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Abstract—This paper presents a comparison of different ma-
chine learning algorithms applied to automatic sleep detection
which uses electroencephalogram signals as a differentiating
basis. The Single-Layer Perceptron, Multi-Layer Perceptron,
Support Vector Machine, Boosted Tree and the Multi-Agent
(comprising of the earlier models) models are developed and
analyzed with training and testing datasets. The results of the
models are evaluated using a cross-validation technique. The
models are compared with each other using the Cohen’s index,
the True Positive Rate and True Negative Rate. The models are
very successful with sleep stage detection reaching up to 94 %,
and Cohen’s index reaching up to 0.69, showing considerable
promise for deployment and future studies.

I. INTRODUCTION

ROAD accidents are responsible for many deaths and

economic losses around the globe. Drowsiness is a cause

of about 40,000 non-fatal injuries and 1550 fatalities annually

in the United States alone [1]. A press release by the National

Sleep Foundation in 2009 indicates that 1.9 million American

drivers have had a car crash or ‘near-miss’ due to fatigue

or drowsiness [2]. The National Sleep Foundation has data

which shows that even some flight and train accidents have

drowsiness and fatigue as probable causes [3].

In general, to detect a driver’s sleep stage the frequency

spectra of brainwave signals are used as a differentiating factor.

A good detection algorithm should accurately detect a drowsy

driver, while not causing many false alarms. In principle,

a model may detect drowsiness all the time, i.e., a success

rate of 100 % for sleep detection, but this will create many

false alarms, which would affect the driving behavior. A false

alarm is triggered when a wake stage is detected as a sleep

stage. For our classification purposes, a sleep stage is defined

as the first stage of sleep. Earlier work using multichannel

electroencephalogram (EEG) signals obtained 92.8 % internal

sleep stage classification accuracy [4]. This work did not

classify wake stages, which would be included in our models.

The aim of our project is to obtain similar or better results for

sleep detections using only one channel, i.e. fewer data input

parameters. It is more important for us to detect a sleep stage

than have fewer false alarms, which is why the sleep detection

success rate has a high benchmark.

To train and test the algorithms before grading them, the

dataset used was obtained from the DREAMS project [5]. This

dataset consisted of raw polysomnographic (PSG) signals. A

data-mining plan was designed for transforming the dataset,

for training and testing the models, and for evaluation of

the models. This plan expanded on the existing widely-used

CRISP-DM model [6].

In the DREAMS project, PSG data was collected from

sleeping patients, which included the electroencephalograph

signals, the backbone of our project. Automatic classification

of the sleep stages and sleep disorders was a major part

of the different studies performed by the DREAMS project

team. They showed that it is possible to perform automatic

classifications using machine learning algorithms.

In 2001, Van Hese P. et al. [7] performed an automatic

detection of the sleep stages using only EEG data. They used

a modified K-means algorithm, and the parameters they used

for classification were the parameters of Hjorth – Activity,

Mobility and Complexity – expressed in terms of the frequency

spectrum. The mobility was a measure of the central frequency,

the complexity was a measure of the bandwidth of the signal,

and the activity was a measure of the variance. They showed

that clusters were created and it was possible to distinguish

between the different stages, but that extra information, like

electrocardiograph (ECG) and electrooculograph (EOG) data,

was necessary for a clear discrimination between the stages.

Zhovna I. and Shallom I. proposed in 2008, an automatic

sleep stage detection and classification of multichannel EEG

signals [4]. They used a method based on the Multichannel

Auto Regressive (MAR) model, which incorporated the cross-

correlation information existing between the different EEG

signals. Their approach involved training and testing phases,

including a continuous unknown 7-hour subject dataset. They

obtained a promising rate of detection of 92.8 %. However,

they had not trained the system to detect wake stages or

movements.

A more recent study in 2013 by Malaekah E. and Cvetkovic

D. tried to perform an automatic detection scheme to classify

the sleep stage 1 and the wake stage using the EEG sub-

epoch approach [8]. They divided 30 second epochs into 6

second sub-epochs from which the Relative Spectral Energy

Band (RSEB) was calculated and used to create the feature

space. The RSEB for a given frequency band is defined

as the ratio of the Power Spectral Density (PSD) of the

band divided to the total power (sum of PSD of all bands).

Their best results showed an average of 77 % and 55.8 %

success of detecting the wake and first sleep stages respec-

tively.
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The work done by different research groups shows that

EEG signals are good indicators of sleep and wake stages.

