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Abstract—Radio signals can be used to detect the presence of
a person (target) in an environment by analysing the fluctuations
in the Received Signal Strength Indicator (RSSI). The velocity
of the target can be estimated by examining the sequence of
disturbances in consecutive radio links over a period of time. This
requires knowledge of the deployment of the radio transceivers
and the time when the target crosses the Line of Sight (LoS) of
each radio link. However, it is not trivial to precisely estimate
the exact time of the link crossing due to the broad range of
RSSI fluctuations generated as the target approaches the link. In
this paper, we evaluate and compare 15 techniques for estimating
the velocity of the target and propose enhancements to some of
the techniques. In our experiments the techniques perform with
an average accuracy in the range between 13.02% and 96.18%,
which corresponds to an average error of 0.05m/s for a moving
target.

I. INTRODUCTION

W
IRELESS sensor networks (WSN) have been the inter-
est of the research community for many years. They

consist of a number of small, affordable devices (motes),
typically equipped with a microprocessor, some sensors, for
example a light or humidity sensor, and a transceiver chip for
radio transmissions. Traditionally, WSNs are used to monitor
environments for long-term changes in attributes like tempera-
ture, but recent studies have shown, that they can also be used
to detect the presence of persons by analysing disturbances in
the radio links between the motes [1], [2], [3], [4], [5].

Generally, if a person (the target) enters a radio link, the
human body causes multipath fading of the radio signal [2].
This is detected by analysing for example the Received Signal

Strength Indicator (RSSI) of the transmission. The resulting
characteristic of the RSSI values will show the presence of a
target, but can take different shapes. A highly sensitive link
will react early to the presence of a human. The collected
RSSI samples will have strongly varying values in a relatively
large time interval, even when the target is still some distance
away. On the other hand human presence might only create a
few higher or lower spikes than the average RSSI signal on an
insensitive link. Furthermore, if the target is not just standing
still, but moving through the link, this will cause additional
fluctuations in the RSSI values [6].

In addition to simply detecting a target it is also possible
to estimate the targets’ position. One approach would be
employing a grid of motes, creating a mesh of multiple radio
links [3]. If events are simultaneously detected on several
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Fig. 1. Concept diagram of experiment set-up

intersecting links, the targets’ position can be estimated at
this intersection. To track a target through such a system,
the detection can be repeated periodically, each time updating
the targets’ position. Using multiple position estimates it is
also possible to derive further information about the targets’
behaviour, for example the targets’ trajectory or velocity.

There are various reasons why determining the velocity of
a target can be useful. For example in a system tracking not
one but multiple targets, like in [7], [8], [9], it is beneficial to
not only know the position of every target, but also to predict
future positions. This information can be used to differentiate
between two targets crossing their paths in close vicinity [9].
Knowing the direction and speed is also interesting when
monitoring an area where only a limited amount of sensors
is available. Since the coverage might be too sparse to allow
continuous tracking, a general idea about the movement could
be helpful, especially when monitoring an area with movement
restrictions. For example, if monitored targets are moving
towards a dangerous location, like a broken elevator shaft or
the site of a fire, then an alarm sound could be triggered to
prevent possible harm.

In any case, the challenge of deducing additional informa-
tion from the pure detection of a target lies in pinpointing
a precise moment within the detection event. This moment
should be identifiable, even when the radio link behaviour
is different. For our experiments we use the point of the
detection event when the target has the greatest influence on
the RSSI, which we define as the peak. Since humans are three
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Fig. 2. Target passing the Line of Sight of a radio link

dimensional, it takes a certain time for a target to pass a radio
link, as seen in Fig. 2. The peak can be seen as the point in
time, when the middle of the target is in the Line of Sight of
the link [4]. The goal of this paper is to evaluate 15 different
techniques on how to best detect the velocity of a target with
the highest possible accuracy. For this we estimate the peak of
the radio link crossing event and use the generated results in
the velocity estimation of a target moving at different speeds.

Consider the velocity estimation following the simple for-
mula v = s

t
as an example. To compute the speed of a target,

the locations of at least two radio links are required, and the
RSSI values and their respective timestamps are taken from
the links. If a target consecutively moves through the radio
links, as for example seen in Fig. 1, the actual crossing of
a link is recorded as an interval of collected RSSI samples
while the link was disturbed. The detection events on both
links need to be identified to estimate the time it took the
target to cross the distance between the links. Because of the
unsteady nature of the RSSI it is not possible to simply use the
earliest distorted sample, since its occurrence can be different
for dissimilar links. For accurate velocity estimation we have
to identify the targets position in the link, respectively for
each link. However, the best samples to indicate the actual
crossing do not necessarily need to be the samples with the
highest RSSI attenuation or the middle sample of the collected
interval. The different link states and general fluctuation in the
RSSI distort the collected data and make accurate predictions
difficult.

