
A New Approach to the Discretization
of Multidimensional Scaling

W. Gramacho∗†, A. Mucherino†, J-H. Lin‡, C. Lavor§

∗Federal University of Tocantins, Palmas-TO, Brazil.

wgramacho@uft.edu.br

†IRISA, University of Rennes 1, Rennes, France.

antonio.mucherino@irisa.fr, warley.gramacho-da-silva@irisa.fr

‡Research Center for Applied Sciences, Academia Sinica, Taiwan.

jhlin@gate.sinica.edu.tw

§IMECC-UNICAMP, Campinas-SP, Brazil.

clavor@ime.unicamp.br

Abstract—Given a set of points in a Euclidean space having
dimension K > 0, we are interested in the problem of finding
a realization of the same set in a Euclidean space having a
lower dimension. In most situations, it is not possible to preserve
all available interpoint distances in the new space, so that the
best possible realization, which gives the minimal error on the
distances, needs to be searched. This problem is known in the
scientific literature as the Multidimensional Scaling (MDS). We
propose a new methodology to discretize the search space of MDS
instances, with the aim of performing an efficient enumeration of
their solution sets. Some preliminary computational experiments
on a set of artificially generated instances are presented. We
conclude our paper with some future research directions.

I. INTRODUCTION

G
IVEN a set of points X in a Euclidean space R

K , with

K > 0, Multidimensional Scaling (MDS) consists in

finding a realization of X in R
k, with 0 < k < K , such

that the interpoint distances in R
K are preserved as much as

possible [3]. The initial dimension K is generally very large,

while the new dimension k is generally a priori unknown.

However, for a fixed destination dimension k, the MDS can

be seen as a particular class of the Distance Geometry Problem

(DGP) [16]. In fact, in the DGP, suitable embeddings of

a given simple weighted undirected graph G = (V,E, d)
are searched, in a way that the distances between embedded

vertices u and v ∈ V are as close as possible to the weights on

the edges (u, v) ∈ E, when available. In the MDS, the graph

G can be simply deduced from the original set of points in

R
K . A valid embedding is an embedding of G satisfying all

distance constraints, with a given tolerance.

In recent works, it was shown that the DGP can be

discretized when some particular assumptions are satisfied

[17]. The discretization makes it possible to work with a

finite search space, which is otherwise continuous. This search

space has the structure of a tree, which is binary when all

available distances can be considered as exact. The DGP is

NP-hard [27], and even if its discretization does not reduce its

complexity [14], it allows for employing a Branch & Prune

(BP) framework for an ad-hoc exploration of the discretized

search space [14], [24]. The present work is a preliminary

step for the discretization of the MDS. In this work, in order

to mainly focus on the problem discretization, we will suppose

that the topology of the embeddings in both dimensions K and

k can be represented well by considering all real inter-point

distances.

We warn the reader that a previous work, devoted to the

discretization of the MDS, was already published in [1]. How-

ever, differently from that work, we will consider, in our first

analysis, the basic MDS without any additional constraints.

This decision was taken with the aim of developing, first of

all, an efficient procedure for the discretization of the MDS, to

be extended thereafter for tackling more complex problems. In

fact, differently from [1], the algorithms for discretized MDS

that we propose in this paper are particularly tailored to this

special class of problems.

The rest of the paper is organized as follows. In Section II,

we will focus on previous works for the discretization of the

DGP. Then, in Section III, we will make a parallel between

the DGP and the MDS, while trying to extend and adapt

the methodologies, already developed for the DGP, for the

discretization of the MDS. Our computational experiments will

be presented in Section IV. Finally, Section V will conclude

the paper.

II. DISTANCE GEOMETRY PROBLEM

The Distance Geometry Problem (DGP) consists in embed-

ding a simple weighted undirected graph G = (V,E, d) in a

k-dimensional space so that all weights duv on the edges of

G are realized as distances between the positions assigned

to its vertices [16]. More formally, the DGP asks whether

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 591–599

DOI: 10.15439/2016F213

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 591

it is possible to find an embedding x : V → R
k satisfying

constraints based on the available edge weights:

∀(u, v) ∈ E, ||xu − xv|| = duv.

Notice that, in these distance constraints, we can obtain the

equation of a hyper-sphere in R
k by fixing one of the two

vertices in a certain position. The discretization of the DGP

is based on the idea to intersect as many hyper-spheres as

necessary to obtain a discrete set of possible positions for a

given vertex v ∈ V (see Section II-A).

A classical approach to the DGP is to reformulate it as an

unconstrained global optimization problem [23]. The satisfac-

tion of the constraints based on the distances can be mea-

sured by computing the difference between the actual value

||xu−xv|| of the distance, and its expected value duv . In order

to verify the overall satisfaction of the available constraints,

a penalty function can be introduced, whose general term is

related to the generic constraint. Various penalty functions can

be defined for the DGP, and one of the most used penalty

functions is the so-called Medium Distance Error (MDE):

MDE(x) =
1

|E|

∑

(u,v)∈E

| ||xu − xv|| − duv |

duv
. (1)

Finding the global minimum of this penalty function allows

to obtain solutions to the DGP. If all distances are compatible

to each other and they are not affected by numerical errors,

the MDE value for a valid embedding x needs to be equal to

zero.

There are two main applications of the DGP that can be

commonly found in recent publications. One application arises

in biology, and it is concerned with the identification of

protein conformations by exploiting some known interatomic

distances that can be obtained by experimental techniques

[19]. Another common application is given by the so-called

Sensor Network Localization Problem (SNLP) [2], [5], where

the positions of the sensors forming a network need to be

identified.