For manual classification, there are two references, [9] and

[10], both of which rely on the frequency of the EEG signals.

Following up on the works of [7] and [8], it seems that using

the complete frequency spectrum instead of few parameters

might improve the classification accuracy.

The main goal of the paper is to create an automatic detec-

tion mechanism using data mining approach. In the project, the

standard CRISP DM methodology was applied [6]. The first

step is to understand the important physiological processes

of sleep and their mathematical representation as signals. The

following section provides a brief description of the brainwave

signals along with their classification based on the frequency

range. Then the data preparation phase is explained followed

by an introduction to the classification models used in this

project. In the third section, the experimental results for the

different models are tabulated in terms of the true positive and

true negative rates, also known as sensibility and specificity

respectively. The paper ends with the conclusions drawn from

our work and perspectives to continue research in this domain.

II. DATA SOURCES AND CLASSIFICATION MODELS

A. EEG signals

An electroencephalograph (EEG) represents electrical sig-

nals which reflect the elec-trical activity of the neurons. Based

on their frequency range, an EEG signal is divided into bands

denoted by Greek letters [11]:

• Beta waves – β-waves are brainwaves with frequencies

between 13 and 30 Hz. They indicate full awareness and

high brain activity.

• Alpha waves – α-waves have frequencies between 8 and

13 Hz. These are generally linked to relaxed states.

• Theta waves – θ-waves lie in the frequency range of 4

to 8 Hz. These are connected to Non-Rapid Eye Moment

(NREM) sleep.

• Delta waves– δ-waves are below 4 Hz in the frequency

spectrum. They generally correspond to slow wave sleep

stages.

There are two standards to classify EEG data into sleep

stages. The older Rechtschaffen and Kales (R&K) standard

is composed of the following stages – Wake stage, REM

stage, Sleep stage S1, Sleep stage S2, Sleep stage S3, and

Sleep stage S4 [9]. In the more recent American Academy

of Sleep Medicine (AASM) standard, the stages are classified

as – Wake stage, REM stage, Sleep stage N1, Sleep stage

N2, and Sleep stage N3 [10]. However, the DREAMS dataset

contains additional stages. There is one sleep stage movement

(transition) present in the R&K classification. The additional

sleep stages are defined as unknown sleep stages by the

classifying experts. The terminology used to denote the sleep

stages is defined as:

• 0 = Wake stage or REM (R&K and AASM)

• 1 = Sleep stage 1 (R&K and AASM) or Sleep stage 2

(R&K and AASM)

• 2 = Sleep stage 3 (R&K and AASM) or Sleep stage 4

(R&K) or unknown sleep stage (R&K)

• 3 = Sleep stage movement (R&K) or an unknown sleep

stage (AASM)

The reason why data points which might not seem as a

wake stage or sleep stage S1/N1, are included is that when

one model predicts a sleep stage 1, the other model might

predict a sleep stage 3, an unknown sleep stage, or a sleep

stage movement (transition).

B. Data Preparation

The dataset used in the current work was collected as

part of the DREAMS project in Belgium and consists of 32-

channel polygraph whole-night polysomnographic readings of

20 healthy subjects [5]. At least three of the 32 channels

were EEG channels. The data was collected with a sampling

frequency of 200 Hz and stored in the standard European Data

Format (EDF). The channel chosen by us for the project was

the channel CZ-A1, a central lobe channel. Only the first sleep

and wake stages were selected from the files along with the

corresponding EEG data. Points, which did not have sleep

stage 1 or the wake stage in one rating model but in the other,

were included, and the total number of data points after this

phase was 32924. Each data point consists of one hypnogram

rating based on the R&K model, and one hypnogram rating

based on the AASM model and 1000 raw EEG signal points

corresponding to a manual rating of a 5-second time-window.

These data points were then read into the statistical software

R for further pro-cessing. This is a very large volume of

data (32924×1000) to be provided for a machine learning

algorithm. To reduce the size, feature selection was performed.

Each data point was first transformed as per the Fourier

transform to obtain the frequency spectrum from 0 Hz to 100

Hz (half the sampling frequency) with an accuracy of 0.2 Hz

(inverse of the length of the signal). The sleep manuals indicate

that frequencies above 30 Hz do not provide information

for sleep stages and thus frequencies above 30.5 Hz were

rejected. The size of the data was still large (32924×153).