The remainder of this paper is structured as follows: Section
II gives an overview of research similar to our approach.
Section III describes the different techniques used, followed
by an evaluation which details the results of our experiments
in Section IV. The paper is concluded in Section V with a
summary and a short outlook.

II. RELATED WORK

Traditionally, instead of using the RSSI to record an event, a
system detecting the presence of a target can be based on using
a laser range finder. A range finder emits a laser beam that is
reflected off of any object it hits. The reflection is caught by the
light sensor of the device, the Time of Flight is measured, and
the distance to the object computed. If the distance suddenly
decreases, the laser beam is reflected at a shorter distance.
This is the case, if a target is in the LoS between the laser
emitter and the light sensor. However, using a range finder
is unfavourable in scenarios, where a larger region needs
to be covered, since the laser beam only stretches over a
relatively narrow area. Furthermore, the sensor measuring
the light intensity needs to be shielded from direct sunlight,
to avoid false negatives. Also, these systems can easily be
fooled, when a target is avoiding the beam by stepping over
it, without interrupting it. Depending on the scenario, a RSSI-
based device-free localisation system might be more suitable.
Since the RSSI is already disturbed when a target moves near
the radio link, avoiding it is not easily possible.

Multiple systems employing the RSSI to detect the presence
of a target have been developed [2], [10], [11]. In these systems
sensor nodes are deployed at all edges of the monitored area
and a grid of radio links is created. A target standing or
walking through the grid will cause a characteristic disturbance
which can be detected [2].

However, the link characteristic is not specific to a target. In
[7] multiple targets are tracked by dividing the monitored area
into voxels. A target entering the area will cause disturbances
in a set of voxel simultaneously, which are then clustered. Each
cluster in the area symbolises a target and is tracked while in
the system. But intersecting trajectories create the difficulty
of continuously keeping track which target is matched to a
specific cluster.

To cope with RSSI irregularities, alternatives to the use of
the absolute RSSI or its average have been explored. In [8]
the time of flight of radio messages is used in an antenna
set-up with five transmit antennas and five receive antennas.
The signals reflecting off of the human body are analysed,
which allows for the tracking of up to five people. While no
longer based on the absolute RSSI, like in [7] still no clear
identification of the tracked target out of a group is possible.

The behaviour of the radio links is further analysed in
[12]. In general, RSSI values are unstable and always slightly
fluctuating because of minimal changes in the environment.
Slight variations in the area, for example moving a chair
or opening a window, can have a huge impact on the radio
propagation. Despite that, [12] defines two classes of observed
link behaviour when a target enters the link. Both are based
on the different qualities of a link. An anti-fade link has very
high RSSI values and will experience a strong attenuation and
a significant drop in the RSSI values when a target enters the
area of the link. A deep-fade link on the other hand already
has a very weak signal quality. For such links it is possible
that the quality increases when a target enters the link, due
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to refraction and scattering of the signal. Thus, the resulting
RSSI characteristic is generally an inverted version of the anti-
fade one. For this reason and other environmental influences, a
detection event can have a very dissimilar RSSI characteristic
compared to the characteristic of an event on a different link.

The authors of [4] suggest focusing on the changes in the
variance of the RSSI, instead of looking at the absolute value.
Regardless whether the absolute RSSI average in- or decreases
after a target enters the area of the link, the RSSI variance
will always be higher, because the link gets disturbed. Funda-
mentally, a long-term and a short term variance are computed,
compared, and incorporated to the alert magnitude. The larger
the alert magnitude is, the more likely a target is present
in the detection area. This method simultaneously reduces
the influence of different link qualities but also of changes
in the environment on the RSSI in long-term measurements.
By adapting the long-term variance in phases of tranquillity,
in which the variance of the RSSI is low, small changes in
the radio propagation model caused by the environment are
handled.

Using the RSSI to detect the speed of driving vehicles, [13]
collects samples of the signal strength of four links covering a
road section. The resulting measurements are analysed using
a statistical and a curve fitting technique. In the statistical
approach, the time between the entering and exiting event of
the monitored area is used to estimate the speed. The curve
fitting technique exploits the relation of the height of the
variance and the speed of a car. The faster the car passes the
monitored area, the higher is the influence on the recorded
RSSI variance. However, this technique is applied to fast
moving cars made of metal [14], not to humans.

III. ANALYSED TECHNIQUES

In this paper we analyse 15 different techniques for esti-
mating the velocity of a target. The techniques are divided
into three classes based on their input data. The techniques of
the first class are working with the RSSI. They either use all
available samples or search for the samples with the minimum
value, as introduced in [15]. The techniques of the second
class use the alert magnitude, the result of the RSSI variance
based algorithm introduced in [4]. The techniques either select
the maximum alert magnitude values or again use all available
samples. We propose enhancements to the second class to form
the third class of techniques. Instead of only using samples
with the maximum value, more samples with high values are
included into the input data. We evaluate the different methods
for estimating the targets’ speed in an experiment.

