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Abstract—Grammars might be used for various other aspects,
than just to represent a language. Grammar inference is a large
field which main goal is the construction of grammars from
various sources. Written text might be analysed indirectly with
the use of such inferred grammars. Grammars acquired from
processed text might grow into large structures as the inference
process could be continuous. We present a method to decompose
and store grammars into a non-redundant set of lambda calculus
supercombinators. Grammars decomposition is based on their
structure and each distinct element is stored only once in such
a structure. We present a method that can create such a set
from any context-free grammar. To prove this and to show the
possible applications in the field of natural language processing
we present a case study performed on samples from two books.
Those samples are the entire Book of Genesis from The King
James Bible and the first 24 chapters of War and peace by Tolstoy.
We obtain context-free grammars with the Sequitur algorithm
and then we process them with our method. The results show
significant decline in the number of grammar elements in all
cases.

I. INTRODUCTION

R
EPRESENTATION of extracted information from text
is a question that correlates with cognitive science as

researchers try to emulate the processes that runs in our
head [1]. Natural languages might differ from their formal
counterparts, but they can be described with the same formal
theory as Chomsky [2] pointed out almost 60 years ago.

From a more pragmatic stand point of view, extracted infor-
mation may be represented in a grammar form. This is usually
the goal of the grammar inference (or grammar induction)
field. As Gold in [3] stated, only superfinite grammars can
be inferred from a text. By text Gold means a set of positive
samples, i.e. samples that belong to the language that inferred
grammar is representing. Yet recent advances in this field has
shown, that although in a strict formal way Gold theorem still
holds, by using heuristic, statistical or evolutionary methods,
we are able to infer more complex grammars, like context-free
grammars (CFG). De la Higuera presents a review of possible
inference methods in [4]. And not only formal languages
can be inferred. We are able to perform inference on natural
languages as well, as Onnis, Waterfall and Edelman point
out [5].

As we infer grammars of large quantities of text, we may
indeed obtain large grammars. If those texts are similar, for
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example we are processing books written in the same language
by the same author, then the resulting grammars are in a
risk of having a large number of rules and lots of similar
information stored separately. This phenomena is called struc-
tural explosion. Where structurally similar, but symbolically
different rules of grammar are inferred and then stored each
separately. In this paper we present a way how to represent any
CFG grammar in a non-redundant form. This form is a single
structure composed of lambda calculus supercombinators. In
the section II we reason why such a form is useful and how
it relates to the field of natural language processing.

The main contributions of this paper are:

• We present the entire process of supercombinator set
construction from any CFG grammar. The theoretical
background is presented in the section III and the detailed
description itself is in the section IV. It is a multi step
process, each step is explained in a separate section
accompanied with appropriate examples.

• Our approach has been tested on larger scale experiments
that we present in the section V. We used Sequitur
algorithm [6] to create context-free grammars from book
samples and then we run our process on them. We present
the results, that show significant reduction of grammar
elements. This indicates the prevention of structural ex-
plosion.

• In the section VI we discuss the possibilities of text
analysis that results from the usage of Sequitur algorithm
and our supercombinator set acquisition process. We
point out that even from the simple grammars, that are
the result of Sequitur algorithm, we can extract useful
structures contained in a natural language text.

II. MOTIVATION

The basic idea behind this work stems from the engineering
discipline of grammarware [7]. Simply put, we can use gram-
mars for other purposes, than just for the representation of a
language. With our approach we can decompose and store a
CFG into a non-redundant form. In this section we explain,
what good that process brings and how it relates to the field
of natural language processing.

Why do we need to store a grammar inside a non-redundant
structure? If we were given a small, predefined, static CFG,
that we use only as a base for a parser for example, than our
process could indeed be redundant itself. However, we can
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obtain a CFG from previously unknown or rather unprocessed
text. And we might want to process lots of such texts for
purposes like information extraction, language learning, text
analysis, grammar inference or others. And consider that we
would want to obtain one structure from all of those texts.
If we were to keep those grammars stored in a basic CFG
form, we could find ourselves buried under structurally same,
yet semantically different rules. This is so especially if we are
to process grammars that are large yet their rules are rather
simple, as we show in the section V. Such rules might differ
only in symbols but all grammar operations are the same.
So instead of having a sequence of two different symbols
stored for each pair of symbols separately, we can store one
structural representation of two symbol sequence and link it
with its respective symbols. Those symbols are also stored
non-redundantly, so in case we have large terminal symbols
(like words), having links to them is more memory efficient.

Our approach is based on the lambda calculus principle.
The idea of the application and abstraction that is inherent to
the lambda calculus offers a way to represent grammar rules
that are separated from their terminal symbols. Therefore the
entire structure is represented as one big set of supercombi-
nators. The applications of those supercombinators on other
supercombinators might be perceived as links. In that case
we may view such a set as some network like structure. We
explain this principle in further detail in [8] and [9], but also
here, in the section III.