The frequencies were then averaged to the nearest integer

frequency to reduce the dimension of the problem. After the

data selection, transformation, and feature selection, the size

of the data was 32924×31 (31, including the 0 Hz value). This

final data was passed to the R platform, a statistical software

package extensively used for analyzing large data.

C. Quantitative Indicators Used for the Models

It is important to describe the quantitative indicators used to

grade the models in this work. Two models for each machine

learning algorithm were created, one corresponding to the

AASM scoring method and the other to the R&K scoring

method. Thus, for consistency purposes, it is vitally important

to not compare the AASM models with the R&K models.

There are many indicators, which can be used to grade a

classification model. In our paper, the confusion matrix (see

Table I) is first created, where TN stands for True Negatives,

TP for True Positives, FN for False Negatives and FP for
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TABLE I
EXAMPLE OF A CONFUSION MATRIX

Model’s Output
0 1

Manual Rating
0 TN FP
1 FN TP

False Positives. These values can be used to grade the models,

however they depend directly on the number of sleep and wake

states. Since the database consists of unequal number of sleep

and wake states, and to thus properly normalize the results,

the following indicators, along with the Cohen’s Index, were

used:

• True Positive Rate (TPR) – This value is known as the

sensitivity of the model, and provides an estimate for the

successful sleep detection rate by the model. It is defined,

TPR =
TP

(TP + FN)
, (1)

and is also linked to the False Negative Rate (FNR)

through TPR = 1 - FNR [12].

• True Negative Rate (TNR) – This value is known as the

specificity of the model, and provides an estimate for the

successful wake detection rate by the model. It is defined

as,

TNR =
TN

(TN + FP)
, (2)

and is also linked to the False Positive Rate (FPR) through

TNR = 1 - FPR [12].

• Cohen’s Index (κ) – κ is an indicator that measures

the inter-rater agreement for categorical objects, and that

takes into account the agreements (TP and TN) occurring

by chance [13]. It is defined as:

κ =
po − pe

1− pe
, (3)

where po is the observed agreement between the raters,

given as:

po =
TP+ TN

TP + TN+ FP + FN
, (4)

and pe is probability of chance agreement, described as:

pe =
(TP + FN)(TP + FP)

(TP + TN+ FP + FN)
2

+
(TN + FN)(TN + FP)

(TP + TN+ FP + FN)
2
.

(5)

It can be easily verified that κ = 1 when the two raters

are in complete agreement. In general, a value of κ > 0.6
indicates a good level of agreement between the raters.

In classification models, there is a trade-off between the

TPR and TNR, since increasing one generally reduces the

other. Thus it is necessary to study both simultaneously,

making the TPR and TNR important indicators of the models.

These are simple indicators and to consider random agreement,

κ was also used to grade the models.

The following subsections will present the classifying al-

gorithms used in our experiments – Single-Layer Perceptron,

Multi-Layer Perceptron, Support Vector Machine, XGBoost

and Multi-Agent model – whose classification accuracies were

compared, in order to choose the best model. The SLP is a

simple linear classifier that calculates the sum of the weighted

input variables. It is simple to implement and forms a good

reference model. The MLP, also known as neural networks,

consists of layers of neurons. This provides the next level of

complexity and allows for non-linear behavior to be captured.

The SVM models have better predictive performance than the

MLP, since they create multiple support vectors, which provide

more flexibility in the classifying criterion. The XGBoost

model is a variation of the gradient boosting model, an

ensemble model that is a collection of decision trees added

to minimize a loss function. The Multi-Agent classifiers are

two algorithms proposed by us that consists of all the previous

models to better classify the EEG data, one by a majority vote

and the other by treating the sleep and wake states on a more

equal footing.

D. Single-Layer Perceptron

E. Malaekah and D. Cvetkovic [8] had used the ratios of

the EEG bands to perform classification of the sleep and

wake states. The classifying criterion was manually tuned in

their case. Instead of using the ratios of the EEG bands and

manually tuning the ratio to match a specific quantity, we used

an automatic learning algorithm that can find the classifying

criterion without any human interference.