As already mentioned above, when some particular assump-

tions are satisfied, the DGP can be discretized, so that its

search space can be reduced from a continuous (and infinite)

domain to a discrete (and finite) domain. We will give some

details about the discretization of the DGP in Section II-A,

and we will focus on discretization orders (vertex orders for

G which make the discretization assumptions satisfied) in

Section II-B.

A. The Discretization

Let G = (V,E, d) be a simple weighted undirected graph

representing a DGP instance. Let G[·] be the subgraph of G

induced by a subset of vertices in V ; let VS(·) be the volume

of the simplex defined by the vertices given as arguments.

The discretization in dimension k > 0 of a DGP instance can

be performed when there exists an order defining sequence

r : i ∈ N −→ v ∈ V ∪ {♦} of length |r| (for which ri = ♦ if

i > |r|) such that the following two assumptions are satisfied:

Algorithm 1 The BP algorithm.

1: BP(i, k,G, r, ε)
2: let v = ri;

3: compute x′
v in dimension k;

4: if (x′
v is feasible with tolerance ε) then

5: if (i = |r|) then

6: print new solution;

7: else

8: BP(i + 1, k, G, r, ε);
9: end if

10: end if

11: compute x′′
v in dimension k;

12: if (x′′
v is feasible with tolerance ε) then

13: if (i = |r|) then

14: print new solution;

15: else

16: BP(i + 1, k, G, r, ε);
17: end if

18: end if

(a) G[{r1, r2, . . . , rk}] is a clique;

(b) ∀i ∈ {k + 1, . . . , |r|}, there exist k “reference” vertices,

i.e. there exist j1, j2, . . . , jk such that

1) j1 < i, j2 < i, . . . , jk < i;

2) {(rj1 , ri), (rj2 , ri), . . . , (rjk , ri)} ⊂ E;

for which

VS(rj1 , rj2 , . . . , rjk) > 0.

Vertex orders satisfying assumptions (a) and (b) are named dis-

cretization orders: more details about these special orders are

given in Section II-B. The class of DGP instances for which

at least one discretization order exists for the corresponding

graph is named Discretizable DGP (DDGP) [24].

The search space of DDGP instances is finite. It has the

structure of a tree, where nodes contain candidate vertex

positions, organized layer by layer. In fact, assumption (a)

allows us to place the first k vertices given by the vertex

order r in k fixed positions. In this way, we can avoid to

consider congruent solutions that can be obtained by rotating

and/or translating other solutions. Assumption (b) ensures the

existence of at least k reference vertices for every vertex

having a rank i > k: a vertex u can play the role of “reference”

for a given vertex v if u precedes v in the vertex ordering

r, and (u, v) ∈ E. We say that the corresponding distances

duv are the reference distances for the vertex v. We exploit

the k reference vertices for defining k spheres centered in

the reference vertices and having as radius the corresponding

reference distances: in dimension k, the intersection of these

k spheres provides us with a subset of vertex positions having

cardinality 2 [8], [14]. The condition on the volume of the

simplex in assumption (b) ensures that this sphere intersection

does not provide a full circle (which is obviously not discrete).

We employ a Branch & Prune (BP) algorithm [25] for the

solution of DDGP instances (see Alg. 1 for a sketch). The

algorithm recursively calls itself for the exploration of the

592 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

search tree. In the algorithm call, i is the current rank in the

given vertex order r: it is supposed that the coordinates of all

vertex positions on the current branch are stored in the global

memory. The value of k corresponds to the dimension in which

we wish to embed the graph G. ε is our tolerance for the errors

that can affect the generated vertex coordinates: as soon as

new vertex positions are computed by performing the sphere

intersection, in fact, their feasibility is verified by exploiting

additional distances that were not used in the discretization

process. In order to do so, we consider the corresponding

terms of equation (1), and we declare as “infeasible” a new

generated position if at least one of such terms is greater than

the predefined tolerance ε. Once a new solution is found by

the BP algorithm, the quality of such a solution can be verified

by applying equation (1): since all its terms are smaller than

our tolerance ε, we expect to obtain good-quality solutions.

The complexity of one single BP call corresponds to the

complexity of computing twice a new vertex position, and of

verifying whether the exploration of the tree should continue

in those two directions or not. If, for example, x′
v is feasible

(see Alg. 1), then this position could be part of a solution,

and therefore the branch of the binary tree rooted at x′
v needs

to be explored. In this case, the algorithm invokes itself for

computing the possible positions for the next rank. Instead, if

for example x′′
v is not feasible with the given tolerance, then

the current branch does not contain any solution. It is therefore

pruned: the algorithm does not invoke itself in this case. This

algorithm phase is fundamental and named pruning phase.

There are two main approaches to deal with the uncertainty

on the values of the available distances. In [15], for example,

intervals are used for representing such an uncertainty, and

the terms of equation (1) are adapted for providing a positive

measure only when the actual distance is not contained in

the given interval (for both feasibility verification during the

execution of BP, and computation of the MDE function once

a new solution is found). However, in some applications (such

as the MDS), the uncertainty on the distance values is not

known a priori, and therefore our approach will consist in

considering instances with only exact distances, which we will

need to tackle by admitting larger values for the tolerance ε. In

other words, since the range of the intervals to be assigned to

uncertain distances cannot be predefined, we will try to define

them during the execution of the BP algorithm: the tolerance

ε represents in this case the maximal allowed interval range.