Now, how our work relates to the natural language pro-
cessing? Well, the supercombinator form has few advantages.
The non-redundancy has already been mentioned. The second
advantage is that it describes and decomposes the structure
of grammar rules. This for example opens the possibility to a
form of text structure analysis. By searching for similar struc-
tures of text, combined with appropriate grammar inference
mechanism, we might obtain information that may be used for
various forms of analysis, like author or style identification.
However, this possibility is out of scope of this paper.

Our process strongly relates to the field of grammar in-
ference. Should we apply our process on a finite string of
symbols, we would obtain just two supercombinators, out of
which one would be long and would represent entire sequence
of words. And that is not what we want, since we want to
capture structure. So we need to start from a grammar form.

In this paper we are processing simple (in the structure, not
in the size) CFGs obtained by Sequitur algorithm application
(see section V) on a text written in a natural language, in our
case the English language. We do not need to use Sequitur
algorithm only. There are many ways to infer (or induce) a
grammar from any text, see section VII. Therefore we can use
any CFG grammar in our process.

III. BACKGROUND

First of all, we need to explain how the entire process of
supercombinator form acquisition works. The first version of
this process has already been explained in [9]. There we have
used only regular languages to create our supercombinator set.

And thus the process was left in the theoretical space, i.e.
we have not used real world case study. Our other work [8]
presented an introduction to context-free languages application
via higher order principle. In this section we build up on this
principle towards building complete set of supercombinators
from any CFG.

A. Enriched Lambda Calculus

Ordinary lambda expression e is defined by the rule (1).

e → a | x | e e | λx.e (1)

Where a represent any constant, x a lambda variable, e e

is lambda application and λx.e is lambda abstraction. We can
enrich this simple definition with grammar operations, thus the
result of lambda expression reduction would not be a single
value but the grammar expression, either regular or, as we later
show, even context-free. As an example for regular-language-
enriched lambda calculus have an expression (2).

L = λx1. λx2. x1 | x2 (2)

This expression takes two variables as arguments and results
into a regular expression, that consists of the alternative opera-
tion applied on both arguments. Therefore lambda application
L a b, where a and b are terminal symbols, yields a regular
expression a | b. We may notice, that we have used an infix
notation for the alternative operation. This is only a syntactic
sugar however.

To enrich our basic lambda calculus definition (2) we just
add a regular expression option as another alternative. The
formal definition of that regular expression is shown in (3).

r → a | r1 +++ . . . +++ rn | r1 ||| . . . ||| rn | (((r)∗)∗)∗ | (((r))) (3)

The first element represents terminal symbol. Then the
structures of concatenation, alternative and Kleene closure
meta-operations are defined. The final element represents
ordinary bracketing. Note, that the operators of regular ex-
pression themselves are depicted in a bold font, so we can
distinguish them from the meta-operators. Concatenation is
usually depicted without its operator or with ′.′ operator. We
have used the ′+′ operator as the dot is already used in the
lambda abstraction. Also, the expression r1 + r2 is equal to the
expression r1 r2. Should we use operator-less notation in our
extended lambda calculus notation however, it could cause a
confusion between a lambda application and the concatenation
itself. Therefore we are going to stick with the plus operator
should we use the concatenation inside of a lambda expression.

The fact, that we may define lots of different and specialized
operations for regular expressions is accounted for in this pa-
per. We are not restricting our algorithm for supercombinator
form construction with predefined static regular expression
operations (i.e. only those three defined in (3)). We use an
abstract function that acts as a placeholder for any operation.
This idea is further explained in the section IV-A.

We show in Tab I a supercombinator set obtained from
the expression a b | (c)∗. This expression serves as a good
example, since it contains the alternative, concatenation and
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TABLE I
SUPERCOMBINATOR SET FOR GRAMMAR ab|(c)∗ .

Supercombinators Arguments

L0 = λx1. x1 { a, b, c }

L1 = λx1. L
0 x1 { a }

L2 = λx1. λx2. L
1 x1 + L0 x2 { a b }

L3 = λx1. (L0 x1)∗ { c }

L4 = λx1. λx2. λx3. L
2 x1 x2 | L3 x3 { a b c }

closure operations. The set itself was obtained with the use
of process defined in [9]. The process in this paper is slightly
different, but any actual difference is pointed out.

The important accompanying part of any supercombinator
is its permissible argument string set. There may be more than
one permissible argument string for each supercombinator as
we can see in the case of L0. Al three terminal symbols are
possible arguments in this case. Only one argument string is
allowed for any other supercombinator. We obtain the original
expression ab|(c)∗ by β-reduction of the supercombinator L4

with its argument string abc. The original expression would
not be the result, if we allow any other argument strings to
accompany that supercombinator. Note, that the permissible
arguments are represented in the memory only once. They
are connected with their supercombinators with the use of
links. Argument strings are necessary for the reconstruction
of original expression, any other argument string would lead
to different expressions being created.

Supercombinators in Table I represent a structurally de-
composed form of regular expression ab|(c)∗. Some of those
supercombinators are applied more than once, like L0. This
is the solution to the structural explosion, since no multiple
occurrences of equal supercombinators exist. There exists one
top supercombinator for every expression It’s the one by
which β-reduction we obtain the original expression. In this
case it’s the L4. The supercombinator form is reusable. So
if we were to process more expressions, all already existing
supercombinators would be reused. Only new arguments links
would be added in that case. A simple example: if we were to
add expression consisting of one symbol, say d, the supercom-
binators L0 argument set would be enriched by the d symbol
and at the same time it would become top supercombinator
for that expression (but only if used with the d symbol).