A Single-Layer Perceptron (SLP) is an algorithm for binary

classification of an input vector. It is a linear classifier that

makes its decisions by a scalar product of the input vector

with a set of weights. In machine learning, a perceptron is

considered to be the simplest neural network consisting of one

neuron. Mathematically, the SLP algorithm can be expressed

as:

y(−→x ) =

{

1 if −→w · −→x + b > 0
0 otherwise

. (6)

Here, −→x is the input vector, −→w is the weight vector and b

is the bias. The output of the perceptron is either 0 or 1

and is determined by the condition provided by the scalar

product. The bias alters the position of the decision line. The

weight vector is changed by learning algorithms. The learning

algorithm used here was the Particle Swarm Optimization

(PSO) [14]. PSO optimizes a problem by having a set of can-

didate solutions (called particles), and moving these particles

in the feature space by simple rules for updating the particles’

positions and velocities. This optimization technique does not

make assumptions about the parameters being optimized and

so can be used for noisy and irregular problems. PSO possesses

certain advantages of Monte Carlo techniques, where a large

space of solutions is searched by the various particles, as well

as the advantages of classical optimization techniques, such as

gradient descent, where the particles are guided by a ‘force’

towards the final solution.
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Each particle is attracted by its best known position, as well

as the best position among all the particles. There is also an

inertia term, which keeps the particle moving along a straight

line. These three ‘forces’ act together in different proportions

to guide the particle towards better solutions. A PSO algorithm

consists of the following main steps, along with part of the

code from our implementation in R:

• Initialize N particles’ positions particle_pos and

velocities particle_vel randomly within the

boundaries of the feature space. part indicates the

particle index, maximum N, and i the dimension, 31

dimensions in our case.

particle_pos[part,i] <- runif(1, min=-10,

max=10) #Random starting positions

particle_vel[part,i] <- runif(1, min=-5,

max=5) #Random starting velocities

• Update each particle’s best position

best_particle_pos with the randomly assigned

starting position.

best_particle_pos[part,i] <-

particle_pos[part,i]

• Find the particle with the best position and update the

global best position, coeffs_aasm or coeffs_rnk,

with its position. This step depends on the error function

and with random starting positions. In our case, the error

function was the sum of absolute errors between the

expected result and the actual result. This is similar to

using the mean of squared errors, since only the absolute

value of the error is considered. #perr is the particle

error.

if(perr[part] < global_min_err) {

global_min_err <- perr[part]

coeffs_aasm <- particle_position[part,]

}

• Until the stopping criterion is satisfied, i.e. number of

iterations run or error criterion is below threshold, do the

following

– Update each particle’s position by adding the

velocity to it.

particle_position[part,] <-

particle_position[part,] +

particle_velocity[part,]

– Update each particle’s best position with its current

position if and only if the current position is better

than the particle’s best position. #min_perr is the

particle’s minimum error.

if (perr[part] < min_perr[part]) {

min_perr[part] <- perr[part]

best_particle_position[part,] <-

particle_position[part,]

}

– Find the particle with the best current position and

update the global best position if and only if this

best current position is better than the global best

position.

if(perr[part] < global_min_err) {

global_min_err <- perr[part]

coeffs_aasm <- particle_position[part,]

}

– Update each particle’s velocity as a sum of three

contributions multiplied by factors indicating their

proportions. The first contribution is the difference

between the particle’s best position and its current

position. The second contribution is the difference

between the global best position and the particle’s

current position. The final contribution is simply the

previous velocity of the particle.

particle_velocity[part,] <-

particle_velocity[part,] +

runif(31,min=0,max=0.4) *

(best_particle_position[part,]

- particle_position[part,]) +

runif(31,min=0,max=0.7) * (coeffs_aasm

- particle_position[part,])

– Update the number of iterations or calculate the error.

• The global best position is the best solution.

The factors which multiply the three contributions, the

inertia term, the force due to the global best position and the

force due to the particle’s best position, are chosen by the

user. These control the ‘swarming rate’ and hence the behavior

and response of the system. In our implementation, the inertia

term was multiplied by 1, the force due to the particle’s

best position was multiplied by a random number between

0 and 0.4 (excluding the extreme values), and the force due to

the global best position was multiplied by a random number

between 0 and 0.7. The inertia term was kept as a unit value

because we wanted the particles to move to not stop swarming.

The maximum values of 0.4 and 0.7 were chosen so that the

particles were attracted towards their individual best positions

and the global best positions, but the contribution of these

attractions did not exceed the contribution of the inertia term.

The higher average value of the attractive force towards the

global best position indicated a preference of each particle to

explore positions near the global best position, which is the

best known solution so far. The non-zero value of the force

towards the individual particle’s best position ensured that

the particles explored positions near their own best positions.

The final values were chosen based on the “goodness” of the

results.