To accurately compute the targets’ speed two things are
needed: The distance travelled and the time it takes the target
to do so. This can be measured for example in a system, where
the crossing of the Line of Sight (LoS) between two sensor
nodes creates a disturbance in the RSSI values of periodically
sent messages. Two measures of the targets’ position at two
different times can be subtracted from each other to determine
the distance. Since the motes in our experiments are set at
fixed positions, in the evaluation we consider the distance

between them as known. To determine the time, the presence
of the target at each position needs to be detected and the
detection event analysed. The event itself stretches over an
interval consisting of several recorded RSSI samples. Each
sample includes a RSSI value and a timestamp. During the
recording interval, the target approaches the link, enters it,
passes the Line of Sight, and leaves it again. Disturbances in
the stream of RSSI values are caused during the time the target
stays in the area of the radio link.

Would at this point a sensor producing a boolean result be
deployed to record the disturbances, the outcome would be
binary: Either a body part of the target is perceived by the
sensor and the target is detected, or the sensor is not triggered
and no detection is registered. However, the human movement
also incorporates the swinging of arms and legs. Therefore, an
event can be triggered prematurely, when for example an arm
is detected before the rest of the body enters the monitored
area, artificially prolonging the event. The targets’ distance to
the LoS of the radio link will be shifted during the whole
event, when compared to the event of a different link. Also,
it cannot be assumed that the LoS crossing of the target is
in-line with the middle of the detection event. This reduces
the accuracy of the velocity estimation.

Fortunately, in the case of detecting an event using RSSI
values, the attenuation following the disturbance of the radio
link is the highest when the target is closest to the LoS [16].
However, this does not necessarily make the lowest RSSI value
the best point describing the event. There might be more than
one recorded RSSI sample with the lowest value. Additionally,
the RSSI values of a disturbed link are fluctuating. Another
sample could time-wise better describe the link crossing, but
may not match the lowest RSSI recorded.

The following sections illustrate the techniques to cope with
these restrictions and estimate the velocity of a target moving
through a group of radio links. For a better overview, all
introduced techniques are listed in Table I. Afterwards, the
methods are experimentally evaluated.

A. RSSI-based Techniques

The RSSI-based techniques use the unaltered data stream
of RSSI values as input to estimate the events’ peak and the
targets’ velocity. They can be found in the first column of
Table I.

1) minRSSI: The first approach to identify the best RSSI
sample indicating the peak is the naïve approach, abbreviated
minRSSI. This appraoch was also used in [15]. The RSSI
data stream of the monitored link is searched for the sample
with the minimum value. If multiple samples with the same
lowest value are found, all of them are collected. After the
time interval of the event has been analysed, the timestamp
of the first occurring sample with the lowest RSSI value is
selected for the velocity estimation. This approach is easy to
implement and low on computational and space complexity,
since the samples can be discarded once analysed.

2) medianRSSI: The next approach, medianRSSI, does not
simply collect all samples with the minimum value to select
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TABLE I
APPLIED TECHNIQUES ORDERED BY INPUT DATA

Based on Value

Technique Minimum RSSI Maximum Alert Magnitude Maximum Alert Magnitude Set

Raw minRSSI [15] maxAlertM [4], [13] topMaxAlertM

Median medianRSSI medianAlertM topMedianAlertM

Average avgRSSI avgAlertM topAvgAlertM

Linear Regression linRegRSSI linRegAlertM topLinRegAlertM

Curve Fitting CurveFittingRSSI CurveFitting [13] -

Cross Correlation CrossCorrelationRSSI CrossCorrelation -

the first one, but uses the timestamp of the middle sample.
This change is introduced as a precaution against outliers and
incorporates additional information about the order in which
the samples arrive, the data stream. However, this approach
ignores the timestamps of the other collected samples, which
might have a beneficial influence on the peak estimation,
especially when only two samples with the minimum value
exist.

3) avgRSSI: Simply selecting the first sample or selecting
the median sample is not always the best choice, given the
fact, that an event can have a non-symmetrical characteristic.
The avgRSSI approach is addressing this issue by removing
the dependency on the precise timestamp of the RSSI sam-
ple. Again, all samples with the minimum RSSI value are
collected, but then the average of all available timestamps is
computed. The new value does not necessarily need to match
the timestamp of any sample, but can take an arbitrary point in
the event interval. Since the peak does not need to match the
sample with the minimum value, or more precisely any single
sample, this technique avoids the very limiting dependency of
selecting a timestamp from a predefined set.