B. Vertex Orders

A discretization order is a vertex order associated to the

graph G such that the discretization assumptions (a) and (b)

are satisfied [9], [13]. Given a graph G representing a DGP

instance, one question that can immediately arise is whether

this instance belongs to the DDGP class or not. When in-

stances are stored in text files, an order may be implicitly

associated to the vertices of G, but such an order may not

satisfy the discretization assumptions. In order to find suitable

discretization orders, a greedy algorithm was proposed in [13]

and extended subsequently for dealing with interval distances

[20]. A heuristic, that has as worst-case complexity the one of

the greedy algorithm, was also proposed in [10], for dealing

more efficiently with very large instances.

In some particular applications (the reader can refer for

example to [15]), additional assumptions on the discretization

orders are required, and the problem of finding a discretiza-

tion order may become NP-hard [4]. Naturally, the above-

mentioned greedy algorithm cannot guarantee the generation

of a vertex order that, apart from the discretization assump-

tions, could as well satisfy the additional ones.

For example, we say that a discretization order satisfies

the consecutivity assumption if the reference vertices for a

given vertex v, and v itself, are consecutive in the order.

Orders satisfying the consecutivity assumption can be seen

as sequences of overlapping cliques, which can be searched

on the pseudo de Bruijn graphs introduced in [21]. Even if

it implies the execution of an exponential search, the use

of such pseudo de Bruijn graphs aided the identification of

discretization orders satisfying the consecutivity assumption

for the backbones of protein instances.

The complexity of this ordering problem can also increase

when optimal discretization orders are required. We say that

an order is optimal when the rank assigned to every ver-

tex maximizes some predefined objective functions [22]. For

example, when low-rank vertices have the maximal number

of reference vertices, a direct impact on the width of the

corresponding search tree can be observed: it becomes smaller.

Several objectives, together with their priority orders, can be

defined and used for finding optimal discretization orders. If

the objectives are given by a set of simple functions, then the

problem of finding an optimal discretization order (without any

other additional assumption) still has a polynomial complexity,

and the greedy algorithm can be extended for dealing with this

class of vertex orders [9].

III. MULTIDIMENSIONAL SCALING

Since one of the first pioneer papers on this topic [29] in

1952, the MDS received an increasing interest. Surveys on

the MDS can be found in the scientific literature: a recent

example is [11], published in 2013. In the cited survey, the

MDS is defined as the set of statistical techniques that are

employed for reducing the dimensionality of a given set of

data, with the aim of improving the visual appreciation of the

underlying relational structures contained therein. The main

idea is to attempt mapping the data into a (generally Euclidean)

space, where similar items are represented by near points in

the mapping, and dissimilar items are represented by points

that are located proportionally further apart. By doing so, the

complexity in the data is reduced, and the primary dimensions,

along with the items differ, are identified. The MDS has a

wide range of applications, and the interested reader can refer

to the citations in [11] for additional information about these

applications.

One of the best-known methods for dimensionality re-

duction, especially in the field of mathematical statistics, is

Principal Component Analysis (PCA) [7], [12]. PCA was

ANTONIO MUCHERINO ET AL.: A NEW APPROACH TO THE DISCRETIZATION OF MULTIDIMENSIONAL SCALING 593

proposed by Karl Pearson in 1901 [26], and it consists of

an orthogonal transformation that can project an ensemble of

the high-dimensional data into a new set of coordinate systems

(principal axes) in the order of the variances. One of the most

notable advantages of PCA is the preservation of the distance

metric during the linear transformation. However, this essential

feature of PCA, i.e., the use of linear transformation, also

prevents PCA from discovering intrinsic non-linear degrees

of freedom underlying complex natural phenomena.

One of the most prominent approaches in non-linear di-

mensionality reduction is the Isomap method proposed by

Tenenbaum et al [28]. Unlike PCA, Isomap method has a

better ability for successfully capturing the intrinsic global

geometric features of the given set of points. It was noted

recently, however, that the application of the Isomap method

is able to provide good results only when transferring the data

between two similar geometries [6].

Let X be a set consisting of points of the Euclidean space

R
K . Since the coordinates for each point in X are known,

it is possible to compute their relative distances. With this

information, we can define a simple weighted undirected graph

G = (V,E, d). In the graph, every vertex v ∈ V represents one

single point in X , and an edge (u, v) ∈ E, together with the

weight that is associated to it, represents the relative distance

between the two corresponding points in X . All graphs G

constructed in this way have the following two properties: they

are complete, and all the weights associated to the edges (the

distances) are exact. These graphs represent instances of the

DGP.

A very simple but nice example of MDS is given in [11] and

is concerned with the problem of drawing a small geographic

map. All relative distances between the cities of Los Angeles,

New York, Chicago and Dallas are given, and the aim is to find

their correct locations on a two-dimensional map. When the

information on the distances is precise, a very accurate map

can be generated, i.e. a map for which the distances between

points are proportional to the true distances between city

pairs (modulo translations and rotations). In general, however,

solutions where the overall distance information is precisely

verified may not exist, so that approximated mappings need

to be searched.

Let G be the simple weighted undirected graph defined as

described above from a known set in dimension K . In the

example of the 4 US cities, the distances are measured by

approximating a surface on Earth with a plane containing

the 4 cities: a small error is introduced in the distances

because of the plane approximation of the Earth region. In

general, every graph is embeddable in dimensions k ≥ |V |
without introducing any error in the distances. However, when

the number of vertices in V is large, the dimensionality

is huge. The main interest therefore is to reduce the data

dimensionality, and to converge to small dimensions, such

as 3, 2, or even 1, where the visualization of the data is

possible. In the example of the 4 US cities, the embedding of

the corresponding graph G needs to be searched in dimension

k = 2. Recall that K is the initial dimension of our MDS

instances, while k is the destination dimension.