E. Multi-Layer Perceptron

In our case, the data does not satisfy the condition of linear

separability; therefore non-linear classifiers were considered.
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A well-known neural network model, a Multi-Layer Percep-

tron (MLP) was chosen and its architecture was evaluated.

Neural networks contain at least two layers, with the pos-

sibility of additional hidden layers. Earlier experiments [15]

were performed with two and three hidden layers, the latter of

which gave maximum sleep and wake detection rates of about

69 % and 90 % respectively. Compared to the architecture

with three hidden layers, this architecture drastically decreased

the number of connections and thus the learning time for

the neurons [15]. Based on these results, a neural network

with two hidden layers 31-46-10-1 was chosen. The learning

algorithm used for this project was the default algorithm,

resilient backpropagation with weight back tracking. The error

function minimized in this project was the mean squared

errors.

Neural networks have one major disadvantage – risk of

overfitting, when a model begins to describe the noise. The

underlying relationship between the input variables and the

output value may fail to have a predictive power completely. In

our case 1,953 weights had to be found using 16,462 training

points. Thus there is a high possibility of overfitting in our

neural network models, which can lead to poor predictions.

Unfortunately, reducing the number of neurons in the hidden

layers led to a drastic decrease in the performance of the

neural network, while increasing it led to overfitting, where

the testing phase results were measurably poor as compared

to the training phase results. Therefore, the data parameters for

our neural network could not be classified correctly without

increasing the risk of overfitting. Due to a lower number of

sleep stages, the neural network models did better at detecting

the wake stages.

F. Support Vector Machine

Support Vector Machines (SVMs) are supervised learning

algorithms used for classification and regression analysis [16],

[17]. An SVM model maps data points in the feature space as

categories which are as far apart as possible, by constructing

a hyperplane or a set of hyperplanes in a space, generally

of a higher dimension than the feature space. Generally, two

or more hyperplanes are selected with no points between

them, and then the distances between these hyperplanes are

maximized.

Two types of SVM models, a simple SVM model and a

multi-class SVM model, were used. The first one interprets

the hypnogram sleep stage rating as having a “meaning”, i.e.

this value can be expressed as the output of a mathematical

function of the SVM. The second model merely assigns the

hypnogram value as a label for a given SVM input vector.

This model is hence more robust to clustering of data that is

not linearly separable.

Before starting the training of the SVMs, tuning was

performed for two parameters, gamma and cost, using the

functionality provided in the package e1071 through the

function tune.svm() on 10 % of the data. The parameter

gamma is internal to the implementation and is required for

all the non-linear kernels, while cost is the cost of violating

the constraints of the SVM model. The results of this tuning

indicated a value of 0.1 for gamma, and a value of 1 for cost,

which were recommended by the SVM implementation based

on the 10 % of the data. The same values were obtained for

both AASM and R&K classification methods, and were used

for the final training of the models. In the multi-class variant

of SVM (unlike in the default-SVM), the wake states were

given a weight of 0.2 and the sleep states were given a weight

of 1.0, to compensate the influence of the higher number of

wake states in the dataset.

G. Extreme Gradient Boosted Model

Extreme Gradient Boosted Model (XGBoost) is a super-

vised machine learning algorithm used for classification and

regression analysis, which comprises of an ensemble of ‘weak’

prediction models, generally in the form of decision trees.

It is an efficient implementation of the gradient boosting

framework, and has been known to be many times faster than

standard implementations.

The boosting process deals with transforming the weak

prediction models into a strong model. For example, decision

trees with only one or two levels would be considered weak,

since their accuracies are slightly better than random classifica-

tion, and thus are more robust to overfitting. A boosted model

creates an ensemble of these models with the intention of

creating a strong learner. In many implementations, the weak

learners are functions of the loss (error) functions, which the

ensemble is trying to minimize. The gradient boosting model

consists of calculating the loss function at each iteration and

correcting itself by adding the gradient of the loss function in

the next iteration [18], [19].

In this work, the maximum depth (nodes) was set to 5

to allow better decision trees at each level. This reduced

the number of iterations, i.e. the number of additional trees

required to correct the loss function, which was set to 40. The

learning process was made more conservative (less overfitting)

by scaling the contribution of each tree by 0.15, compared

to the default value of 0.3. These values were selected after

running multiple tests on the data, and were used for the

AASM and R&K models.

