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Abstract—Transient queue-size distribution in a finite-buffer
system with Poisson arrivals and generally distributed processing
times is investigated. In the evolution of the system the server
needs randomly distributed setup times preceding the service
initialization in each new busy period. Applying the paradigm
of embedded Markov chain and the formula of total probability,
a Volterra-type system of integral equations for the transient
queue-size distribution, conditioned by the number of packets
being accumulated in the buffer before the opening of the system,
is built. The solution of the corresponding system written for
Laplace transforms is obtained algebraically in the compact
explicit form. Numerical examples are attached as well.

I. INTRODUCTION

F
INITE-BUFFER queues are widely used in modelling

real-life processing systems, in which the phenomena

like buffering of waiting packets (jobs, customers, calls, etc.),

delays of different nature, and packet losses caused by buffer

overflows or temporary suspensions of the service process

occur. In particular, e.g. the incoming/outcoming stream of

packets in a node of computer network (like, e.g. IP router

in the Internet) can be efficiently modelled by using one of

finite queueing systems. One of the most important challenges

of wireless communication (e.g., based on Wi-Fi IEEE.802.11

standard or wireless sensor networks), is the problem of energy

saving. In practice, a mechanism for temporary switching

off the radio transmitting/receiving, e.g. at a time at which

the stream of packets directed to this node becomes less

intensive or when the accumulating buffer is empty, is being

implemented. After such a time of unavailability, to start the

processing normally, a node needs some period of time (called

a setup time, usually random) to achieve full readiness to

work. During the setup time the service process is blocked

and the arriving packets accumulate in the buffer queue. Such

a mechanism can be observed, e.g. in manufacturing systems

or in the GSM standard transmission in which the node is

being switched on just before sending the identification frame

by a BS (=Base Station).

In [10] a steady-state threshold strategy for jobs behavior

in a model with setup times is obtained. One can find the

study of a Markovian system with server setups preceding the

first processing in each busy period in [6]. Different results

on queueing models with setup times applied in the analysis

of WSNs’ operation are derived, e.g. in [11] and [12]. In [12]

the model of a sleep/wakeup protocol in the IEEE 802.15.4

can be found (see also [7], [9] and [13] for some other

results concerning the energy saving problem in WSNs). The

IMS session re-setup delay in WiMAX/LTE heterogeneous

networks is modelled by an appropriate queueing system in

[1]. The M/G/1-type queue with vacation policy and server

setup times is used in [8] for modelling the BS sleeping mode

in cellular networks. In [2] a model of data center with servers

leaving their idle periods “via” setup times is investigated.

The non-stationary study of the queue-size distribution in

the M/G/1-type queueing system with random batch arrivals,

N -policy and server setup times can be found in [3] (see also

[4], where departure process is investigated).

In the paper we investigate the finite-buffer M/G/1-type

queueing system in which the first service beginning each new

busy period is preceded by a generally-distributed setup time,

during which the processing is still blocked and the server

acquires full readiness for the service process. Applying the

approach based on the idea of embedded Markov chain and

the total probability law, a system of integral equations for

the transient queue-size distribution, conditioned by the initial

buffer state, is built. The solution of the corresponding system

written for Laplace transforms is obtained by using the linear

algebraic approach and given in a closed form, utilizing a

certain functional sequence defined recursively.

II. MODEL DESCRIPTION AND AUXILIARY RESULTS

In the article we deal with a single-server finite-buffer

queueing model, in which packets occur according to a Poisson

process with intensity λ and are being processed individually

with a general-type CDF (=cumulative distribution function)

F (·) of the service time, according to the FIFO discipline. The

total number of packets present in the system simultaneously is

bounded by a non-random value K, i.e. we have K−1 places

in the buffer queue and one place “in processing”. As it is

usually assumed, packets arriving during the buffer overflow

period, i.e. when the server is busy with processing and the

buffer is saturated, are being lost. In general, it is allowed for
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the buffer to contain a number of packets being waiting before

the opening of the system at time t = 0. Each busy period,

which starts together with the first arrival after the idle time, is

preceded by a random setup time with a CDF G(·) of a general

type. The setup time is a period during which the processing is

blocked and the server “acquires” full readiness for processing.