Each supercombinator represents a part of the entire expres-
sion structure. As we see in Table I, the identity function is
represented by L0, a sequence of two variables by L2 or a
closure over one variable by L3.

B. Higher Order Regular Expressions

We have published a paper under this name [10] where
we noted that the difference between regular and context-
free expressions is not really that significant. And that we
may view context-free expressions as higher order regular
expressions, i.e. expressions that may take another expression
as an argument.

Fig. 1. The infinite state automaton obtained from higher order expression
A → aAb | ab.

The simple example is shown in the expression (4).

A → aAb | ab (4)

This expression represents the language an bn, standard
example of a nonregular language. The expression (4) is in
BNF form, but we may view it as an expression, where we
have an alternative of two subexpressions. The first one is
a sequence of three symbols. The middle symbol represents
a jump inside another iteration of expression evaluation. Ex-
pression 4 is represented by the automaton depicted in Fig. 1.
It’s an infinite state automaton. The important fact here is the
idea that there is not that big of a gap between regular and
context-free grammars.

This idea of higher order expression translates into our
enriched lambda calculus easily. The higher order jump is
nothing else but an ordinary lambda application. The first
element in the alternative of expression (4) can be translated
into the following lambda expression:

LaAb = λx1.λx2. x1 + (LA x1 x2) + x2 (5)

Where LA is the top supercombinator for the expression (4),
from which the supercombinator LaAb is being applied. In
this scenario, both supercombinators have the same arguments,
so there is no need to extend the possible argument set for
supercombinators in the lower levels of hierarchy.

It’s important to note, that supercombinator (5) is not in the
final, complete form, since it applies directly its arguments to
the result. In the final form, argument applications are always
translated into the identity supercombinator L0 = λx. x.

C. Basic Idea

We have presented the idea of regular-language-enriched
lambda calculus and the way to view CFGs as context-free
expressions or higher order regular expressions. Now we are
going to show the outline of our process, where we translate
those expressions into a supercombinator set.

Every context-free expression is based on a set of context-
free grammar rules. Under the BNF definition (or EBNF if
were tu use closure and option operations), these rules have
form of A → r, where A designates the nonterminal and r

an expression into which the nonterminal is transformed. The
expression has a form as defined in (3) with the addition of
nonterminal symbol as a possible element.

Any nonterminal symbol may have more rules that define
its expansion. But those rules can be merged together with
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the alternative operation without any consequences. , process
in (6). Our approach requires all such expressions to be merged
together.

A → ab

A → (c)∗

}

⇒ A → ab | (c)∗ (6)

There exist one top supercombinator for every expression.
This is the supercombinator from which we are able to
reconstruct the original expression by applying it to its permis-
sible argument string. We may extract that string even before
we start to transform the expressions. This is an important
property for implementing higher order jumps.

Simple outline of our transformation process is:

1) First step is to transform the input into the internal
expression tree form. Each rule is transformed into
separate tree, thus we obtain a set of trees, precisely
one tree per nonterminal. Each tree is named after the
nonterminal, that it represents.

2) Then we obtain the list of permissible arguments for
every tree in the set. These lists do not only include
arguments obtained by searching the tree for terminal
symbols, but also include all terminals inside each
nonterminal accessible from the current expression tree.
Each terminal symbol occurs in every final argument
string precisely once. No duplicates are allowed.

3) Each expression tree is transformed into separate, in-
dependent set of supercombinators. Each supercom-
binator of that set has exactly one argument string,
since they haven’t been merged yet. Every occurrence
of nonterminal in expression is replaced by temporary
supercombinator that points to that nonterminal. We
have already acquired their permissible argument strings
in the previous step.

4) Equal supercombinators are merged for each expression
separately. Supercombinators now may contain more
than one argument string in their permissible argument
set. This process is done for each expression indepen-
dently, thus may be performed in parallel.

5) Temporary supercombinators representing other nonter-
minals are now replaced by top supercombinators of
expression represented by those nonterminals.

6) Equal supercombinators from all expressions are new
merged together. The result of this is a single super-
combinator set that represents a structurally decomposed
original grammar.

IV. SUPERCOMBINATOR SET ACQUISITION FROM

CONTEXT-FREE GRAMMAR

We present the details of the transformation process in this
section. All the steps of transformation are illustrated with
appropriate examples.

A. Tree Creation

We start our process in the similar fashion as in our
previous work, by expression transformation into a tree form.
However, the trees used in the current process are different.

SEQ

ALT SEQ

SEQ CLS # NIL

a SEQ c

b NIL

Alt

UnOp

a b c

BinOp

BinOp

Seq Cls

Fig. 2. The old and the new type of expression tree for a b | (c)∗.