In this work, we will extend the concept of discretizability

to MDS instances (see Section III-A), and we will provide

two variants of the BP algorithm that are particularly tailored

to the MDS (in both Sections III-A and III-B).

A. The Discretization

The methodology that we propose for discretizing the MDS

is strictly related to the previous works on the discretization

of the DGP (see Section II-A). The entire theory of the

discretization can be in fact inherited almost unchanged: the

novelties in this paper are mostly operational: we propose

some ad-hoc strategies to be integrated in our new algorithms.

Since all relative distances are generally available in MDS

instances, the main task that is required for performing the

discretization is the selection, for every vertex v ∈ V that does

not belong to the initial clique, of a k-plet of reference vertices.

We point out that this task has a fundamental importance.

In fact, once a k-plet of reference vertices has been selected

for the vertex v, the corresponding reference distances remain

fixed in the search tree, i.e. we cannot allow the introduction

of any error in the corresponding distances.

The main idea for our first variant on the BP algorithm for

the MDS is to try to consider all possible k-plets of reference

vertices, and to choose, at each recursive call, the k-plet for

which the minimal error is observed during the pruning phase.

If this minimal error is larger than a predetermined tolerance

ε > 0, then the current branch of the tree is pruned and the

search is backtracked.

In order to measure the quality of partial embeddings (up

to the current rank of the discretization order), we need to

consider the following function, that we name partial MDE

(pMDE, see equation (1)):

pMDE(x, r, i) =
1

|E(r, i)|

∑

(u,v)∈E(r,i)

| ||xu − xv|| − duv |

duv
,

(2)

where

E(r, i) = {(u, v) ∈ E | ∃j < i : u = rj , v = ri}.

Notice that, while the vertex ordering associated to G is irrele-

vant for the computation of the MDE, it becomes important for

the pMDE. The value of pMDE(x, r, i) is in fact the average

error introduced in the partial embedding x of G up to the

rank i, in the vertex ordering r.

The sketch of our BP variant for the MDS is given in

Alg. 2. The algorithm keeps the general structure of Alg. 1,

but, every time it invokes itself recursively, it verifies all the

possible k-plets of reference vertices for the current vertex v,

and chooses the best k-plet pbest in terms of introduced error

pMDE. We are aware that the choice of the k-plet is greedy,

and that it might have, in theory, a negative impact on the

computations. However, our computational experiments (see

Section IV) show that our methodology works quite well in

conjunction with the algorithm pruning phase, which does not

allow the overall introduced error to grow more than desired.

594 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Algorithm 2 A variant of the BP algorithm for the MDS.

1: BP(i, k,G, r, ε)
2: let v = ri;

3: for (every k-plet p of reference vertices for v) do

4: compute x′
v and pMDE(x′

v) in dimension k;

5: compute x′′
v and pMDE(x′′

v) in dimension k;

6: end for

7: let pbest be the k-plet leading to the lowest pMDE;

8: let x̂′
v and x̂′′

v be the two positions for v given by pbest;

9: if (pMDE(x̂′
v, r, i) < ε) then

10: if (i = |r|) then

11: print new solution;

12: else

13: BP(i + 1, k, G, r, ε);
14: end if

15: end if

16: if (pMDE(x̂′′
v , r, i) < ε) then

17: if (i = |r|) then

18: print new solution;

19: else

20: BP(i + 1, k, G, r, ε);
21: end if

22: end if

In comparison with Alg. 1, Alg. 2 has a higher complexity.

The worst-case complexity is achieved (as in Alg. 1) when

the pruning phase is never able to prune away infeasible tree

branches. In this case, the algorithm needs to invoke itself

|r|∑

i=k+1

2i−k

times. At each call, moreover, it is necessary to select the

best k-plet of reference vertices in a set of i − 1 vertices,

where i is the rank in r of the current vertex. The number

of combinations of k objects among i − 1 objects, without

repetitions and without assigning a specific order to them, are

(i− 1)!

k!(i− k − 1)!
.

Therefore, the complexity of finding all these possible com-

binations depends upon the current layer of the tree i. As a

consequence, the worst-case complexity of Alg. 2 is

|r|∑

i=k+1

2i−k(i − 1)!

k!(i − k − 1)!
.

B. Vertex Orders

The reader might have remarked that, while vertex or-

ders have been presented as a fundamental concept for the

discretization of DGPs, there is only a quick mention to

vertex orders in the previous section, devoted instead to the

discretization of the MDS. In fact, the completeness of graphs

G representing MDS instances ensures that all vertex orders

allow for the discretization (the discretization assumptions in

Algorithm 3 Another variant of BP for the MDS.

1: BP(i, k,G, r, ε, V̄)
2: for (every new candidate vertex v ∈ V̄) do

3: for (every k-plet p of reference vertices for v) do

4: compute x′
v and pMDE(x′

v) in dimension k;

5: compute x′′
v and pMDE(x′′

v) in dimension k;

6: end for

7: end for

8: let v̄ ∈ V̄ be the vertex leading to the lowest pMDE;

9: let ri = v̄;

10: let pbest be the k-plet leading to the lowest pMDE;

11: let x̂′
v̄ and x̂′′

v̄ be the two positions for v̄ given by pbest;

12: if (pMDE(x̂′
v̄, r, i) < ε) then

13: let V̄ = V̄ \ {v̄};

14: if (V̄ = ∅) then

15: print new solution;

16: else

17: BP(i + 1, k, G, r, ε, V̄);
18: end if

19: end if

20: if (pMDE(x̂′′
v̄ , r, i) < ε) then

21: let V̄ = V̄ \ {v̄};

22: if (V̄ = ∅) then

23: print new solution;

24: else

25: BP(i + 1, k, G, r, ε, V̄);
26: end if

27: end if

Section II-A are always satisfied). However, as already done

for the DGP (see Section II-B), we may want to select optimal

vertex orders for a given instance of the MDS, which may help

us in improving the performances of the BP algorithm.