It is assumed that the system being empty before the start also

initializes a setup time at the first arrival epoch. We assume,

moreover, that all interarrival, processing and setup times in

the evolution of the system are independent.

Let us denote by X(t) the number of packets present in

the system at time t, including a packet being processed at

this time (if any). Define the transient distribution function of

X(t), conditioned by the initial level of buffer saturation, in

the following way:

Qn(t,m)
def
= P{X(t) = m |X(0) = n}dt, (1)

where t > 0, 0 ≤ n ≤ K and m ≥ 0. We are interested in

finding the closed-form representation for the LT (=Laplace

transform) of Qn(t,m), i.e. for the functional

q̃n(s,m)
def
=

∫ ∞

0

e−stQn(t,m)dt, Re(s) > 0. (2)

In the analytical approach we use the following result from

linear algebra which can be found in [5]:

Lemma 1. Let (αk), k ≥ 0, and (φk), k ≥ 1, with the

assumption α0 6= 0, be two given number sequences. Each

solution of the following system of linear equations:

n∑

k=−1

αk+1xn−k − xn = φn, n ≥ 0, (3)

can be written in the form

xn = CRn+1 +

n∑

k=0

Rn−kφk, n ≥ 0, (4)

where C is a constant independent on n, and (Rk) is the

sequence (which is called in [5] a potential) associated with

the sequence (αk) as in the following relationships:

R0 = 0, R1 = α−1
0 ,

Rk+1 = α−1
0

(
Rk −

k∑

i=0

αi+1Rk−i

)
, k ≥ 1. (5)

We end this section with stating some additional notations.

We use the abbreviation G(x)
def
= 1−G(x) and the nomencla-

ture I{A} for the indicator of the random event A. Besides,

let us denote by f(·) and g(·) the Laplace-Stieltjes transforms

of CDFs F (·) and G(·), respecively.

III. SYSTEM OF EQUATIONS FOR CONDITIONAL

QUEUE-SIZE DISTRIBUTION

Let us start with the case of the system being empty at time

t = 0. Thus, the evolution of the system begins with an idle

period during which the service station “waits” for packets.

Simultaneously with the arrival occurrence a setup time begins.

Let us note that we can distinguish three mutually excluding

situations (random events):

(1) the first packet arrives before time t and the setup time

also ends before t (we denote this event by A1(t));
(2) the first packet enters before t but the setup time

completes after t (A2(t));
(3) the first packet arrives after time t (A3(t)).

Introduce the following notation:

Q
(i)
0 (t,m) = P{

(
X(t) = m

)
∩Ai(t) |X(0) = 0}, (6)

where t > 0, m ≥ 0 and i = 1, 2, 3. It is obvious that the

formula of total probability leads to the following relationship:

Q0(t,m) = P{X(t) = m |X(0) = 0} =
3∑

i=1

Q
(i)
0 (t,m) (7)

and, moreover,

q̃0(s, z) =

3∑

i=1

∫ ∞

0

e−stQ
(i)
0 (t,m)dt. (8)

Considering the random event A1(t), we get the following

equation:

Q
(1)
0 (t,m) =

∫ t

x=0

λe−λxdx

×

∫ t−x

y=0

[
K−2∑

i=0

(λy)i

i!
e−λyQi+1(t− x− y,m)

+QK(t− x− y,m)

∞∑

i=K−1

(λy)i

i!
e−λy

]
dG(y). (9)

Let us note that the first summand on the right side of (9)

corresponds to the situation in which there is at least one

free place in the buffer at the completion epoch of the setup

time. The second summand presents the case in that the buffer

becomes saturated during the setup time.