4) LinRegRSSI: An alternative method, which is also not
bound to the exact timestamp of a sample, is the LinRegRSSI
approach. LinRegRSSI models the relationship between the
detected events on different links by computing a linear
regression, based on the RSSI values. The input data set
for this approach is the distance between the links and the
timestamps of the selected samples. To obtain the necessary
data, first all samples with the minimum RSSI value as well as
their timestamps are collected for each link. With the distance
between the links known in our scenario, the parameters of
the linear regression are then estimated from the input.

The simple equation y = m ·x+b is the equation of a linear
function, where m describes the slope, b the y-intercept.The
result of the linear regression is the linear function with the
minimum squared error towards all input data points.

In order to estimate the velocity, data from at least two links
is needed, but can be extended onto more. In our case, values
from all available links are used. The slope of the resulting
linear regression line equals the speed of the moving target.
To get the time of the peak, the position of a link can be set
as y and the equation then solved for x.

Ignoring the restrictions of having to choose a precise

timestamp, this approach additionally uses information from
multiple links.

5) CurveFittingRSSI: A technique introduced in [13] is the
fitting of a curve to the data stream of the RSSI variance. The
highest point of the curve would indicate the time of the peak.
To analyse how well this performs based on the unaltered RSSI
stream, we use the CurveFittingRSSI approach. A Gaussian
function is fit as continuous curve to the stream of all RSSI
values per link. The maximum of the resulting curve is defined
by the characteristic of the detection event and will be shifted
towards the highest disturbance of the link. Unfortunately this
approach is rather computationally expensive, since all sam-
ples of the event interval have to be collected and incorporated
into the Gaussian function.

6) CrossCorrelationRSSI: Another approach using all
available RSSI samples per link is the Sliding Dot Prod-
uct, also known as cross correlation. The cross correlation
originates in the field of signal processing. Two signals are
shifted towards each other along the x-axis, while in each step
their data points are multiplied with each other. The resulting
product is called the correlation coefficient coefcc. The higher
the correlation coefficient is, the more similar are the data
streams. This method is often used to measure how far the
signals need to be shifted in order for them to reach their
point of highest similarity.

In this paper we use the cross correlation to sample-wise
compare the data streams of two links by computing their
coefcc. Given the characteristic of the input data, the highest
similarity is obtained when the events of both links are
overlapping.

The approach works in detail as follows: The first sample of
the first link is multiplied with the last sample of the second
link. The resulting cross correlation coefficient is stored. Next
the links are shifted towards each other by increasing the
number of samples that are compared. The first two samples
of the first link are compared with the last two of the other and
again the correlation coefficient is stored. This is repeated until
the last sample of the first link has been compared with the
first sample of the last link. Afterwards, the highest correlation
coefficient between the links is selected and the number of
shifts to reach this coefficient is counted.

Since the frequency with which the samples are sent, is
known, the number of shifts indicates how many samples have
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Fig. 3. Linear regression using alert magnitude values of five links

been sent in the time it took the target to cross the space
between first and second link. Analysing the sample rate we
deduce the time between the LoS crossings. Strictly speaking,
the cross correlation is not searching for the best sample to
describe the event, but computes the velocity directly.

B. Alert Magnitude based Techniques

All unaltered RSSI-based techniques work best with anti-
fading links, since they use the minimum RSSI value and on
these links the maximum drop in the RSSI level is characteriz-
ing the crossing event. In the case of deep-fading links, where
the signal improves after a target enters the link, a different
method is needed. On those links the RSSI values near the
peak are higher, even though fluctuations cause some RSSI
samples to have a very low value.

To handle both cases, a RSSI variance based technique is
used. Contrary to the absolute value, the variation of the RSSI
always increases when a target is in the link [16]. In this paper
the algorithm from [4] is applied. While the better handling
of the issue of anti- and deep-fading links is addressed by
changing the input data, the general issue of selecting a sample
still remains the same. This being the case, the aforementioned
methods of finding the peak of the LoS crossing event can also
be applied on the alert magnitude.

All techniques using the alert magnitude are summarized in
the second column of Table I.

1) maxAlertM: Following the given nomenclature in [4],
the technique searching for the maximum alert magnitude is
called maxAlertM. After all samples with the highest alert
magnitude are found, the first occurring sample, which is the
sample with the minimum timestamp, is selected.

2) medianAlertM: Like the medianRSSI approach, the me-
dianAlertM approach selects the middle one of all samples
with the highest alert magnitude. If an even number of samples
with the same highest alert magnitude is encountered, the
first occurring of the two middle samples is selected as a tie-
breaker.

3) avgAlertM: The avgAlertM approach computes the av-
erage time from the timestamps of the collected samples with

t0:

tn/2:

coefcc = 0

coefcc > 0

Fig. 4. General mechanism behind the cross correlation

the highest alert magnitude. Again, this is analogous to the
RSSI-based approach, in this case avgRSSI.