Listing 1. Type of a context-free expression tree.
data Tree = Leaf Term | Jump NTerm

| UnOp OpName Tree | BinOp OpName Tree Tree

| MultiOp OpName [Tree]

As mentioned earlier, we tried to separate the operations from
the basic structure. While in our previous work, the operations
themselves were part of a tree as nodes, now they have been
abstracted away.

We have selected A → a b | (c)∗ as an example expression.
Its depiction on Fig. 2 shows the old and the new type of
tree. This figure immediately shows the difference in node
amounts. The current tree form, the one on the right, is much
more space efficient.

The formal definition of this new tree form is depicted in
Listing 1. Constructors Term and NTerm represent terminals
and nonterminals respectively. We can see that instead of a
direct use of an operator as a node, we use abstract nodes. They
are UnOp for unary operations, BinOp for binary operations
and MultiOp for n-ary operations. OpName holds the name
of that operation, which semantic is not defined here, since for
now we only care about the structure. The semantics needs
to be supplied for each intended operation for the lambda
calculus to work, but it’s presented independently from a tree.

We have implemented two different ways of processing
operations. One is by constructing the tree only with the
use of MultiOp nodes, that hold the entire subtree in a
list. And the second is by using a combination of BinOp

and UnOp nodes. This difference is crucial, since it produces
different supercombinators, as we show in the section IV-C
and further expose by the experiment in the section V-A. The
list structure can hold any operation arity, therefore may be
used exclusively. The other two operations should be used in
tandem to achieve currying in application of supercombinators.

Currying is a well known phenomenon, where we may
perceive any n-ary function as a sequence of unary high
order functions that are applied to the arguments. We
may view the sequence abcd as either being transformed
to the node MultiOp(a, b, c, d) or as currying like tree
BinOp(a, BinOp(b, BinOp(c, d))).

Both tree approaches can be combined, as we did in our
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A

a B a

c Cb D

c dd d

Fig. 3. Graph of elements from the context-free expression (7).

previous work. We have used MultOp like nodes for an
alternative operation, BinOp type for a sequence and UnOp

for a closure. We have also used special Nil node to sign
the termination of a whole expression or a sequence. This
special node is the reason, why there is L1 supercombinator
in Table I. However, it’s equivalent to the L0 supercombinator
and therefore redundant.

The Jump node presents an actual jump to the nonterminal
designated by the name in this node. This basically turns the
set of trees into a directed, possibly cyclic, graph.

B. Argument Lists Extraction from Nonterminals

This step is essential for our process, since we are using
jumps to other expressions. And each jump brings a new
possibility of permissible terminal symbols at the input of their
top lambda expression. Take expressions (7) as an example.

A → a B a

B → b c D | C

C → c d | A

D → d d

(7)

The only terminal symbol actually inside of the expression
A is the symbol a. But others, namely b, c and d are accessible.
As they are accessible from the B and the C expressions. The
expression D has only the symbol d as accessible.

From a set of terminals and nonrerminals of all expressions,
a single directed cyclic graph is constructed. Each nonterminal
forms a node which links to its body, and terminals represent
leaves. The graph of expression (7) is depicted in Fig. 3.

Afterwards, a depth first search is performed for every
nonterminal node in order to find all possible symbols from
it. If we omit nonterminals from such a path, only a string
of terminals remains. The final step is the removal of all
duplicates, so the symbol strings contain each symbol at most
once. This process is shown in (8) for nonterminal A. Thus
symbol string for expression A is abcd, bcda for B and cdab

for C. D has only one symbol, d, as a permissible symbol.

A ⇒ A a B b c D d d C c d a ⇒

⇒ a b c d d c d a ⇒ a b c d (8)

C. Construction of Supercombinator Sets

The process described in this section is performed on all
expressions separately, therefore can be executed in parallel.

Listing 2. Definition of a supercombinator data type.
data Lambda = LeafLambda LambdaId

| JumpLambda LambdaId Nterm

| UnLambda LambdaId OpName SubLambda

| BinLambda LambdaId OpName SubLambda SubLambda

| MultiLambda LambdaId OpName [SubLambda]

Every single expression yields independent supercombinator
set. We used to perform this process with the use of a direct
tree transformation in our previous work. We have chosen to
do it differently this time.

The basic idea behind obtaining supercombinators is that
every operation node of a tree yields exactly one supercombi-
nator. Therefore we have defined a data type for them, shown
in Listing 2. All constructors are named after the nodes of
a tree they represent. Each of them has its own id. All ids
are unique, since we haven’t performed merge yet. The id

references allow us to use linear form instead of interconnected
tree form, hence we may perceive them as pointers.

Each supercombinator has its own permissible argument
string. We have separated that string from the underlying data
type in order to keep its core aspects tidy and in order. It’s
functionally irrelevant whether the argument string is repre-
sented directly within the data type or as an accompanying
list of arguments within a tuple.

The LeafLambda constructor represents already men-
tioned supercombinator L0 = λx . x, specified only by its
id. Its argument string consists only from the original symbol
of a Leaf node. JumpLambda is temporary supercombinator
that serves as a place-holder for expression name and hold per-
missible argument strings of that expression. We have already
obtained them during the previous step. Other three forms of
supercombinators are functionally similar since they represent
operations. SubLambda represents a supercombinator that is
being applied to that operation. It holds only a pointer to the
real supercombinator and references to arguments inside the
argument string.

