiguration plan is injected

into the reconfigurator to execute the reconfiguration actions.

The moment when these actions are executed at runtime is

important since the components must be driven to safe state

(e.g., quiescent [1] or tranquility [2]), but this is out of the

scope of this paper.

In this paper, we focus on the domain engineering phase

and the design subprocess of the application engineering and

give details on how to specify the VSpec tree, the base model,

and the variation points to generate an ASA.

IV. VARIABILITY MODELING AND CONFIGURATION

Variability modeling plays an important role in our ap-

proach. This section presents strategies to specify variability

models according to CVL meta-model.

A. Variability Modeling Process

There may be different strategies to specify the variability

and the base models.

• “Variability-driven process” (top-down approach): in this

strategy the VSpec tree is specified first from information

collected by engineers such as documentation or already

existing products. Following this model, a base model

may be built. Finally, variation points may be specified.

This strategy allows specifying variability at high level

of abstraction towards the diversity of components at

concrete level.

• “Architecture-driven process” (bottom-up approach): in

this strategy the base model is specified first. Then, VSpec

tree is deduced and finally, variation points identified.

This strategy allows specifying components at concrete

level towards high level abstraction.

• “VSpec tree - base model independent process” (hybrid

approach): in this strategy the VSpec tree and the base

model are independently specified. Once the VSpec tree

and the base model are specified, variation points can be

identified to do the mapping between them. The advan-

tage of this strategy is to allow independent specifications.

Unlike the two first strategies, there is no guarantee to

have a variation point for each VSpec.

As our approach is focused on guiding developers to identify

information for generating adaptive products, we consider the

first strategy as the process to be followed by engineers. In

this strategy, variability modeling plays an important role. We

focus on this task to represent the changes that an ASA may

undergo. Based on the variability model, the base model can

VSpec tree

Base model

(1)
(4)

(2)

Variation points

(3)

Domain experts

Existing application

documents

Existing application

architecture

Commonality

Variability

Fig. 3. “Variability-driven process” strategy

be created appropriately. The adopted strategy is depicted in

Figure 3. In order to specify the VSpec tree and the base

model, engineers need to identify variability and commonality.

To do this, they can use documentation of existing applications

of a product line, domain experts may also participate on

the specification (step 1 in Figure 3). Once commonality and

variability are identified, they are represented as a VSpec tree

(step 2 in Figure 3). In step 3, a base model is defined with

respect to the VSpec tree and the set of commonality and

variability in the first step. Finally, step 4, variation points

are defined to map VSpecs in the VSpec tree and elements

in the base model. Steps 1 and 2 have to be manually

realized by variability engineers. Step 3 should be realized

by a software architecture expert. Step 4 can be manually

(by an expert) or semi-automatically done thanks to similar

characteristics of elements in the two models. To this end,

in our development process, the domain engineering process

encompasses all activities of this variability modeling process.

B. Product model generation

The first activity in Figure 2 shows the stage of the de-

velopment process where the variability model is configured

and the product model is generated. As previously mentioned,

the product model is generated by configuring the variability

model based on the resolution model. The task is realized

by the AdapSwAG tool. It considers the CVL model as its

input. Its output is a product model that contains the necessary

components for adaptation. The AdapSwAG tool generates

this product model by applying the following rules:

1) A component in the base model will be present and acti-

vated in the product if the corresponding Choice VSpec

is resolved by a True value in the VSpecResolution.

2) A component in the base model will be present in the

product at runtime if the corresponding Choice VSpec

is not resolved by a True value in the VSpecResolution.

3) An attribute in a component in the architecture is as-

signed the value that is specified to the value attribute

of its VSpecResolution.

4) Connections between components that are activated in

the product are maintained in the product model.

Unlike the CVL approach, the generated product model con-

tains all components in the base model and only connections

between components which corresponding Choice VSpecs are

resolved by True values in the resolution model.

NGOC-THO HUYNH ET AL.: A DEVELOPMENT PROCESS BASED ON VARIABILITY MODELING 1717

V. RELATED WORK

SPL engineering has proven to be a well-suited method-

ology for developing a diversity of software products and

software-intensive systems [11]. Several approaches are based

on SPL engineering to develop adaptive software. Parra et

al. [3] propose an approach to build a dynamic SPL. In this

approach, activities such as analysis, composition generation,

transformation, and runtime reconfiguration are separated into

domain engineering and application engineering processes

as in SPL engineering. Moreover, the role of developers in

the process is defined such as application architect, platform

architect, and asset developer. Lee et al. in [4] propose

an approach to develop dynamically reconfigurable products.

They introduce the activities of product line development, e.g.,

feature and feature binding analysis, behavior and functional

specifications of feature binding units, product line archi-

tecture, and component design. They provide guidelines for

designing dynamically reconfigurable architectures. Authors in

[8] represent a process to automatically build a dynamic SPL

from a feature model based on the assumption that a feature

can be modeled as a component. This process consists of four

steps: defining the core and dynamic architecture, adding the

configurator, and defining the initial product. The reconfig-

uration action at runtime is simple to activate or deactivate

components. The MADAM approach [5] is based on SPL

techniques to build adaptive systems. They propose five steps

to develop adaptive applications as follows: identifying fixed

and varying user needs and resource constraints, designing

the architecture, implementing the components identified by

the architecture and deriving runtime plan objects, designing

the utility function and property predictors for the components

and composition.