Similarly, for A2(t), we obtain

Q
(2)
0 (t,m) =

∫ t

0

λe−λxG(t− x)

×

{
I{1 ≤ m ≤ K − 1}

[
λ(t− x)

]m−1

(m− 1)!
e−λ(t−x)

+ I{m = K}
∞∑

i=K−1

[
λ(t− x)

]i

i!
e−λ(t−x)

}
dx. (10)

Let us comment (10) briefly. The first summand under the

integral on the right side of (10) relates to the case when

the number of packets, measured at time t, is less than the

maximal value K. The second one concerns the situation m =
K, so during the time (t−x) (the time between the first arrival

epoch and t) at least K−1 packets must occur. However, K−1
packets only are physically buffered. The remaining ones will

be lost due to the buffer saturation.

Finally we have, obviously,

Q
(3)
0 (t,m) = I{m = 0}e−λt. (11)
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From (9)–(11), referring to (7), we get

Q0(t,m) =

∫ t

x=0

λe−λxdx

×

∫ t−x

y=0

[
K−2∑

i=0

(λy)i

i!
e−λyQi+1(t− x− y,m)

+QK(t− x− y,m)
∞∑

i=K−1

(λy)i

i!
e−λy

]
dG(y)

+

∫ t

0

λe−λxG(t− x)

{
I{1 ≤ m ≤ K − 1}

×

[
λ(t− x)

]m−1

(m− 1)!
e−λ(t−x) + I{m = K}

∞∑

i=K−1

[
λ(t− x)

]i

i!

× e−λ(t−x)

}
dx+ I{m = 0}e−λt. (12)

Investigate now the case of the system being non-empty at the

start moment (i.e. 1 ≤ n ≤ K). Due to the fact that successive

departure epochs are Markov (renewal) moments during the

operation of the M/G/1-type system, then, by virtue of the

continuous version of the total probability law, applied with

respect to the first departure moment after t = 0, we obtain

the following system of integral equations for 1 ≤ n ≤ K :

Qn(t,m) =

∫ t

0

[
K−n−1∑

i=0

(λx)i

i!
e−λxQn+i−1(t− x,m)

+QK−1(t− x,m)
∞∑

i=K−n

(λx)i

i!
e−λx

]
dF (x)

+ F (t)

[
I{n ≤ m ≤ K − 1}

(λt)m−n

(m− n)!
e−λt

+ I{m = K}
∞∑

i=K−n

(λt)i

i!
e−λt

]
, (13)

It is easy to note that the first summand under the integral on

the right side of (13) describes the case in which the buffer

does not become saturated before the first departure time 0 <
x < t, while the second one relates to the opposite situation.

In the last summand the first service completes after t.
Observe that the following identity is true (compare (9)):

∫ ∞

t=0

e−stdt

∫ t

x=0

λe−λxdx

∫ t−x

y=0

(λy)i

i!
e−λy

×Qj(t− x− y,m)dG(y) = ai(s)q̃j(s,m), (14)

where

ai(s)
def
=

λ

λ+ s

∫ ∞

0

(λy)i

i!
e−(λ+s)ydG(y). (15)

Similarly, defining (see (10))

ai(s)
def
=

λ

λ+ s

∫ ∞

0

(λu)i

i!
e−(λ+s)uG(u)du, (16)

and taking into consideration (14)–(15), we rewrite the equa-

tion (12) in the following form:

q̃0(s,m) =
K−2∑

i=0

ai(s)q̃i+1(s,m)

+ q̃K(s,m)
∞∑

i=K−1

ai(s) + β(s,m), (17)

where

β(s,m)
def
= I{1 ≤ m ≤ K − 1}am−1(s)

+ I{m = K}
∞∑

i=K−1

ai(s) + I{m = 0}
1

λ+ s
. (18)

Similarly, denoting

αi(s)
def
=

∫ ∞

0

e−(λ+s)x (λx)
i

i!
dF (x); (19)

γn(s,m)
def
=

∫ ∞

0

e−(λ+s)tF (t)
[
I{n ≤ m ≤ K − 1}

×
(λt)m−n

(m− n)!
+ I{m = K}

∞∑

i=K−n

(λt)i

i!