The direct mapping between supercombinators and our
internal form is shown on the example (9). The ids are upper
indices of the L symbol. The arity of a lambda expression is
obtained from the length of its argument string. The lists in
SubLambda tuple refer to the index of an argument inside
the argument string. Such an argument string has the length
of 2 in this case.

BinLambda 1 Sum (2, [0, 1]) (0, [0]) ⇐⇒

⇐⇒ L1 = λx0.λx1.L
2 x0 x1 | L0 x0 (9)

The permissible argument string for any supercombinator is
obtained as a merge of their children arguments. Therefore it
is really important to perform step 2, as the jump supercom-
binators now have an entire argument string of an expression
they are referring to.

Using MultOp nodes exclusively in a tree yields different
supercombinators as an equivalent tree composed of BinOp
and UnOp nodes. The former results into n-ary operation
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lambda expressions, where one operation is applied over mul-
tiple sub expressions. The latter method usually yields more
supercombinators, but each has at most two sub expressions
applications in its body, i.e. its underlying operation is at most
binary.

D. Merge within Expression Supercombinator Set

The previous step may yield supercombinators that are
equal, only their argument strings may be different. All such
supercominators are merged, so no duplicates are present in-
side each set. This step, as the previous one, can be performed
in parallel over all expression sets.

The equality of supercombinators, formally described in [9],
means, that in order for supercombinators to be equal, they
need to have the same arity and need to contain same
SubLambda elements. In terms of definition in Listing 2
that means equality of all elements excluding the id. All
equal supercombinators need to be merged. Even some su-
percombinators which contain references that initially lead
to different supercombinators might be equal, since the sub-
supercombinators may have been merged in the previous
iteration of the merge step. Example of a merger is presented in
Table II, where we see the initial and merged supercombinator
set of the expression ab | cd.

We start the merge process with the identification of all
equal supercombinators within a set. Then we group them
together. We now have some groups of equal supercombinators
and the rest of the set. Those groups can now be merged,
even in parallel. Well, only their argument strings are merged
into a single set and only one supercombinator comes out
of this process. Its id now needs to be updated in the entire
set, replacing the old, now unused ids. After this update, new
equal supercombinators may be present, so we need to repeat
this process until no new equal supercombinators are found.
The process depicted in Table II had two merge iterations.
Argument sets always consist of strings with the same length,
since the arity of equal supercombinators needs to be the same.
The resulting set of supercombinators is now duplicate free.

E. Removal of Jump Supercombinators and the Merge of All

Sets

At this moment, we possess numerous sets of supercombi-
nators that we need to connect together and then merge them
to a single set. Each temporary jump supercombinator is now
replaced by a top supercombinator of an expression it points
to. It is important to keep the ids in between the sets from
clashing, i.e. each set needs to have different ids. After this
step, another merge is applied that joins all the sets to a single,
duplicate free set.

For a simple grammar (10) we obtain the final supercom-
binator set in lambda calculus form, depicted in table III. If
we consider the nonterminal A to be the starting symbol, then
the top supercombinator is in our case L2.

A → aB | a

B → b | A b
(10)

TABLE III
SUPERCOMBINATOR SET OF GRAMMAR (10).

Supercombinators Arguments

L0 = λx0. x0 { { a } , { b } }

L1 = λx0. λx1. L
0 x0 + L4 x1 x0 { { a b } }

L2 = λx0. λx1. L
1 x0 x1 | L0 x0 { { a b } }

L3 = λx0. λx1. L
2 x0 x1 + L0 x1 { { a b } }

L4 = λx0. λx1. L
0 x0 | L3 x1 x0 { { b a } }

If we use a special form of β-reduction, we obtain the
grammar (10) back. By special form we mean replacing
all top supercombinators in the body of expression by their
nonterminal representation. This is an important step, since it
prevents the infinite loop. Already mentioned L2 supercom-
binator is the top for A and the L4 supercombinator is the
top for B. But should we use in the β-reduction only on the
top supercombinator of an entire grammar, the A, we get a
transformed version of a grammar, as shown bellow in (11).
We can conclude, that we may use the supercombinator form
to transform a form of grammar.

A → L2 a b →∗ a (b | A b ) | a (11)

V. EXPERIMENTAL RESULTS

We have been using only abstract grammar symbols so
far. Those abstract symbols, like a for terminals and A for
nonterminals are useful for the explaining purposes, but they
do not represent anything we can find in the real world directly.
Thus we have performed experiments on the book samples.
As mentioned before, we obtain a supercombinator set that
represents the structure of elements. But we cannot just use our
process over a fixed sequence of words, since that would result
into one big supercombinator (and one L0 supercombinator of
course). We need a grammar first. And for that reason we have
chosen Sequitur algorithm.

