
Predicting Dangerous Seismic Events in Coal Mines
under Distribution Drift

Marc Boullé
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Abstract—We describe our submission to the AAIA’16 Data
Mining Competition, where the objective is to devise a reliable
prediction model for detecting periods of increased seismic
activity in coal mines. Our solution exploits a selective naive
Bayes classifier, with optimal preprocessing, variable selection
and model averaging, together with an automatic variable con-
struction method that builds many variables from time series
records. One challenging part of the competition is that the input
variables are not independent and identically distributed (i.i.d.)
between the train and test datasets, since the train data and test
data rely on different coal mines and different times periods. We
apply a drift-aware methodology to alleviate this problem, that
enabled to get a final score of 0.9246 (team marcb), less than
0.015 from the challenge winner.

I. INTRODUCTION

The AAIA’16 Data Mining Competition1 is related to a

problem of prediction of dangerous seismic events in coal

mines. Coal mines are equipped with seismic sensors that

register bumps and energy. Sensor readings are available as

times series of 24 records, with hourly statistic summaries

(such as number of bumps, sum, mean or max of energy...).

Train data consists of 79,893 samples from a first period,

whereas the test data contains 3,860 samples coming from a

second period. In the test data, the time periods do not overlap

and are in random order, which is not the case in the train

data. In this competition, active participants are rewarded by

up to four additional train datasets, provided that they make

enough submissions. Altogether, the most active participants

can obtain up to a total of 133,151 train samples. The objective

is to predict if the total seismic energy perceived with 8 hours

after the period covered by a data sample exceeds a warning

threshold, and the evaluation criterion is the Area Under the

ROC Curve (AUC).

In this paper, we present our submission to the challenge.

It exploits a Selective Naive Bayes classifier together with

an automatic variable construction method (Section II). A

good classifier trained on the train data obtains a disastrous

leaderboard score. This is not caused by over-fitting, but by a

severe distribution drift between train and test data. We suggest

in Section III a methodology to alleviate this problem, and

apply it in Section IV to elaborate our submissions to the

challenge. Finally, Section V summarizes the paper.

1https://knowledgepit.fedcsis.org/contest/view.php?id=112

II. SUPERVISED CLASSIFICATION FRAMEWORK

We summarize the Selective Naive Bayes (SNB) classifier2

introduced in [1]. It extends the Naive Bayes classifier owing

to an optimal estimation of the class conditional probabili-

ties, a Bayesian variable selection and a Compression-based

Model Averaging. We also describe the automatic variable

construction framework presented in [2], used to get a tabular

representation from times series.

A. Optimal preprocessing

Numerical variables are preprocessed using supervised dis-

cretization [3] to evaluate the class conditional probabilities.

In the MODL approach [4], the discretization is turned into

a model selection problem and solved in a Bayesian way.

Using a hierarchical prior distribution on the discretization

parameters, the Bayes formula is applicable to derive an exact

analytical criterion to evaluate the posterior probability of a

discretization model. A 0-1 normalized version of this crite-

rion provides a univariate informativeness evaluation of each

input variable. Similarly, categorical variables are preprocessed

using supervised value grouping [5].

B. Bayesian Approach for Variable Selection

The naive independence assumption can harm the perfor-

mance when violated. In [1], the Selective Naive Bayes (SNB)

classifier [6] is trained using a Bayesian model selection

approach to select the best subset of variables [7]. Efficient

search heuristics with super-linear computation time are pro-

posed, on the basis of greedy forward addition and backward

elimination of variables.

C. Compression-Based Model Averaging

Instead of taking the best subset of variables, the method

introduced in [1] averages all the classifiers resulting from

different subsets of variable, using a logarithmic smoothing

of the posterior distribution of the trained classifiers. The

weighting scheme on the models reduces to a weighting

scheme on the variables, and finally results in a single Naive

Bayes classifier with weights per variable.