4) linRegAlertM: The approach to compute the linear re-
gression, based on the alert magnitude, is LinRegAlertM.
It is computed from all samples with the maximum alert
magnitude of each link, using data from all available links.
The resulting regression line is visualized as an example in
Fig. 3. The displayed data is taken from the first run of
the first measurement of our experiment. The y-axis value
represents the distance of a radio link to the first link of the
experiment set-up, the x-axis value represents the arrival time
of the samples. For this example the distance between the
links was set to 1.5 m and samples from five different links
are used.

5) CurveFitting: While RSSI values are always unsteady
and slightly fluctuating, the alert magnitude takes the form
of a steady line, except during an event. All values are zero,
as long as the link is not disturbed. However, they become
greater than zero when indicating a target in the area of the
radio link. This behaviour is beneficial to the CurveFitting
approach, which fits a Gaussion function to all available alert
magnitude values. Again, the precise time of the peak is not
restricted by the timestamp of the samples.

Since the alert magnitude is based on the RSSI variance,
this more closely resembles the curve fitting used in [13], then
CurveFittingRSSI does.

6) CrossCorrelation: Computing the cross correlation from
the alert magnitude values is the CrossCorrelation approach.
The mechanism behind this approach is visualized in Fig. 4.
In the beginning of the correlation process coefcc equals 0,
but is gradually increased, when the data streams of the alert
magnitude are shifted towards each other.

C. Alert Magnitude Set based Techniques

To enhance the performance of the methods using the
alert magnitude and to take precautions against outliers, we
introduce a new group of techniques. Instead of only searching
for the samples with the maximum alert magnitude, the set
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Fig. 5. Gird of motes in an lab environment

of n samples with the highest values is collected. The value
of n is analysed further in section IV. The set includes a
guaranteed minimum number of n sample, but can include
an even greater number, when more samples with the same
high alert magnitude exist. In this case all samples are added
to the set. Using a set of samples reduces the effect of the
sample with the maximum alert magnitude being an outlier
and thus unfavourable influencing the result.

Since the input data has been reduced to a selective subset of
the complete data stream, the curve fitting and cross correlation
techniques cannot be used. However, most methods estimating
the velocity from the highest alert magnitude value can also
be applied to this slightly enlarged set of samples.

1) topMaxAlertM: The topMaxAlertM approach uses the
first occurring sample of the set with the n highest values. This
could be realized by either selecting the first occurring sample
with the highest alert magnitude, or the first occurring sample
of the complete sample set. However, the first case is identical
to the maxAlertM approach, in the second case a timestamp
from the border of the event is selected, not representative for
the peak.

Because of the above mentioned issues, the topMaxAlertM
approach is not further considered in the evaluation.

2) topMedianAlertM: The topMedianAlertM approach se-
lects the middle sample of collected set. This sample does not
necessarily have to be the one with the highest value.

3) topAvgAlertM: The topAvgAlertM technique uses the
timestamps of all samples in the collected set to estimate
the time of the peak by computing the average time, again
loosening the restriction of the precise timestamp.

4) topLinRegAlertM: topLinRegAlertM models the linear
regression using the slightly larger data set, again with input
from multiple links.

IV. EVALUATION

For the evaluation of the different techniques we perform
an experiment with a test set-up, as seen in Fig. 5. The set-up
consists of ten Crossbow telosB sensor nodes, five on each
side of a 2m wide and 6m long detection area. The motes are
set in an interval of 1.5m on the same side. Radio links are
formed between the motes directly opposite of each other in a
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Fig. 6. Example of recorded RSSI and alert magnitude

way, that five consecutive links are generated across the space.
During the experiment the links exhibited a mean RSSI of -
62.5, -57.9, -58.3, -64.5 and -60.26 respectively from link one
to link five. The motes use the TI MSP430 microcontroller and
the CC2420 transceiver chip. They are sending on a frequency
of 2.4 GHz and use a TDMA scheme with a 62.5 millisecond
cycle time to avoid collisions. This value is chosen as a
trade-off between energy consumption and detection accuracy.
For our analysis all sent messages are recorded as samples
using the IRIS tool introduced in [17]. IRIS is an experiment
management tool, that allows for simultaneous data collection
and visualisation. Samples collected can be analysed using
provided or self-written functions and can be saved for further
processing.