In terms of partial orders, a vertex order that allows for the

discretization of the MDS can be any order with an initial

k-clique at the first rank, and all other vertices at rank two.

In other words, once the initial clique has been embedded,

as well as some other vertices until the vertex v, any of the

remaining vertices can be embedded as next. This observation

leaded us to develop another variant of the BP algorithm for

the MDS.

Consider we have already embedded m vertices of our graph

G, with m > k and m < |V |. Instead of considering a

predefined vertex ordering, we can assume here that every

non-embedded vertex can be the candidate to be embedded as

next. Moreover, for each of such candidate vertices, different

k-plets can be selected to play the role of reference vertices

in the discretization (see Section II-A). For every candidate

vertex, and for every k-plet, an error on the pruning distances

can be computed, and the best vertex and k-plet can be selected

together. If the minimal obtained error is greater than our

tolerance ε, then the current tree branch needs to be pruned.

The sketch of this second variant of the BP algorithm

for the MDS is given in Alg. 3. In the algorithm call, the

discretization order r is initially empty, and it is constructed

ANTONIO MUCHERINO ET AL.: A NEW APPROACH TO THE DISCRETIZATION OF MULTIDIMENSIONAL SCALING 595

step by step during the several recursive calls. In this situation,

backtracking also means changing vertex ordering, because

every tree branch may admit a different optimal order. In

practice, at each recursive call, the best vertex v̄ and the best

k-plet, which lead to the minimal pMDE value, are selected at

the same time. This double choice is performed, as in Alg. 2,

in a greedy manner. In the algorithm call, we also added the

set V̄ , which is supposed to contain the vertices of the graph

that have not been yet embedded.

The complexity of this algorithm is evidently higher, in

comparison with Algs. 1 and 2. With respect to Alg. 2, an

additional task needs to be performed at every recursive call

of the algorithm: it is necessary to select the next vertex to

be considered. This task requires a search over the remaining

vertices to be embedded (with complexity n − i, where

n = |V |) of the optimal one, i.e of the one for which it

is possible to identify the best k-plet of reference vertices.

Therefore, the overall worst-case complexity of Alg. 3 is

|r|∑

i=k+1

2i−k(|V | − 1)(i− 1)!

k!(i − k − 1)!
,

which is much higher of the original complexity of Alg. 1.

IV. COMPUTATIONAL EXPERIMENTS

A. Generation of MDS instances

We consider artificially generated instances, with K > 3
and k = 3. Let n be the number of points in the original set

X ⊂ R
K ; let e ∈ [0, 1]. The procedure we employ for the

instance generation consists in the following steps:

• we generate n random points in the cube of R3 with sides

equal to 1;

• we add K − 3 coordinates to each point, having random

values extracted from the interval [0, e];
• we compute all relative distances between point pairs in

R
K ;

• we define a simple weighted undirected graph G contain-

ing this distance information.

We point out that the error e introduced in these instances

is distributed over the set of distances, as well as over the

added coordinates, in a quite uniform manner. This property

is unlikely to be satisfied by real instances in general. We also

remark that the overall introduced error per instance naturally

depends upon the value of e, but also on the distance size n.

B. Preliminary experiments

All the experiments presented in this section have been

performed on a laptop computer equipped with an Intel Core i5

with 2.4 GHz and 8GB/1600 MHz RAM, running Mac OS X

10.11.3.

Table I shows some experiments where a set of instances

that are embeddable in dimension 3 are considered (our intro-

duced error e, in fact, is here set to 0). We fix the destination

dimension to k = 3, while various initial dimensions K are

taken into consideration. The ε value is set to 0.001 in all the

experiments, even if e = 0, in order to deal with some errors

introduced by imprecise computer arithmetics. In all generated

instances, the total number of solutions is always 2 (when G is

embeddable in dimension k, then the total number of solutions

is 2, because all distances are available [18]). We point out

however that, in general when an approximated embedding

is searched, the introduced errors in the distances may lead

to the identification of multiple solutions. The experiments

lasting more than 2 hours were aborted. When executing

Algs. 1 and 2, a vertex order was predefined. In Alg. 1,

moreover, the selected reference vertices are always the k

immediate preceding ones in the predefined ordering r. The

computational time is measured in seconds.

The table shows that Alg. 2 is able to find better quality

solutions w.r.t. the ones obtained by the standard Alg. 1,

in terms of MDE. Such an improvement does not appear

so evident instead when comparing Alg. 2 and Alg. 3: the

MDE values remain mostly unchanged. It seems therefore

that it is not important in which place of the ordering a

vertex is located, but mostly which its reference vertices are.

The computational times that we report reflect the theoretical

worse-case complexities provided in Sections III-A and III-B.

For instances with n = 200, Alg. 3 would have taken more

than 2 hours to run to termination.

Table II shows some computational experiments where valid

embeddings cannot be identified in the destination dimen-

sion k without introducing some errors in the distances. All

considered instances have size n = 20, and part of the

experiments already reported in Table I are here provided again

for completeness. As the error e increases, the MDE values

in the found solutions show that the quality of the solutions

decreases as well. In some cases, Alg. 1 is not able to find

any solution, because of the propagation of such errors on our

search tree. Alg. 2 is instead always able to get the solutions,

and the MDE reflects the initial introduced error e. Alg. 3

is always able to find solutions as well (the increase in the

complexity is here not so important because all instances are

small), and it finds better quality results in some cases.