Sequitur algorithm, created by Nevill-Manning and Wit-
ten [6], creates context-free grammar from a linear sequence of
discrete symbols. The words of English language in our case.
The resulting grammar generates only the input text, therefore
it’s possible to use our supercombinators for text analysis of
that text, since no other text is possible to generate either from
the Sequitur grammar or our supercombinator set.

We use the Book of Genesis from the King James Bible
and chapters from Leo Tolstoy novel War and Peace1. We have
chosen these books because they are written in different styles
and the former has many unknown authors while the latter was
written by a single well known author, therefore may be less
schematic and fragmented. We use various samples from these
two books, all of which are listed in Table IV. We also list
abbreviations, by which we are going to reference them, and
we list the total word count of each section as well.

1The books were obtained from Project Gutenberg, located at http://www.
gutenberg.org, where they are distributed under GNU Free Documentation
license 1.2.
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TABLE II
EXPRESSIONS ab | cd MERGE OF DUPLICATE SUPERCOMBINATORS.

Supercombinators Arguments Merged Supercombinators

L0 = λx1. x1 { a }

L1 = λx1. x1 { b }

L2 = λx1. x1 { c }

L3 = λx1. x1 { d } L0 = λx1. x1

L4 = λx1 x2. L
0 x1 + L1 x2 { ab }

L5 = λx1 x2. L
2 x1 + L3 x2 { cd } L1 = λx1 x2. L

0 x1 + L0 x2

L6 = λx1 x2 x3 x4. L
4 x1 x2 |L5 x3 x4 { abcd } L2 = λx1 x2 x3 x4. L

1 x1 x2 |L1 x3 x4

TABLE IV
LIST OF BOOKS AND THEIR SECTIONS USED IN THE EXPERIMENTS.

Book Name Used Sections Abbreviation Words

Book of Genesis Sections 1 - 3 Gen3 1429
Book of Genesis Sections 1 - 6 Gen6 3840
Book of Genesis Sections 1 - 12 Gen12 7306
Book of Genesis All Gen 39797

War and Peace Chapter 1 WP1 2015
War and Peace Chapter 2 WP2 1378
War and Peace Chapter 3 WP3 1469
War and Peace Chapter 4 WP4 1417

War and Peace Chapters 1 - 4 WP1-4 6279
War and Peace Chapters 1 - 12 WP12 17755
War and Peace Chapters 1 - 24 WP24 37538

TABLE V
SEQUITUR GRAMMAR SAMPLE OBTAINED FROM THE BOOK OF GENESIS.

Rule Rule body

78 → have dominion over the fish 29 sea 79 96

79 → 56 the

80 → all 61

81 → 56 every

The resulting Sequitur grammar uses only concatenation
operation. Using Sequitur to decompose text of literature, i.e.
text without rigorous structure, inevitably leads to the state,
where the first rule consists of a long sequence of terminals
and nonterminals, while the rest of the rules have rather low
arity. Despite this fact, we still might obtain interesting results
by performing our process, as the portion of lower arity rules
might be represented by a single supercombinator. To imagine
how Sequitur grammar looks, see Tab V, where we show
a sample of the grammar obtained from Gen. We see that
nonterminals are represented by numbers and terminals by
actual words.

What do we expect from our experiments? Since our pro-
cess captures the structure of rules, we expect the processed
Sequitur grammar to have less elements, represented by su-
percombinators, than is the count of the rules. We show in
Table VI the count of Sequitur rules, each column represents
different arity. The last column represent the actual arity of
the first rule, it does not represent the amount of rules. The
Book of Genesis contains more, and larger, repetitive patterns
than War and Peace as we can see in Table VI.

Note, that in Table VI we have 9-ary rule for Gen3 and
Gen6, but no such a rule is present in Gen12. This is not an
error, but a result of the text amount Gen12 contains. The rule
in question here is: have dominion over the fish

29 sea 79 96. It generates the phrase have dominion

over the fish of the sea and over the fowl

of the air. In case of Gen12, the rule for this phrase
is different: have dominion 531 fish 574 86 111.
More sub-phrase rules have been created, since they are reused
elsewhere in Gen12 text. Two 9-ary rules in Gen sample are
unrelated, since they generate different phrases.

A. Difference between Binary and N-ary Trees.

The first experiment is going to show us, whether we
should use binary2 or n-ary trees. As we mentioned in
Section IV-C, n-ary trees might result into a smaller set of
supercombinators. On the other hand, a binary tree always
results in supercombinators with the underlying operation
having arity of maximum two. Without the merge operation
in mind, the decomposition of an n-ary operation with the
use of an n-ary trees would yield one supercombinator with
its underlying operation having arity of n. But with the binary
trees, we would get maximum of n−1 supercombinators with
at most binary operations. The actual arity of those n − 1
supercombinators would gradually drop from maximum of n

to 2 in case that every terminal symbol is different for that
particular operation. We expect larger set of supercombinators
obtained from binary trees than from n-ary based on those
mentioned facts.