To evaluate the accuracy of the velocity estimation of a
moving target, we compute the average error respective to
the actual velocity. Two measurements with 12 runs each
are performed in an lab environment. The error values are
calculated as an average of the 12 runs for each measurement.
During one experiment run, the target is entering the lab,
walking crossing the links through the detection area once and
then leaves the room. For the purpose of this evaluation, we
assume that the target is walking with constant speed, does not
suddenly change direction and walks directly in the middle of
the detection area in a straight line. In the first measurement
the target is walking with a speed of 0.6m/s, in the second
measurement with 1.35m/s. The behaviour of the RSSI and
the corresponding alert magnitude can exemplary be seen in
Fig. 6. The figure shows a target crossing a link first with
the slower, then with the faster speed. Markings on the floor
indicating the step interval and a metronome to time the steps
are used to help the target maintain constant speed, while
still walking normally. Also, to not be reliant on the human
perception of time, the precise moment of the LoS crossing is
recorded as ground truth, using a laser based system.

The results of the measurements are summarized in Table
II and Table III. Table II contains the average error in %
and its Sample Standard Deviation. Column one and two list
the values for the measurements with the slower speed of
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TABLE II
AVERAGE ERROR AND SAMPLE STANDARD DEVIATION OF THE VELOCITY ESTIMATION

Measurement Velocity 0.6m/s Measurement Velocity 1.35m/s

Technique Average Error (%) Sample Standard Deviation Average Error (%) Sample Standard Deviation

1 minRSSI 16.77 13.40 11.15 6.82

2 medianRSSI 17.25 13.97 11.50 6.91

3 avgRSSI 16.18 13.94 11.33 6.84

4 linRegRSSI 12.79 10.95 11.03 7.77

5 CurveFittingRSSI 17.10 23.15 27.00 20.40

6 CrossCorrelationRSSI 83.99 1.64 86.98 1.59

7 maxAlertM 12.03 12.15 11.59 8.34

8 medianAlertM 11.41 12.57 12.16 8.16

9 avgAlertM 11.72 12.34 11.88 8.22

10 linRegAlertM 7.00 6.21 13.21 15.91

11 CruveFitting 12.03 12.15 11.59 8.34

12 CrossCorrelation 5.04 3.40 7.17 4.04

13 topMedianAlertM5 4.12 3.83 6.16 5.04

14 topAvgAlertM5 4.12 4.30 3.82 4.16

15 topLinRegAlertM5 21.73 13.32 22.76 23.45

0.6m/s, column three and four the values for the faster speed of
1.35m/s. Each row shows the results for a different technique.
Table III contains the results of the measurement runs with
the maximum error for each approach and the Squared Mean
Error, also for both measurements and velocities.

A. RSSI

The results of the measurements using the minimum RSSI
data stream, minRSSI, can be found in the first row of Table
II, for both slower and faster speed. Estimating the velocity
from the first found sample selected by the minRSSI has an
average error of 16.8% with a sample standard deviation of
13.4 for the slow velocity measurement and 11.2% error with
a deviation of 6.8 for the faster velocity. This corresponds to
an absolute error in the estimation of 0.1m/s for a speed of
0.6m/s and an absolute error of 0.15m/s for a speed of 1.35m/s.

Achieving a high accuracy using this technique turns out to
be easier when detecting a target walking in a faster pace. The
duration of the LoS crossing event is shorter, involving fewer
samples and a narrower time interval, as seen in Fig. 6.

Using the median of all samples with the minimum RSSI
(medianRSSI) or the average of those (avgRSSI) does not
improve the performance significantly. The deep-fade link
behaviour is ignored, which leads to a less accurate event
detection and higher error values.

The most accurate approach according to our results, when
working with pure RSSI values, is computing a linear regres-
sion. linRegRSSI shows a slightly better performance in the
measurement with slower speed, and average performance,
when the target is moving faster. Since multiple links are used
in this approach, irregularities of one link can be evened out
by the others.

Modelling the stream of RSSI values with a Gaussian
function in the CurveFittingRSSI approach is unfavourable
compared to the other techniques. Since the RSSI varies

around a baseline, creating both positive and negative spikes in
the case of an event, CurveFittingRSSI has a very high sample
standard deviation. This causes very inaccurate behaviour.

Comparing two RSSI data streams using a cross correlation
is possible, but since the similarity of two links is compared,
the original input data needs to be similar. The unsteady
and fluctuating nature of the RSSI with a high variance
during the crossing event prevents this. Also, the deep-fading
and anti-fading behaviour of the RSSI creates completely
different characteristics, that cannot directly be compared.
The resulting error values are constantly above 80% in both
our measurements and have a very small Sample Standard
Deviation, achieving in the worst performance of all tested
RSSI-based methods.

B. Alert Magnitude

1) maxAlertM, medianAlertM and averageAlertLevel: Us-
ing the alert magnitude as a basis for the detection achieves
better results for the slow velocity measurement and simi-
lar results to the RSSI-based techniques for faster speeds.
Exploitation of the RSSI variance, and by doing so coping
with the deep-fade qualities of the links, is the cause of this
improvement. The average estimation error of maxAlertM can
be seen in row seven of Table II, the results for medianAlertM
and averageAlertLevel are in row eight and nine. All three
techniques perform similar to each other, with error values
around 11.5% ± 1%, which is an improvement of about 4%
towards the RSSI-based techniques in the 0.6m/s measure-
ment.