2Available as a shareware at http://www.khiops.com

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 221–224

DOI: 10.15439/2016F21

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 221



D. Automatic Variable Construction for Multi-Table

Variable construction [8] has been less studied than variable

selection in the literature. It is all the more necessary in the

case of relational data to obtain a flat input data table with

tabular representation. It implies a large amount of work for

the data analyst and heavily relies on domain knowledge to

construct new potentially informative variables. Learning from

relational data has recently received an increasing attention

in the literature, since the introduction of Multi-Relational

Data Mining (MRDM) in [9], [10]. In this paper, we exploit

the automatic variable construction framework presented in

[2]. It relies on a formal description of the data structure,

with a root table and several secondary tables in 0 to 1 or

0 to n relationship and a set of construction rules (Count,

CountDistinct, Mode, Min, Max, Mean, Median, StdDev, Sum,

Selection). The space of variables that can be constructed is

virtually infinite, which raises both combinatorial and over-

fitting problems. These problems are solved by introducing a

prior distribution over all the constructed variables, as well as

an effective algorithm to draw samples of constructed variables

from this distribution.

III. A METHODOLOGY TO REDUCE THE DRIFT PROBLEM

Statistical learning relies on identically and independently

distributed (i.i.d.) data. Given this assumption, models trained

from a train dataset can be deployed on a test dataset, with

some guarantees of performance. This i.i.d. assumption does

not hold in many real world cases, for example in case of

time series data, in the marketing field where a model (churn,

fraud, cross-selling...) is trained on a past period and deployed

on a future period, ergonomics where a model is trained from

a panel of few volunteers... In these cases of drift between

the train and deployment datasets, as the data are not i.i.d,

obtaining good classification performance on the train data

does not guarantee good performance on the test data.

Fig. 1. Classification and drift detection tasks

In [11], [12], we have investigated this issue and proposed

a methodology to reduce the drift problem. Let us assume

that we have a classification task, a train dataset with class

labels and a test dataset that potentially comes from a different

distribution. The objective is to train a classifier and to predict

the test class labels as accurately as possible whatever be

the drift. Let us then consider two tasks: classification and

detection of the drift. The drift detection task can be turned

into a classification task as in [13], by merging the train and

test datasets and using the dataset label (’train’ or ’test’) as

the target variable (see Figure 1).
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Fig. 2. Informativeness of 10,000 input variables

The initial representation is then evaluated using the pre-

processing method summarized in Section II-A, both for the

classification and the drift detection tasks. Intuitively, if we are

able to select an input representation with good classification

performance on the train data but poor drift detection, we

expect that our classifier will be less sensitive to drift and

its performance drop on the test dataset will be reduced.

The objective is then to explore varying input representa-

tions and select the one with the best classification perfor-

mance together with the poorest drift detection. To illustrate

this, we represent in Figure 2 the informativeness of 10,000

input variables for the classification and drift detection tasks

(borrowed from the AAIA’2015 challenge [11]). The results

show that there are variables with large drift informativeness

and small classification informativeness (top-left of the figure),

or on the contrary variables with small drift informativeness

and large classification informativeness (bottom-right). The

interesting variables are those on the right and close to the X

axis, with small drift informativeness. Using these information,

we can select interesting variables, either automatically (as in

the AAIA’2015 challenge [11]) or manually with a focus on

interpretability (as in the IJCRS’2015 challenge [12]). With

interesting variables only, the classification performance may

slightly decrease in the train dataset (because only part of the

available variables are exploited), but the performance is likely

to be more resilient to drift, with a better performance on the

test dataset.

IV. CHALLENGE SUBMISSIONS

A. Applying the Framework for the Challenge

Coal mines are represented using a multi-table schema:

• root table that contains the identifier of the main working

site (coal mine) and 12 other characteristics related to the

whole period of 24 hours,

• secondary table (0-n) for the time series of 24 hourly

summarized seismic sensor readings,

• secondary table (0-1) that contains some meta-data per

working site.