]
dt, (20)

where Re(s) > 0, we transform (13) as follows:

q̃n(s,m) =
K−n−1∑

i=0

αi(s)q̃n+i−1(s,m)

+ q̃K−1(s,m)
∞∑

i=K−n

αi(s) + γn(s,m). (21)

Let us apply to (17) and (21) the following substitution:

ũn(s,m)
def
= q̃K−n(s,m), 0 ≤ n ≤ K. (22)

After this operation, we get from (21) the following system:

n∑

i=−1

αi+1(s)ũn−i(s,m)− ũn(s,m) = φn(s,m), (23)

where 0 ≤ n ≤ K − 1, and

φn(s,m)
def
= αn+1(s)ũ0(s,m)

− ũ1(s,m)

∞∑

i=n+1

αi(s)− γK−n(s,m). (24)

In the same manner, inserting (22) into (17), we obtain

ũK(s,m) =
K−2∑

i=0

ai(s)ũK−i−1(s,m)

+ ũ0(s,m)

∞∑

i=K−1

ai(s) + β(s,m). (25)
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IV. MAIN RESULTS FOR TRANSFORMS

Let us note that (23) has the same form as (3), but with

coefficients αi(·) and φi(·, ·), i ≥ 0, depending on s and

(s,m), respectively. So, there is possible to solve (23) by

utilizing the result (4). Moreover, due to the fact that the

number of equations in (23) is finite comparing to (3), the

representation for C = C(s,m) can be found explicitly,

considering the last equation (25) as a special-type boundary

condition. According to (4), we obtain for n ≥ 0

ũn(s,m) = C(s,m)Rn+1(s) +
n∑

i=0

Rn−i(s)φi(s,m), (26)

where the sequence
(
Rk(s)

)
is defined in (5) (with αk(s)

instead of αk). Substituting n = 0 into (26), we get

ũ0(s,m) = C(s,m)R1(s). (27)

Taking n = 1 in (26) and referring to (24) and (27), we obtain

ũ1(s,m) = C(s,m)R2(s) +R1(s)
(
α1(s)R1(s)C(s,m)

− ũ1(s,m)
∞∑

i=1

αi(s)− γK(s,m)
)

(28)

that leads to

ũ1(s,m) = η(s)
[
C(s,m)

(
R2(s) + α1(s)R

2
1(s)

)

−R1(s)γK(s,m)
]
, (29)

where η(s)
def
= f(λ+s)

f(s) . Since using (27) and (29) the func-

tionals φi(s,m), i ≥ 0, can be found, if only the formula for

C(s,m) is known, the key problem is in finding the explicit

representation for C(s,m). By using the representations (24)

and (26), we can present (25) in the following form:

ũK(s,m) = ∆1(s)C(s,m) + κ1(s,m), (30)

where we denote

∆1(s)
def
=

K−1∑

i=1

aK−i−1(s)
[
Ri+1(s) +

i∑

j=0

Ri−j(s)

×
(
R1(s)αj+1(s)− η(s)

(
R2(s) + α1(s)R

2
1(s)

) ∞∑

r=j+1

αr(s)
]

+R1(s)

∞∑

i=K−1

ai(s) (31)

and

κ1(s,m)
def
=

K−1∑

i=1

aK−i−1

i∑

j=0

Ri−j(s)
[
R1(s)γK(s,m)η(s)

∞∑

r=j+1

αr(s)− γK−j(s,m)
]
+ β(s,m). (32)

Similarly, let us take n = K in (26) and apply the formulae

(24), (27) and (29). In consequence we obtain

ũK(s,m) = ∆2(s)C(s,m) + κ2(s,m), (33)

where

∆2(s)
def
= RK+1(s) +

K∑

i=0

RK−i(s)
[
αi+1(s)R1(s)

− η(s)
(
R2(s) + α1(s)R

2
1(s)

) ∞∑

j=i+1

αj(s)
]