H. Multi-Agent Model

To maximize the sleep and wake detection rates, two Multi-

Agent (MA) models were developed. Typically, an MA model

consists of many ‘agents’, each of which is an independent

classification model. In our work, these MA models were

constructed from all the aforementioned algorithms. There are

different ways to implement such algorithms [20], and for

this project, a democratic MA model and a weighted MA

model were chosen. The democratic MA model determined

the outcome of a given input by a majority vote, while the

weighted MA model determined the outcome of a given input

by weighing the outputs of each of the agents.

The democratic MA model did not have any training or

testing phase, due to it directly relying on its component

models. The outputs from the agents were directly used to
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analyze this model on the training and testing data sets. Two

models were made, one for the AASM classification and one

for the R&K classification.

The training phase for the weighted MA model consisted

of optimizing the weights using an error function, and the

optimization was achieved with the Particle Swarm Optimiza-

tion (PSO) as discussed in the SLP model. The error function

chosen was the sum of the FNR and FPR. Since the rates are

independent of the number of states, this error function is not

biased towards one of the sleep or wake states. Minimizing this

function would thus maximize the sleep and wake detections

simultaneously (TPR = 1 - FNR and TNR = 1 - FPR).

The parameters of the PSO algorithm were identical to those

used to determine the weights of the SLP, with the exceptions

that the number of dimensions were reduced to 5 and the

bias was not required. Two such models were made for each

training set, one corresponding to the AASM classification and

the other corresponding to the R&K classification.

III. EXPERIMENTAL RESULTS

The data was divided randomly into training and testing sets

for cross-validation purposes to check how well the model

can perform under more general data. We performed 4-fold

cross-validation, where the data was divided into four equal

random sets. Earlier experiments [15] indicated similar results

to 2-fold cross-validation results, and 4-fold cross-validation

has more training and testing phases, which is why it was

used to obtain more results. The final results (averaged) are

presented for comparison purposes. To compare the models, all

learning algorithms were provided the same data for training

and testing.

Since there were two scoring models (R&K and AASM)

for each data point, two models were made for each learning

algorithm, e.g. MLP Rnk and MLP AASM. Because of the

two different standards, it only makes sense to compare all

the AASM models together and all the R&K models together.

After splitting the data and dividing them as train-sets and

test-sets, the data workspace in R is stored for future use and

reference.

In the confusion matrix tables, two outlier points (Outlier

1 and 2) are obtained because of having the same data point

classified as sleep stages other than 0 or 1 in one of the two

models. These points were neglected to better analyze our

results. The confusion matrix was reinterpreted for comparison

purposes in terms of TPR, TNR and κ. These quantities are

provided for the 4-fold cross-validation studies in table II.

A general observation is that the multi-class SVM (R&K)

performs the best, followed closely by the multi-class SVM

(AASM). In addition, the TPR for the multi-class SVM is

about 94 %, better than previous results of 92.8 % classifi-

cation accuracy obtained by I. Zhovna and I. Shallom [4],

where the cross-correlation information existing between the

multichannel EEG signals was used. The TNR, on the other

hand, is about 75 %, slightly lower than the 77 % obtained

by E. Malaekah and D. Cvetkovic [8]. This is not so far

behind, and thus the multi-class SVM is a good choice for

further study. As perspectives, the multi-class SVM might

be improved by providing more data points corresponding to

sleep stages so that the FPR is reduced.

Looking at the Cohen’s indices for the different algorithms,

we see that the MA, XGBoost, MLP and SVM models are

at least 0.60. However, in our study, we place more emphasis

on sleep detection, i.e. a TPR higher than 90 %. This is only

achieved by the multi-class SVM. It should be pointed that

the number of sleep states are lower than those of wake states,

which is why the XGBoost and the MA models have a TNR

greater than the TPR.

From the tables, we infer that the default SVM does better

than the SLP and MLP methods. Both default SVM models

(AASM and R&K) have a TPR of over 70 %, similar to the

TNR of the multi-class SVM, and the same can be said for

the TNR of the default SVM models. Thus, when compared

with the results of the multi-class SVM, the TPR and TNR

values appear to be swapped. This could be due to the larger

number of the wake stages.

A value of κ > 0.60 indicates a good agreement between the

different raters, and thus the SVM, XGBoost and MA models

performed well. Comparison of the Cohen’s indices shows that

the default SVM, XGBoost and MA models perform well with

κ > 0.65 for both scoring methods.