The difference between those two approaches is illustrated
in Table VII for unary and Table VIII for n-ary tree approach.
The fields represent the total number of supercombinators
described by their operation arity shown in the second row. As
mentioned earlier, binary trees yield always supercombinators
with at most binary operations. Since only the concatenation
operation was used, no supercombinator with unary operation
was created in both cases. Supercombinator with nullary
operation is the L0 = λx.x. We see, that in all cases it’s
present only once in each set, so our merge works.

The total amount of supercombinators is dramatically dif-
ferent for binary and n-ary strategies. That’s a direct result of
the fact mentioned at the beginning of this section. Although

2Those trees aren’t actually binary, since unary nodes are possible via
UnOp constructor. They are called binary for brevity.
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TABLE VI
THE AMOUNT OF SEQUITUR GRAMMAR RULES DIVIDED BY THEIR ARITY.

Sample 2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 11-ary 1st rule

Gen3 122 18 2 5 - - - 1 - 762
Gen6 339 35 7 5 - - - 1 - 2116
Gen12 660 61 13 5 3 1 - - - 3906
Gen 3363 206 56 22 6 1 2 2 1 19512

WP1 120 6 2 - - - - - - 1678
WP2 68 6 1 1 - - - - - 1173
WP3 73 7 - - - - - - - 1244
WP4 84 7 - - - - - - - 1189
sum 345 26 3 1 - - - - - -

WP1-4 421 23 6 1 - - - - - 4812
WP12 1369 50 6 - - - - - - 12582
WP24 2963 106 14 2 - - - - - 24901

TABLE VII
SUPERCOMBINATOR SETS OBTAINED FROM TWO BINARY TREE APPROACH.

Sample 0-ary 2-ary Total

WP1 1 1682 1683
WP2 1 1173 1174
WP3 1 1246 1247
WP4 1 1191 1192

Sum 4 5292 5296
Merged 1 5272 5273

WP1-4 1 4825 4826

all supercombinators in the binary section have at most binary
operations, the real arity of them can vary. In case of the
WP1 sample, the maximum arity was 728. That is a smaller
number than the actual arity of the first rule of Sequitur
grammar, which is 1678. This is because the supercombinator
form is non-redundant, i.e. the words (the actual arguments of
supercombinators from which the total arity is calculated) do
not repeat themselves.

If we compare the sum of supercombinators obtained from
four different War and Peace chapters and the number of su-
percombinators obtained after the merge (on supercombinator
level) we see no significant difference in the case of Binary
trees (5296 compared to 5273). In the n-ary tree case however,
the difference is an exact half (34 to 17).

In comparison with the processed grammar of four chapters
together, the sample WP1-4, we see the difference in case of
binary trees (5273 for merged against 4826 for WP1-4 sample).
In the other case however, the difference is insignificant (17
compared to 19). In case of other arities in n-ary tree case, the
merged has unified mostly supercombinators with lower arity
operations. The difference between merge and WP1-4 strategy
is rather insignificant.

We can thus conclude, that in the case of Sequitur generated
grammars, the n-ary tree approach seems to yield significantly
smaller set of supercombinators, therefore we are going to use
this approach further on in this paper.

TABLE VIII
SUPERCOMBINATOR SETS OBTAINED FROM n-ARY TREE APPROACH.

Sample 0-ary 2-ary 3-ary 4-ary 5-ary 1st rule Total

WP1 1 4 3 1 - 1 (1678) 10
WP2 1 3 2 1 1 1 (1173) 9
WP3 1 4 2 - - 1 (1244) 8
WP4 1 3 2 - - 1 (1189) 7

Sum 4 14 9 2 1 4 34
Merged 1 5 5 1 1 4 17

WP1-4 1 8 6 2 1 1 (4812) 19

B. Constructing Supercombinator Set from a Sequitur Gram-

mar

Straightening out the issue of what tree forms to use we
can now proceed to the evaluation of larger book parts. The
results are shown in Table IX.

Supercombinators are again divided by their operation arity.
This is an especially useful feature for comparison with the
arity of Sequitur grammars. We can see that for every arity
of the original Sequitur rules (see Table VI) there exists at
least one supercombinator with the same operation arity. This
result was expected, since we have used n-ary trees. And the
actual number of supercombinators is always lower or equal
to the number of rules. We can say, that our process does not
create any unexpected supercombinators that might introduce
different structure into the original text. The arity of the first
rule is the same as the arity of the operation within the top
supercombinator, which is again the result of the n-ary tree
usage.

Another interesting result is the comparison of the difference
between binary rules and their respective supercombinators.
Since the Book of Genesis seems to have more equal parts,
as concluded in Section V, it has more supercombinators with
larger arity operation. This also means that the sets of lower
arities are larger than in the case of War and Peace. We see that
difference in Gen and WP24, where the former has dropped
from 3363 to 126 and the latter from 2963 to 33 for binary
operations. This is due to the fact, that supercombinators with
lower arity operations may contain sub-supercombinators with
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Fig. 4. Total number of Sequitur rules compared with their resulting
supercombinator count.

any other operation arities. We see that Gen has more larger
arity operations than WP24.

Figure 4 represents the total difference between the number
of Sequitur rules and supercombinators obtained from them.
The difference is rather significant. This shows, that our pro-
cess is capable of data reduction. Different grammar rules with
the same structure are merged into a single supercombinator,
and as we can see, this has a significant impact in the case of
Sequitur generated grammars.