(34)

and

κ2(s,m)
def
=

K∑

i=0

RK−i(s)
(
η(s)R1(s)γK(s,m)

×
∞∑

j=i+1

αj(s)− γK−i(s,m)
)
. (35)

Comparing the right sides of (30) and (33), we express

C(s,m) as follows:

C(s,m) =
κ2(s,m)− κ1(s,m)

∆1(s)−∆2(s)
. (36)

Now the formulae (24), (26), (27), (29) and (36) lead to the

following main theorem:

Theorem 1. The representation for the LT of the conditional

transient queue-size distribution in the M/G/1/K-type model

with generally distributed setup times is following:

q̃n(s,m) =

∫ ∞

0

e−st
P{X(t) = m |X(0) = n}dt

=
κ2(s,m)− κ1(s,m)

∆1(s)−∆2(s)

{
RK−n+1(s) +

K−n∑

i=0

RK−n−i(s)

×
[
αi+1(s)R1(s)− η(s)

(
R2(s) + α1(s)R

2
1(s)

)

×
∞∑

j=i+1

αj(s)
]}

+
K−n∑

i=0

RK−n−i(s)
(
η(s)R1(s)γK(s,m)

×
∞∑

j=i+1

αj(s)− γK−i(s,m)
)
, (37)

where the formulae for αi(s), γi(s,m), Ri(s), ∆1(s),
κ1(s,m), ∆2(s) and κ2(s,m) are given in (19), (20), (5),

(31), (32), (34) and (35), respectively.

Remark IV.1. Let us note that from the formula (37) the

stationary queue-size distribution πm, m = 0, ...,K, can

be found by using the Tauberian theorem, namely for any

n ∈ {0, ...,K}

πm = lim
t→∞

P{X(t) = m} = lim
s↓0

s · q̃n(s,m). (38)

V. NUMERICAL EXAMPLES

Let us take into consideration a node of the wireless network

with buffer of size 6 packets, with the arrival stream of

packets of average sizes 200 B, entering with intensity 600
Kb/s. Adjusting the Poisson arrival process, we have the rate

λ = 375 packets per second. Assume that packets are being

transmitted with speed 720 Kb/s, where the processing times

have 2-Erlang distribution, that gives the intensity 450 packets
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per second and the value µ = 900 of the parameter of

this distribution. Hence, the load of the node is at the high

level (ρ = 0.833). Moreover, we consider the mechanism of

exponentially distributed setup with three different means: 0
(without setup - “pure” system), 5 and 50 [ms].

The evolution of the transient probabilities P{X(t) =
m |X(0) = 0} for m = 1, 3, 5 are presented in Fig. 1. Evi-

dently, due to different durations of setup times, the transient

evolutions and stationary values of the proper probabilities are

different in cases (a)–(c). As one can observe, a short setup

time with mean 5 [ms] allows the system to stabilize faster

than in the absence of such a period (compare cases (a) and

(b)). From the other side, if the setup time is relatively long

in comparison to the arrival/service rates (case (c)), the time

of stabilization elongates in comparison to the system without

setup time. It is worth mentioning that all analytical results are

confirmed by process-based discrete-event simulations (DES).

VI. SUMMARY

In the article a finite-buffer queueing model with Poisson

arrivals and generally distributed processing times and server

setup times is considered. The closed-form representation for

the LT of the transient queue-size distribution conditioned by

the initial buffer state is found, from which the stationary

distribution can be obtained directly by using the Tauberian

theorem. Numerical examples are attached as well.
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(b) setup time mean 5 ms
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Fig. 1. Subfigures (a), (b) i (c) present the probabilities P{X(t) =
m|X(0) = 0} for m = 1 (solid line), m = 3 (dashed line) and m = 5
(dot dashed line), for the case of no setup time (subfigure (a)), a setup time
with mean 5 [ms] (subfigure (b)) and with mean 50 [ms] (subfigure (c)). Bold
black lines and thin green lines correspond with analytical and DES results,
respectively
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