2) linRegAlertM: Using the linear regression has an im-
provement of 5% when applied to the data of the slow
velocity measurement. However, linRegAlertM shows worse
performance with the data of the faster velocity measurement.
The average error is 13.2%, which is 2% worse than when
based on the RSSI.
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TABLE III
MAXIMUM AND SQUARED MEAN ERROR OF THE VELOCITY ESTIMATION

Measurement Velocity 0.6m/s Measurement Velocity 1.35m/s

Technique Maximum Error (%) Squared Mean Error Maximum Error (%) Squared Mean Error

1 minRSSI 51.89 460.85 28.07 170.74

2 medianRSSI 51.89 492.89 28.07 179.94

3 avgRSSI 51.89 455.93 28.07 175.09

4 linRegRSSI 39.45 283.59 26.85 181.98

5 CurveFittingRSSI 85.23 828.11 69.77 1144.93

6 CrossCorrelationRSSI 87.15 7057.48 91.27 7567.14

7 maxAlertM 46.85 292.43 32.73 203.99

8 medianAlertM 46.856 288.19 32.73 214.34

9 avgAlertM 46.85 289.73 32.73 208.78

10 linRegAlertM 22.71 87.58 59.34 427.44

11 CruveFitting 46.85 292.43 32.73 203.99

12 CrossCorrelation 11.36 36.88 14.71 67.68

13 topMedianAlertM5 12.77 31.61 17.74 63.30

14 topAvgAlertM5 18.12 35.53 15.87 31.94

15 topLinRegAlertM5 49.03 649.73 71.50 1067.68

Since the target is moving with a higher speed, the time
between the LoS crossing of the links is shorter. This has
an impact on the slope of the linear regression line. It is
more steep and outliers have a higher influence since fewer
samples are sent, explaining the behaviour in the faster velocity
measurement.

3) Curve Fitting: Curve fitting is performed using all values
of the respective data streams, without previous filtering for
minimum RSSI or maximum alert magnitude values. Fitting
a curve through the alert magnitude values achieves similar
results to maxAlertM, medianAlertM and avgAlertM, as seen
in row 11 of Table II. The average error is at 12% for the first
measurement and at 11,6% for the second.

The results of the alert magnitude based CurveFitting
achieve a higher accuracy than fitting a curve to the RSSI
data stream. The steady nature of the alert magnitude, which
is only interrupted in the case of a detection event, positions
the maximum of the Gaussian function close to the peak of
the LoS crossing. Still, the results are on the same accuracy
level as maxAlertM, medianAlertM and averageAlertLevel.

4) Cross Correlation: The cross correlation computes the
correlation coefficient coefcc between two links. To utilize the
approach and estimate the velocity of a target, all possible link
combinations for both measurements are analysed first. The
results of this test are shown in Fig. 7. There, the average error
is plotted over the distance of the links towards each other.
A clear trend is visible, showing that the estimation becomes
more accurate, the further the links are apart. The overall error
is being reducing and the minimum and maximum error values
are closer to the average. The messages for the experiment are
being sent with a frequency of 62.5 milliseconds and it takes
the target a certain time to cross the distance between two
links. The larger the distance, the longer is the time needed
to cross it and the more samples can be sent in the duration,
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Fig. 7. Average of the velocity estimation error over the link distance

explaining the increase in the accuracy. For this reason the
cross correlation between the two links farthest apart is used
for the comparison with the other techniques.

As mentioned in Section IV-A, estimating the velocity using
the cross correlation of the RSSI values has a very low
accuracy, because of the RSSI fluctuations. However, applying
it on the alert magnitude is very promising. The average error
is shown in row 12 of Table II. It is at 5.0% with a sample
standard deviation of 3.4 for the slow velocity measurement.
For the fast velocity measurement these values are at 7.2%
average error with 4.0 sample standard deviation.

These results surpass the previous techniques using the
maximum alert magnitude. Since the alert magnitude values
are zero except during an event, as seen in Fig. 6, the
correlation coefficient reaches its maximum when the events
on two different links are directly overlapping. This achieves
a precise approximation of the time between the LoS crossing
events on two compared links used in the velocity estimation.
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Fig. 8. Average velocity estimation errors with different sizes of alert magnitude sets

C. Alert Magnitude Set

Instead of using the sample(s) with the maximum alert
magnitude, using the set of the n highest alert magnitude
values can achieve a very different result. The set provides a
more balanced picture of the event, since it includes all of the
most interesting samples and not just the highest, reducing the
influence of outliers. Unfortunately, this is not beneficial to all
methods. The CurveFitting and CrossCorrelation techniques
use all the samples from the complete measurement and cannot
be applied on a subset. Furthermore, since the sample with the
maximum alert magnitude is still in the set of the highest n

samples, using the topMaxAlertM approach will not have a
different outcome than maxAlertM, as explained in section
III-C1. However, for the techniques of topMedianAlertM,
topAvgAlertM and topLinRegAlertM the improved sample set
is applicable.