Table III shows some experiments with our artificially

generated instances having larger size (n = 50, 100 and 200),

for larger errors (we consider e ∈ {0.01, 0.02}) and where we

compare Alg. 2 to Alg. 3 only. The table shows that the quality

of the solutions found by the two algorithms is comparable (in

this set of experiments, only one time Alg. 3 was able to do

better than Alg. 2), but the computational time grows too much

when executing Alg. 3. In fact, the instances with n = 200
would have taken more than 2 hours, and these experiments

were therefore aborted.

Finally, only Alg. 2 is considered in our last table of experi-

ments. These experiments are aimed at stressing our algorithm

with high initial dimensions; the destination dimension is still

fixed to 3. As already pointed out, the errors introduced in

our instances are quite uniformly distributed over the set of

distances, and over the coordinates. This is the reason why

we consider small errors e, but repeated uniformly over the

n vertices forming the instance, and its K − 3 additional

dimensions. In fact, as Table IV shows, the MDE values

596 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE I
COMPUTATIONAL EXPERIMENTS ON A SET OF INSTANCES THAT ARE EMBEDDABLE IN DIMENSION 3.

instance Alg. 1 Alg. 2 Alg. 3
n K MDE time MDE time MDE time

20 4 10
−15 0.00 10

−17 0.02 10
−17 0.09

20 5 10−15 0.00 10−16 0.03 10−16 0.14
20 8 10−14 0.00 10−17 0.03 10−17 0.14
20 10 10−14 0.00 10−17 0.03 10−17 0.14

50 4 10
−14 0.00 10

−17 2.94 10
−17 28.01

50 5 10
−15 0.00 10

−16 2.53 10
−16 25.77

50 8 10
−15 0.00 10

−17 2.84 10
−17 28.02

50 10 10
−14 0.00 10

−17 2.81 10
−16 28.34

100 4 10
−13 0.00 10

−16 71.42 10
−17 1444.88

100 5 10
−14 0.00 10

−17 75.23 10
−17 1388.16

100 8 10
−15 0.00 10

−17 68.90 10
−17 1035.28

100 10 10
−13 0.00 10

−17 74.68 10
−17 1041.27

200 4 10−13 0.00 10−17 4289.86 - -
200 5 10−14 0.00 10−17 4272.32 - -
200 8 10

−13 0.00 10
−17 2525.45 - -

200 10 10
−14 0.01 10

−17 2880.03 - -

TABLE II
COMPUTATIONAL EXPERIMENTS ON A SET OF SMALL INSTANCES FOR WHICH A VALID EMBEDDING CANNOT BE FOUND IN DIMENSION 3 WITHOUT

INTRODUCING AN ERROR ON THE DISTANCES.

instance Alg. 1 Alg. 2 Alg. 3
n K e ε MDE time MDE time MDE time

20 4 0 0.001 10−15 0.00 10−17 0.02 10−17 0.09
20 5 0 0.001 10−15 0.00 10−16 0.03 10−16 0.14
20 8 0 0.001 10−14 0.00 10−17 0.03 10−17 0.14
20 10 0 0.001 10

−14 0.00 10
−17 0.03 10

−17 0.14

20 4 0.01 0.01 10−3 0.00 10−5 0.03 10−5 0.14
20 5 0.01 0.01 10−3 0.00 10−5 0.03 10−5 0.14
20 8 0.01 0.01 - - 10−5 0.03 10−5 0.14
20 10 0.01 0.01 - - 10−3 0.03 10−3 0.15

20 4 0.02 0.02 10−3 0.00 10−3 0.03 10−5 0.16
20 5 0.02 0.02 10−3 0.00 10−3 0.05 10−3 0.22
20 8 0.02 0.02 10−2 0.00 10−3 0.03 10−3 0.14
20 10 0.02 0.02 - - 10−2 0.03 10−3 0.15

20 4 0.03 0.03 10−2 0.00 10−3 0.05 10−3 0.21
20 5 0.03 0.03 10−3 0.00 10−3 0.05 10−3 1.09
20 8 0.03 0.03 10−2 0.00 10−2 0.05 10−2 0.22
20 10 0.03 0.03 - - 10−2 0.03 10−2 0.17

TABLE III
COMPUTATIONAL EXPERIMENTS ON A SET OF LARGER INSTANCES, WHICH ARE AFFECTED BY A LARGER OVERALL ERROR.

instance Alg. 2 Alg. 3 instance Alg. 2 Alg. 3
n K e ε MDE time MDE time n K e ε MDE time MDE time

50 4 0.01 0.01 10−5 2.88 10−5 27.75 50 4 0.02 0.02 10−3 4.80 10−3 44.49
50 5 0.01 0.01 10−3 2.86 10−3 28.10 50 5 0.02 0.02 10−3 4.86 10−3 44.89
50 8 0.01 0.01 10−3 3.09 10−3 29.67 50 8 0.02 0.02 10−2 4.61 10−3 44.25
50 10 0.01 0.01 10−3 3.93 10−3 36.48 50 10 0.02 0.02 10−3 3.31 10−3 32.31