Using the data structure presented in Figure 3 and the

construction rules introduced in Section II-D, one can for
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CoalMine
#Id: Cat
 main_working_id: Cat
 total_bumps_energy: Num
 total_tremors_energy: Num
 ...
 latest_maximum_yield: Num
 latest_maximum_meter: Num
 site: Entity(SiteMetadata)
 sensor: Table(SensorReading)
 Class: Cat

SensorReading
#Id: Cat
 hour: Num
 count_e2: Num
 count_e3: Num
 ...
 avg_difference_in_gactivity: Num
 avg_difference_in_genergy: Num

SiteMetadata
#main_working_id: Cat
 main_working_name: Cat
 region_name: Cat
 bed_name: Cat
 main_working_type: Cat
 main_working_height: Num
 geological_assessment: Cat

Fig. 3. Multi-table representation for the data of the AAIA’16 challenge

example construct the following variables (“name”: comment)

to enrich the description of a CoalMine:
• “Mean(sensor.sum e2)”: mean of the sensor sum e2 readings,
• “Count(sensor) where sum e2 > 0.5”: number of sensor read-

ings where the sum e2 value is greater than 0.5,
• “Max(sensor.sum e2) where highest bump energy > 50”: max

of the sum e2 value from sensor readings where high-
est bump energy is greater than 50.

The number of variables to construct is the only user

parameter. An input flat data table representation is then ob-

tained from the set of all automatically constructed variables.

All these variables are then preprocessed using the optimal

discretization method (cf. Section II-A) to assess their infor-

mativeness and evaluate their class conditional probabilities,

before training the SNB classifier.

For each experiment, 1000 variables are built using the

automatic variable construction framework summarized in

Section II-D.

B. Preliminary experiments

We first perform some explanatory analysis to better under-

stand the data, without any submission on the leaderboard.
1) Evaluation of the expected performance: Using a 70%-

30% train-test split of the train dataset, we obtain a train AUC

of 0.99 and a test AUC of 0.97. The performance are both

accurate and reliable. However, prediction of increased seismic

activity should not be so easy, and we suspect that the good

performance might be caused by some bias in the dataset.
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Fig. 4. Informativeness of 1000 input variables for the AAIA’2016 challenge

2) Evaluation of the drift: To evaluate whether the train and

test dataset are i.i.d, we apply the drift detection methodology

described in Section III. This drift detection task achieves an

almost perfect performance with an AUC of 0.995, meaning

that the train and test data can be well separated. The most

informative variables for the drift detection task are the iden-

tifier of the main working site, as well as all the meta-data

variables per working site. These drift informative variables

are far above most other input variables in Figure 4. As the

data are not i.i.d, obtaining good classification performance

on the train data does not guarantee good performance on the

test data.

3) Distribution of coal mines in train and test datasets:

To further investigate on the observed drift, we collect the

identifiers of the coal mines in the train and test datasets.

Overall, 24 coal mines are used: 7 in the initial train dataset, 16

with all the additional train datasets and 21 in the test dataset.

The distribution of the coal mines is heavily unbalanced in the

train dataset, whereas is is more balanced in the test dataset.

4) Distribution of the target labels: The target class is

heavily unbalanced, with 1171 warning (around 1.5%) and

the rest as normal. Furthermore, 2 among the 7 initial train

coal mines are never labeled as warning.

According to the challenge organizers, the time periods in

the test data do not overlap and are in random order. We then

assume that in the train data, the time periods overlap and

are in sequential order. This overlapping causes an additional

problem of non i.i.d data, with the train data being over-

sampled compared to the test data.
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Fig. 5. Number of sequences of train warnings per sequence size

To evaluate the over-sampling factor we collect the se-

quences of consecutive warning in the train dataset. The

results, displayed in Figure 5, show that most sequences are

of length 8.

C. First submission

The preliminary explanatory analysis summarized in Sec-

tion IV-B shows that there is a severe drift between the

train and test datasets, caused by different mines, different

time periods and different sampling rates. To reduce this drift

problem, we apply the following protocol:

• remove any variable that identifies the coal mines

(main working id plus the additional meta-data variables

per working site),

• re-sample the train mines by keeping at most 5% of in-

stance per mine, so as to get a more balanced distribution

as in the test dataset (21 test mines, thus 1/21 ≈ 5%),

• sub-sample the remaining train instances by a factor of

1/8 ≈ 12%), so as to get approximatively the same

sampling factor as in the test dataset.
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This first trial, submitted one day after entering the chal-

lenge, obtains a leaderboard AUC of 0.9239, which is very

competitive (≈ 1% from the leader at the submission time).