The influence of the size of the sample set is analysed
in Fig. 8, showing the average error over the number of
samples. For each of the remaining three techniques all sample
set sizes from 1 to 20 were examined. The set size of 1
equals the respective approach based on the maximum alert
magnitude value. The figure displays six graphs, two for each
technique, split by the velocity of the measurement. To further
differentiate between the techniques an index i is introduced,
indicating the size of the sample set. topMedianAlertM3, for
example, would describe the topMedianAlertM approach with
a sample set size of 3 samples.

The analysis shows a high improvement of the topMedi-
anAlertM and the topAvgAlertM approach for the measure-
ment with a velocity of 0.6m/s, when increasing the sample
size to up to 6 samples in the set. The lowest error is achieved
by topMedianAlertM5 with an average error of 4.12%, directly
followed by topAvgAlertM5 with an average error of 4.124%

for the slower velocity. This is an accuracy of around 95.8%,
estimating the velocity of the target. These improvements
are due to the fact that both techniques benefit from the
larger selection of possible samples describing the peak of
the crossing event.

For the fast velocity measurement of 1.35m/s the
topAvgAlertM5 approach achieves the lowest average error
of 3.82%, giving it an estimation accuracy of 96.1%. For
the topMedianAlertM techniques topMedianAlertM14 has the
lowest error with 4.88%.

Additionally, Fig. 8 indicates a trade-off between too few or
too many samples in the sample set. While the performance of
the topMedianAlertM and topAvgAlertM techniques initially
improves when adding samples to the set, the average error
abruptly increases after a certain threshold. For the slow ve-
locity measurement this happens in our experiment at sample
set size 7, for the fast velocity measurement at sample set size
17.

The reason for this is the inclusion of samples in the set
which are not representative for the peak. These sample cause
a reduction in precision. The effect occurs, when the number
of samples with unique values is not very large. If only a few
samples with high alert magnitude values exist, all of them
will be included into the sample set. However, when raising
the set size, more samples will need to be added. Eventually,
some samples with only moderate alert magnitude values will
be in the sample set. Those are less likely to describe the
detection event. As soon as that happens, the accuracy of the
alert magnitude set based techniques diminishes.

Table II summarizes the results for topMedianAlertM5 in
row 13, and topAvgAlertM5 in row 14.

Since more samples are guaranteed to be in the sample
set, the linear regression loses much of its accuracy. Fig. 8
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shows: The more samples are added to the set, the worse
the topLinRegAlertM technique performs. This deterioration
occurs, because the values of all samples are included in the
computation. The average error drops from 7% (linRegAlertM)
to 21,7% (linRegAlertM5) in the slow velocity measurement
and from 13,2% to 22,8% in the fast velocity measurement.
The results for linRegAlertM5 are listed in Table II, row 15.

The evaluation shows that the topMedianAlertM5 and the
topAvgAlertM5 techniques are the best choices for accurately
detecting the peak of an event and estimating the velocity of a
target. Furthermore, they are also less computational expensive
then a linear regression, the curve fitting technique or the cross
correlation.

V. CONCLUSION & FUTURE WORK

In this paper we experimentally evaluated 15 techniques in
order to estimate the velocity of a target moving through a
set of radio links. The precise moment of the Line of Sight
crossing is determined based on the collection of RSSI sam-
ples. The techniques are separated into groups, based on their
input values. Analysing the average of the minimum RSSI
attains less accurate results than focusing on the maximum
alert magnitude or the set of the n-highest alert magnitude
samples. This is caused by the RSSIs unstable character.

Three techniques were found delivering unsuitable results
below 80% accuracy, nine techniques performed moderately,
three techniques achieved a performance above 90% estima-
tion accuracy. Performing a cross correlation of the links with
the highest distance from each other achieves good results
in estimating the velocity. The accuracy for slow moving
targets is around 95.0%, for fast moving targets it is around
92.9%. Furthermore, not focusing on the samples with the
highest absolute value, but on the set of highest values offers
a layer of protection against outliers and improves simple
median or average computing techniques. Selecting the median
timestamp of the set of samples with the highest detection
value achieves 95.8% accuracy for slow moving targets and
95.1% for fast moving ones. Computing the average of those
samples also achieves 95.8% accuracy for slow moving targets
and 96.1% accuracy for fast ones.

In the future we want to extend our research by using the
velocity estimation to differentiate between multiple targets in
the same radio environment.
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