100 4 0.01 0.01 10
−5 87.12 10

−5 1622.05 100 4 0.02 0.02 10
−3 98.19 10

−3 1786.72
100 5 0.01 0.01 10−3 120.72 10−3 2188.86 100 5 0.02 0.02 10−3 97.27 10−3 1797.52
100 8 0.01 0.01 10−3 118.10 10−3 2136.80 100 8 0.02 0.02 10−3 130.74 10−3 2360.76
100 10 0.01 0.01 10−3 90.67 10−3 1649.14 100 10 0.02 0.02 10−2 97.31 10−2 1870.78

200 4 0.01 0.01 10
−5 5521.94 - - 200 4 0.02 0.02 10

−3 1988.79 - -
200 5 0.01 0.01 10

−3 4407.33 - - 200 5 0.02 0.02 10
−3 4415.64 - -

200 8 0.01 0.01 10
−3 2589.42 - - 200 8 0.02 0.02 10

−3 4049.64 - -
200 10 0.01 0.01 10

−3 3017.70 - - 200 10 0.02 0.02 10
−2 4846.58 - -

ANTONIO MUCHERINO ET AL.: A NEW APPROACH TO THE DISCRETIZATION OF MULTIDIMENSIONAL SCALING 597

TABLE IV
COMPUTATIONAL EXPERIMENTS ON A SET OF INSTANCES HAVING A HIGH

INITIAL DIMENSION.

instance Alg. 2
n K e ε MDE time

100 10 0.001 0.002 10−6 145.77
100 20 0.001 0.002 10−6 178.47
100 50 0.001 0.002 10

−5 142.68
100 100 0.001 0.002 10

−5 157.11
100 200 0.001 0.002 10

−5 157.61
100 300 0.001 0.002 10

−3 154.71
100 400 0.001 0.002 10

−3 132.22
100 500 0.001 0.002 10

−3 124.23
100 600 0.001 0.002 10

−3 120.62

in the found solutions strongly depend upon the difference

between destination and initial dimensions. However, with a

rather constant computational time, all the experiments were

able to provide a good approximation of a valid embedding

of G.

V. CONCLUSIONS

When the destination dimension k is fixed, the Multidi-

mensional Scaling (MDS) can be seen as a DGP where an

embedding of the graph G is available in dimension K , and

it is necessary to find a valid embedding of the same graph

in the given destination dimension. Actually, the graph G,

which is the input of the DGP with the dimension k, can be

generally obtained from the known embedding in dimension

K . However, not all distances between vertices in dimension

K can be realized in dimension k, and therefore approximated

valid embeddings need to be searched.

This work represents the first step for the discretization of

the MDS. The main ideas and the main methodology are

inherited from previous works on the discretization of the

DGP. We proposed two algorithms, that are variants on the

BP algorithm, which was previously proposed for solving

discretizable DGP instances. Our Alg. 2 seems to achieve

the best trade-off between solution quality and increase in

complexity w.r.t. the original BP algorithm.

The computational experiments that we have reported in this

paper take into consideration a set of artificially generated

instances, where the errors on the distances are introduced

in a quite uniform manner. In order to deal with more

realistic instances, there are several points to be improved in

our approach. For example, the simplex inequalities (i.e. the

triangular inequalities in dimension 3) need to be verified

before executing our algorithms, and, when necessary, some

distances may need to be corrected. Because of the nature of

the problem, every corrected distance may imply to modify

other distances accordingly, in order to avoid invalidating the

geometry of the obtained embeddings.

From an algorithmic point of view, moreover, the branching

phase of the algorithm can be improved by verifying, every

time a given branch is pruned, whether other k-plets of

reference vertices can be chosen for the vertices over the same

branch. On the one hand, in fact, pruning allows us to focus

the searches on the feasible parts of the tree, but with the

risk, in presence of errors, to prune too much and obtain no

solutions. On the other hand, however, branching over all the

possible k-plets of reference vertices can be very expensive.

It is necessary therefore to identify the best trade-off.

Finally, as a future work, we may also consider the possi-

bility to let one of the k reference vertices to be related to an

interval distance, as it was already done in works related to

the discretization of the DGP. The decision not to consider yet

interval distances during the discretization process is motivated

by the fact that work is still in progress for an efficient

management of interval distances during the generation of

DGP discrete search spaces.

ACKNOWLEDGMENTS

The present work was entirely performed during WG’s 1-

year stay at IRISA, Rennes (France), which was funded by the

Brazilian program “Ciencias sem Fronteiras”. CL also wishes

to thank FAPESP and CNPq for financial support.

REFERENCES

[1] J. Alencar, C. Lavor, T.O. Bonates, A Combinatorial Approach to

Multidimensional Scaling, IEEE conference proceedings, 2014 IEEE
International Congress on Big Data, 562–569, 2014.

[2] P. Biswas, T. Lian, T. Wang, Y. Ye, Semidefinite Programming based

Algorithms for Sensor Network Localization, ACM Transactions in
Sensor Networks 2, 188–220, 2006.

[3] I. Borg, P.J.F. Groenen, Modern Multidimensional Scaling: Theory and

Applications, Springer Series in Statistics, Second Edition, 355 pages,
2005.

[4] A. Cassioli, O. Günlük, C. Lavor, L. Liberti, Discretization Vertex Orders

in Distance Geometry, Discrete Applied Mathematics 197, 27–41, 2015.
[5] Y. Ding, N. Krislock, J. Qian, H. Wolkowicz, Sensor Network Localiza-

tion, Euclidean Distance Matrix Completions, and Graph Realization,
Optimization and Engineering 11(1), 45–66, 2010.

[6] M.J. Duan, M.H. Li, L. Han, S.H. Huo, Euclidean Sections of Protein

Conformation Space and their Implications in Dimensionality Reduction,
Proteins 82, 2585–2596, 2014.