VI. DISCUSSION

Presented results show that our approach can prevent the
structural explosion. Although this has already been pointed
out in our previous work, we have performed small exper-
iments on a simple regular grammar examples. This paper
presents larger scale experiments performed on context-free
grammars that support these claims.

We may conclude from the results in Table IX that if
the final supercombinator set contains supercombinators with
higher operation arities, the total number of supercombinators
with the lower ones rises with them as is the case of Gen

sample. We do not observe this for the WP24 sample in such
a scale, since it has less supercombinators with higher arities.

The different tree approaches that we have defined result
into different supercombinator sets. Should we use only binary
like trees, the resulting set of supercombinators in the case of
Sequitur generated grammars would be larger and thus the
promised reduction of size would be impossible. The other,
list oriented approach does not suffer from that drawback and
delivers the promised results.

Another interesting discovery lies with the analysis of the
text itself. Although Sequitur algorithm may be useful for
analysis, for example if we want to find out most occurring
phrase or longest occurring repeating phrase (like the rule
78 one in Table V), our approach takes this notion one step
further. By one step further we mean the analysis of the
abstract structures, that supercombinators are. One of those
is the argument string length of L0 supercombinators, that
presents absolute count of all words occurring in the text. This
number obviously differs from the word count in Table IV,
since we do not store duplicates in our structure.

The comparison of arities signifies the difference between
The Book of Genesis and War and Piece, but that discovery
can be inferred from pure Sequitur results, that we show in
Table VI. But should we want to find out, what structure
is most used, our supercombinator form is probably better
suited for that question. But this is not so visible from the
current results, since we have used Sequitur, and thus produced
only supercombinators with the concatenation operation. Thus
further research with better grammar inference method is
necessary.

VII. RELATED WORK

Our work relates with the field of grammar inference.
As already mentioned in the Introduction, not only formal
inference but the induction of natural languages grammar can
be incorporated with our supercombinator set construction
mechanism. The induction of grammar can be achieved with
the use of various different methods. Onnis, Waterfall and
Edelman use cognitive graphs in their model ADIOS to infer
CFG in [5]. Adriaans and Van Zaanen created the model
EMILE [11], where they use probabilistic methods. Klein and
Manning developed model based on constituency [12] that is
also capable to induce CFG from text. As our background is in
the computer languages field, Stevenson and Cordy presented
concise review of the state of the art in [13], where they present
various methods of grammar inference.

Our supercombinator form might be practically used in tan-
dem with ontology extraction methods as our supercombinator
form of a grammar might be used to identify concepts of
a certain kind. In the work of Carvalho, Almeida, Pereira
and Henriques [14] we see the use of ontologies that help
the concept identification. Other uses of ontologies might be
for information retrieval [15], detection of concept similarity
across different information media [16] or even for the detec-
tion of mental illness from written text [17].

Related methods for concept extractions include rule based
approach, as Szwed used in [18]. There we can see extraction
of concepts from written text. The rules used are based on Petri
nets. Other related method for text analysis is summarization.
Example of this method is presented by Jassem and Pawluczuk
in [19]. Those methods focus on semantic side of a text,
where our supercombinator approach focuses primarily on the
structure. The actual meaning is treated separately, therefore
we can concentrate more clearly on those separate aspects.
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TABLE IX
RESULT COUNT OF SUPERCOMBINATORS DIVIDED BY THEIR OPERATION ARITY.

0 2 3 4 5 6 7 8 9 11 Last Total

Gen3 1 25 7 2 4 - - - 1 - 1 (762) 41
Gen6 1 40 14 5 5 - - - 1 - 1 (2116) 67
Gen12 1 53 25 12 5 3 1 - - - 1 (3906) 101
Gen 1 107 71 43 20 6 1 2 2 1 1 (19512) 255
WP1-4 1 8 6 2 1 - - - - - 1 (4812) 19
WP12 1 15 15 3 - - - - - - 1 (12582) 35
WP24 1 29 20 9 2 - - - - - 1 (24901) 62

VIII. CONCLUSION

We have presented a way to represent any CFG nor-
redundantly in a single set of supercombinators. The process
has been described in detail, where we show it in separate
steps. Many of those steps might be performed in parallel, so
better computation time is achievable.

Applications of our supercombinator structure have been
presented on the samples taken from literature. The Book
of Genesis and War and Piece by Tolstoy were used. Since
our process works only on grammars, we needed to process
those samples first with Sequitur algorithm. This algorithm
constructs CFG from a finite string of symbols, in our case
words. We show , that our representation significantly reduces
the size of entire structure, since it is non-redundant. Further
on, we have discussed the possibilities of a structure analysis,
that is possible to perform on our supercombinator structure.

In our future work, we would like to extract more informa-
tion with the use of better inference mechanism that Sequitur
algorithm brings. In the section VII we show various possible
ways to induce a grammar from text samples so we would like
to actually use them in our experiments to further prove the
abilities of our supercombinator form construction method.
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