To better understand the trade-off between TPR and TNR,

the Receiver-Operator Characteristic (ROC) curves for all the

models were plotted as shown in Fig. 1. The FPR and TPR

form the x− and y−axes of the graph respectively, and a

random guessing model would have TPR = FPR as shown with

the blue dotted-dashed diagonal in the figure. Points above

the diagonal have TPR > FPR, indicating a better predictive

performance and a ‘perfect’ classification model would be at

the (0,1) point on the plot, i.e. FPR = 0 and TPR = 1.

Based on the ROC curve, we see that the weighted MA

(PSO) model does the best in terms of the trade-off, being

closest to the (0,1) point, followed closely by the democratic

variant. This is due to the fact that the error function in

the PSO algorithm treats sleep and wake stages on an equal

footing. In the democratic MA model, there is no training

beyond that for each of the individual agents. As a result, the

bias towards the wake states exists due to the ‘majority’ of

the models (MLP, XGB and SVM) being biased towards the

wake states, a consequence of the previously mentioned larger

number of wake states.

Depending on the requirement, detection of one stage might

be more critical and the ‘best’ model has to be accordingly

chosen. The purpose of this project was to focus on sleep

detection over wake detection and thus, based on the Cohen’s

index and the requirement of TPR > 90 %, the multi-class

SVM is a better model.

It is important to underline that the R&K models have

performed better than the AASM models. The R&K standard

for sleep scoring was developed in 1968 [9], while the AASM

standard was developed recently, in 2007 [10]. These standards

have differences which might have affected the manual scoring

of the dataset used. To choose between them, inputs from
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TABLE II
COMPARISON OF RESULTS (4-FOLD CROSS-VALIDATION)

AASM Criteria R&K Criteria

TPR TNR Cohen’s Index TPR TNR Cohen’s Index
(%) (%) (κ) (%) (%) (κ)

SLP 72.3 76.9 0.47 73.0 77.1 0.46
MLP 69.0 88.2 0.58 70.5 89.3 0.61
Default-SVM 73.8 90.5 0.65 73.9 92.8 0.68
Multi-class SVM 94.0 67.0 0.53 94.0 74.9 0.60
XGBoost 74.5 90.6 0.66 76.2 92.2 0.69
Multi-Agent (Democratic) 77.2 87.8 0.65 79.1 90.1 0.69
Multi-Agent (PSO) 82.0 85.7 0.66 83.3 88.3 0.69

Fig. 1. ROC curve for AASM (black circles) and R&K (red crosses) classification models. The blue dotted-dashed line indicates the ROC curve for a random
guess model.

a neuroscientist or more in vivo data based on a standard

of quantifying drowsiness are required. In addition, using a

more balanced dataset with similar numbers of wake and sleep

stages might help develop the methods further.

IV. CONCLUSIONS AND PERSPECTIVES

The main objective of this work was to develop an automatic

sleep detection system to warn a sleepy driver and prevent road

accidents. With this purpose, the DREAMS database [5] was

used and the Fourier transforms of the EEG signal formed

the input vector space for the machine learning algorithms.

Multiple experiments were performed on different models,

such as SLP, MLP, SVM, multi-class SVM and XGBoost.

A MA model was subsequently developed that treated the

sleep and wake stages equally. This model was observed to

be the closest to a perfect classification as can be confirmed

with the ROC curve. In addition, the multi-class SVM model

for the R&K scoring system maintains the benchmarks of

TPR ≥ 90 % and TNR ≥ 70 %, and the AASM scoring

system is not far behind. Using these benchmarks, the potential

reduction in economic costs due to loss of human lives was

calculated for France to be about 1,104 million EUR for the

year 2014 [15].

For future work, the detection models will need to be

tested across different datasets to confirm their reliability

and to ensure that the models do not fail when presented

with new data, either through future laboratory studies or in

vivo experiments. Pragmatically, the models can be said to

be relatively compatible with different datasets, a desirable

property, which is useful in the event of retraining the models

for certain medical cases where the EEG signals might not be

the same as those in an average human being.
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Furthermore, it might be fruitful to validate our results from

a strictly medical perspective, with the ability to quantify

drowsiness rather than the first sleep stages, preferably using

EEG signals. Obtaining a more balanced dataset with equal

wake and sleep stages would ensure that there is no bias

of the models towards a particular stage. Including more

physiological data, like body pulse or blood pressure, may

improve the model, since they also decrease when a person

tends to fall asleep.
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