[7] A.E. Garcia, Large-Amplitude Nonlinear Motions in Proteins, Physical
Review Letters 68, 2696–2699, 1992.

[8] D.S. Gonçalves, A. Mucherino, Discretization Orders and Efficient Com-

putation of Cartesian Coordinates for Distance Geometry, Optimization
Letters 8(7), 2111–2125, 2014.

[9] D.S. Gonçalves, A. Mucherino, Optimal Partial Discretization Orders

for Discretizable Distance Geometry, International Transactions in Op-
erational Research 23(5), 947–967, 2016.

[10] W. Gramacho, D.S. Gonçalves, A. Mucherino, N. Maculan, A new

Algorithm to Finding Discretizable Orderings for Distance Geometry,
Proceedings of Distance Geometry and Applications (DGA13), Manaus,
Amazonas, Brazil, 149–152, 2013.

[11] M.C. Hout, M.H. Papesh, S.D. Goldinger, Multidimensional Scaling,
Wiley Interdisciplinary Reviews: Cognitive Science 4(1), 93–103, 2013.

[12] A. Kitao, F. Hirata, N. Go, The Effects of Solvent on the Conformation

and the Collective Motions of Protein − Normal Mode Analysis and

Molecular-Dynamics Simulations of Melittin in Water and in Vacuum,
Journal of Chemical Physics 158, 447–472, 1991.

[13] C. Lavor, J. Lee, A. Lee-St.John, L. Liberti, A. Mucherino, M. Sviri-
denko, Discretization Orders for Distance Geometry Problems, Opti-
mization Letters 6(4), 783–796, 2012.

[14] C. Lavor, L. Liberti, N. Maculan, A. Mucherino, The Discretizable

Molecular Distance Geometry Problem, Computational Optimization
and Applications 52, 115–146, 2012.

[15] C. Lavor, L. Liberti, A. Mucherino, The interval Branch-and-Prune

Algorithm for the Discretizable Molecular Distance Geometry Problem

with Inexact Distances, Journal of Global Optimization 56(3), 855–871,
2013.

[16] L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance

Geometry and Applications, SIAM Review 56(1), 3–69, 2014.

598 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

[17] L. Liberti, C. Lavor, A. Mucherino, N. Maculan, Molecular Distance

Geometry Methods: from Continuous to Discrete, International Transac-
tions in Operational Research 18(1), 33–51, 2011.

[18] L. Liberti, B. Masson, J. Lee, C. Lavor, A. Mucherino, On the Number

of Realizations of Certain Henneberg Graphs arising in Protein Con-

formation, Discrete Applied Mathematics 165, 213–232, 2014.
[19] T.E. Malliavin, A. Mucherino, M. Nilges, Distance Geometry in Struc-

tural Biology: New Perspectives. In: “Distance Geometry: Theory, Meth-
ods and Applications”, A. Mucherino, C. Lavor, L. Liberti, N. Maculan
(Eds.), Springer, 329–350, 2013.

[20] A. Mucherino, On the Identification of Discretization Orders for Dis-

tance Geometry with Intervals, Lecture Notes in Computer Science
8085, F. Nielsen and F. Barbaresco (Eds.), Proceedings of Geometric
Science of Information (GSI13), Paris, France, 231–238, 2013.

[21] A. Mucherino, A Pseudo de Bruijn Graph Representation for Dis-

cretization Orders for Distance Geometry, Lecture Notes in Computer
Science 9043, Lecture Notes in Bioinformatics series, F. Ortuño and
I. Rojas (Eds.), Proceedings of the 3rd International Work-Conference
on Bioinformatics and Biomedical Engineering (IWBBIO15), Granada,
Spain, 514–523, 2015.

[22] A. Mucherino, Optimal Discretization Orders for Distance Geometry: a

Theoretical Standpoint, Lecture Notes in Computer Science 9374, Pro-

ceedings of the 10
th International Conference on Large-Scale Scientific

Computations (LSSC15), Sozopol, Bulgaria, 234–242, 2015.
[23] J. Moré, Z. Wu, Distance Geometry Optimization for Protein Structures,

Journal on Global Optimization 15, 219–234, 1999.
[24] A. Mucherino, C. Lavor, L. Liberti, The Discretizable Distance Geom-

etry Problem, Optimization Letters 6(8), 1671–1686, 2012.
[25] A. Mucherino, L. Liberti, C. Lavor, MD-jeep: an Implementation of a

Branch & Prune Algorithm for Distance Geometry Problems, Lectures
Notes in Computer Science 6327, K. Fukuda et al. (Eds.), Proceedings of
the Third International Congress on Mathematical Software (ICMS10),
Kobe, Japan, 186–197, 2010.

[26] K. Pearson, On Lines and Planes of Closest Fit to Systems of Points in

Space, Philosophical Magazine 2, 559–572, 1901.
[27] J. Saxe, Embeddability of Weighted Graphs in k-Space is Strongly NP-

hard, Proceedings of 17th Allerton Conference in Communications,
Control and Computing, 480–489, 1979.

[28] J.B. Tenenbaum, V. de Silva, J.C. Langford, A Global Geometric Frame-

work for Nonlinear Dimensionality Reduction, Science 290, 290(5500),
2319-23, 2000.

[29] W.S. Torgerson, Multidimensional Scaling: I. Theory and Method,
Psychometrika 17(4), 401–419, 1952.

ANTONIO MUCHERINO ET AL.: A NEW APPROACH TO THE DISCRETIZATION OF MULTIDIMENSIONAL SCALING 599