Almost all these approaches use a feature model to specify

variability. The feature model is configured to generate an

initial product. However, they do not define how to specify

variability and build an ASA. In our approach, an adaptive

software development process based on SPL engineering with

a set of specific steps has been proposed to guide engineers

building an ASA. Activities to specify the variability model

and the base model in our approach are considered as steps

in the domain engineering process. The other activities are

separated into two subprocesses in the application engineering

process. Moreover, our approach identifies an explicit activity

for maintaining the software state integrity based on specifying

a state transfer model at design time.

VI. CONCLUSION

In this paper, we have presented a variability-driven devel-

opment process for building an ASA. The process is based

on CVL tools and meta-models to model variability of the

software architecture but identifies an ordered set of tasks to

be performed by engineers from variability specification up to

the software architecture.

In order to validate our process, we have implemented a

simple client-server application. The server is implemented

with two different versions and can dynamically switch. In

order to represent the variability of this application, a VSpec

tree in CVL that conforms to the CVL meta-model is finally

specified. Its architecture (base model) is specified by using

ACME - an ADL. In order to generate a product, a resolu-

tion model is specified. Then, AdapSwAG tool generates a

product model as an ASA. In this example, we have used

the iPOJO component model and the Apache CXF framework

to develop components. Based on their specification, a text

generation module is implemented by using Xpand generator

framework to generate implementation artifacts skeleton that

includes packages. Each of them corresponds to a component

specified in the product model and consists of component

implementations, a component specification represented in

XML documents, and a configuration file to create iPOJO

components. To this end, the generated packages can be

manually completed by an engineer, or the implementation

artifacts developed independently by an engineer are integrated

into them to build the iPOJO components of the adaptive

product. Due to space constraints we can not give more

details of our implementation, but the example is available

at https://github.com/nthohuynh/.

REFERENCES

[1] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic
change management,” IEEE Transaction on Software Engineering,
vol. 16, no. 11, pp. 1293–1306, 1990. doi: 10.1109/32.60317

[2] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tranquility:
A low disruptive alternative to quiescence for ensuring safe dynamic
updates,” IEEE Transaction on Software Engineering, vol. 33, no. 12,
pp. 856–868, 2007. doi: 10.1109/TSE.2007.70733

[3] C. Parra, X. Blanc, A. Cleve, and L. Duchien, “Unifying design and
runtime software adaptation using aspect models,” Science of Com-

puter Programming, vol. 76, no. 12, pp. 1247 – 1260, 2011. doi:
10.1016/j.scico.2010.12.005

[4] J. Lee and K. C. Kang, “A feature-oriented approach to developing
dynamically reconfigurable products in product line engineering,” in
Proceedings of the 10th International on Software Product Line Con-

ference, ser. SPLC ’06, Washington, DC, USA, 2006. doi: 10.1109/S-
PLINE.2006.1691585. ISBN 0-7695-2599-7 pp. 131–140.

[5] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch, “Using product
line techniques to build adaptive systems,” in Proceedings of the

10th International on Software Product Line Conference, ser. SPLC
’06. Washington, DC, USA: IEEE Computer Society, 2006. doi:
10.1109/SPLINE.2006.1691586. ISBN 0-7695-2599-7 pp. 141–150.

[6] R. Capilla, J. Bosch, and K.-C. Kang, “Systems and software variability
management: Concepts, tools and experiences,” in Systems and Software

Variability Management, 2013. doi: 10.1007/978-3-642-36583-6. ISBN
978-3-642-36582-9

[7] G. Pascual, M. Pinto, and L. Fuentes, “Self-adaptation of mobile
systems driven by the common variability language,” Future Generation

Computer Systems, 2014. doi: 10.1016/j.future.2014.08.015
[8] P. Trinidad, A. R. Cortés, J. Peña, and D. Benavides, “Mapping feature

models onto component models to build dynamic software product
lines,” in 1st SPLC Workshop on Dynamic Software Product Line

(DSPL), Kyoto, Japan, 2007, pp. 51–56.
[9] O. Haugen, A. Wkasowski, and K. Czarnecki, “Cvl: Common variability

language,” in Proceedings of the 17th International Software Product

Line Conference, ser. SPLC ’13. New York, NY, USA: ACM, 2013.
doi: 10.1145/2491627.2493899. ISBN 978-1-4503-1968-3 pp. 277–277.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU/SEI-90-TR-021, 1990.

[11] K. Pohl, G. Böckle, and F. van der Linden, “Software product line
engineering: Foundations, principles, and techniques.” Springer-Verlag
Berlin Heidelberg, 2005. doi: 10.1007/3-540-28901-1. ISBN 978-3-540-
28901-2 p. 467.

1718 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