D. Second and final submission

Although the first obtained results are quite good, they

exploit only a small subset of the train instances (around

3% after applying the sampling strategies). To better exploit

all the available train data, we repeat the train protocol

described previously 100 times (based on different random

samples) and average the predictions. This second trial (our

final one) obtains almost the same leaderboard AUC (0.9243),

but we expect the averaging strategy may lead to more reliable

predictions (the leaderboard AUC is evaluated on only 25%

of the test data).

Furthermore, this averaging over 100 train samples pro-

vides additional insights w.r.t. the variance of the results,

which amounts to around 1%. We expect that the variance of

leaderboard AUC is still higher and that the best participant

submissions (over potentially hundred of submissions) are

likely to over-estimate the true test AUC. Thus getting a

leaderboard AUC within the variance of the leader leaves few

room for further improvement.

E. Additional experiments

First, as a sanity check, we submitted the first prediction

obtained using all the available train data (all variables and

instances: see Section IV-B). As expected, the drift effect is

disastrous, and our 0.97 train AUC dropped down to a 0.60

leaderboard AUC.
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Fig. 6. Leaderboard AUC per sampling rate for three scenarios

We also performed sensitivity analysis, with varying the

train mine re-sampling rate, sub-sampling rate, averaging

strategy and number of constructed variables. We also exper-

imented with using the additional train datasets, with some

manual or automatic feature selection as well as finer anti-

drift approaches (see [12]). For example, Figure 6 displays the

leaderboard AUC using 1 or all 4 additional train datasets, with

train mine resampling rate of at most 5% or 10%, and sub-

sampling rate varying from 1% to 100%. This shows that the

initial train mine re-sampling rate (5%) looks stable in a wider

range (than 10%), that the initial sub-sampling rate (12%)

is in a plateau of good performance (between 8% and 20%

looks fine). Finally, using all the 4 additional train datasets,

the performance was slightly less accurate, but as this is within

the expected variance, this is not significant.

Overall, the obtained leaderboard results showed that

the preliminary chosen protocol parameters (see Sec-

tions IV-B, IV-D) were quite stable, and the results dropped

down only for significant changes in the re-sampling and sub-

sampling rates (worse performance for at least half or twice

the initial value of the parameters). The additional data did

not provide any further improvement, but there was not much

room for such improvement. In the end, we choose to keep

our second submission, that went from a 0.9243 leaderboard

AUC to a 0.9246 final AUC.

V. CONCLUSION

In the AAIA’16 Data Mining Competition, the train and

test data are not i.i.d, which causes a dramatic drop of the test

performance, even for accurate and reliable trained classifiers.

After preliminary explanatory analysis, we identified several

causes of drift between the train and test data: different dis-

tributions of coal mines, different sampling rate and different

period. To be more robust to drift, we proposed a methodology

based on removing variables too sensitive to drift, re-sampling

to get a more balanced distribution of the train mines and sub-

sampling to achieve approximately the same sampling rate.

Applying this methodology, 100 classifiers were trained, each

exploiting sub-samples of only 3% of the trained instances,

and the averaged predictions obtained a 0.9246 final AUC.
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[4] M. Boullé, “MODL: a Bayes optimal discretization method for contin-
uous attributes,” Machine Learning, vol. 65, no. 1, pp. 131–165, 2006.

[5] ——, “A Bayes optimal approach for partitioning the values of cate-
gorical attributes,” Journal of Machine Learning Research, vol. 6, pp.
1431–1452, 2005.

[6] P. Langley and S. Sage, “Induction of selective Bayesian classifiers,”
in Proceedings of the 10th Conference on Uncertainty in Artificial

Intelligence. Morgan Kaufmann, 1994, pp. 399–406.
[7] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature Extraction:

Foundations And Applications. Springer, 2006.
[8] H. Liu and H. Motoda, Feature Extraction, Construction and Selection:

A Data Mining Perspective. Kluwer Academic Publishers, 1998.
[9] A. J. Knobbe, H. Blockeel, A. Siebes, and D. Van Der Wallen, “Multi-

Relational Data Mining,” in Proceedings of Benelearn ’99, 1999.
[10] S. Kramer, P. A. Flach, and N. Lavrač, “Propositionalization approaches

to relational data mining,” in Relational data mining, S. Džeroski and
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