
 

 

 

 

 

Abstract—Internet of Things (IoT) networks are being 

continually developed in several domains, however no 

systematic processes for their modeling and simulation exist so 

far. In this paper, an agent-oriented approach to IoT networks 

modeling is proposed by exploiting the ACOSO model. Then, 

agent-modelled IoT networks of different scales are simulated 

through the Omnet++ simulation platform, with the goal of 

analyzing issues and bottlenecks at communication level. 

I. INTRODUCTION 

MART Objects (SOs) constitute a new generation of 

enhanced everyday things (able to perceive the 

surrounding physical environment, elaborate and 

communicate the acquired information, and hence provide 

cyber-physical services) that are globally networked and 

mutually interacting, even without a steady human 

orchestration [1]. SOs are technologically and functionally 

heterogeneous, thus their clustering constitutes “Internet of 
Things” (IoT) networks [2] that look like loose collections of 
heterogeneous devices and sub-networks requiring 

distributed mechanisms of communication and management. 

Whereas defining methods to model, design and simulate 

IoT networks before their final implementation is an open 

challenge, no research efforts have currently been devoted to 

systematically address such issue. 

As IoT networks share many substantial features/issues 

with multi-agent systems (MAS) [3] and SOs may be 

effectively modeled as agents, in this paper an agent-oriented 

approach to model IoT networks is presented. In particular, 

the ACOSO (Agent-based Cooperative Smart Object)-based 

SO model [4] has been exploited to describe, from the agent 

perspective, SO main features, relationships and interactions. 

Moreover, in order to analyze IoT networks at SO 

communication level, the Omnet++ [5] network simulation 

platform has been used to evaluate bottlenecks and issues in 

specifically defined scenarios. The rest of the paper is 

organized as follows: in Section II, the ACOSO-based SO 

model and other concrete examples of the Agent-oriented 

Modeling (AoM) applied to the SO-based IoT context are 
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introduced and compared. In Section III, the designed 

simulation scenarios, the selected metrics, and the obtained 

results are presented and discussed. Finally, conclusions are 

drawn and future work is briefly delineated. 

II. AGENT-ORIENTED MODELING 

Agent-based Computing paradigm has been successfully 

used over the years for the analysis, modeling and 

implementation of complex, cooperative and adaptive 

distributed systems [3]. The agent abstraction, indeed, is 

suitable to model and implement autonomous, intelligent and 

interacting entities, characterized by different behaviors and 

goals. Nevertheless is well-established that the AoM [6], 

differently to other modeling paradigms (e.g. object-

oriented, service-oriented, etc.) is able to fully support 

proactiveness and situatedness, key features in SO-based IoT 

networks, to date few agent-oriented models are available in 

the literature in this context. 

With reference to the agent-oriented SO modeling, [7] and 

[8] present coarse-grained models, characterized by a high 

degree of abstraction and therefore mostly suitable to 

support the SO analysis phase; the ACOSO-based SO model 

[4], instead, specializes the SO ecosystem in a deeper degree 

of detail, thus supporting also the SO design and 

implementation phases. In detail, in [7] the authors envision 

an IoT system architecture where each resource (e.g. 

computer, SO, human user) is represented by an agent and 

interconnected to the rest of the cyber-physical world by 

means of specific adapters. Each agent has a role (and not an 

identifier) that determines its own behaviors, tasks and 

communication paradigms. Both roles and behaviors are 

taken from two repositories which are assumed to be 

managed depending on the application scenario. In [8] the 

SO model comprises five elements: the execution 

environment (to run the actual agent task and manage its 

lifecycle), a repository (which contains both database and 

knowledge base), a set of physical components (such as 

sensors and actuators), the agent interface (to enable the 

intra-agent information exchanges among the 

aforementioned SO-model elements) and the object interface 

(for communication with other SOs and with the system). 
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The ACOSO-based SO model allows the modeling of 

high-level SO main features (basic information of an SO, its 

augmentation devices like sensors and actuators, its services, 

etc.) and it also extensively describes the functional 

components of the system, their relationships and 

interactions. Due to such reasons, the ACOSO-based SO 

model represents one of the cornerstones of ACOSO (Agent-

based Cooperative Smart Object) [9], a middleware 

specifically conceived for the full management and 

development of agent-oriented cooperating SOs. In detail, 

the ACOSO-based SO model abstracts SOs in event-driven 

cooperating agents whose specific objectives are 

encapsulated in their behavior and modeled as Tasks. A Task 

is an event-driven and state-based component that can refer 

to the common operations required for the agent lifecycle 

management (SystemTask) or to specific-purpose operations 

defining the specific behaviors of the SO 

(UserDefinedTask). Indeed, SO services are mapped on 

UserDefinedTask. By means of different tasks the SO 

exploits different subsystems in order to react to external 

stimulus, to fulfill specific goals and to exploit inference 

rules on local/remote knowledge bases. In particular: 

 The DeviceManagementSystem, through multiple 

DeviceAdapters, handles the SO augmentation 

devices that enables SO to interact with the physical 

world generating Device Events. In particular, the 

BMFAdapter [10] and the SPINEAdapter [11-13] 

enable the management of environmental and 

wearable sensor networks. 

 The CommunicationManagementSystem provides 

communication services between agents and external 

entities. Different kinds of interactions (e.g. intra-

agent FIPA-ACL based interactions or inter-entities 

UDP/TCP-based interactions) are enabled by means 

of different CommunicationAdapters. Both events 

generated inside (InternalEvent) or outside 

(ExternalEvent) the SO are handled by the 

CommunicationManagementSystem. 

 The KBManagementSystem exploits local or remote 

knowledge bases to handle information pertaining the 

SO, its current status, its inference rules and other 

useful data that can be shared among the agent tasks. 

 

TABLE I 

AGENT-BASED SO MODELS COMPARISON 

 
 

A. Comparison 

Table I shows a comparison of the three agent-oriented 

SO models introduced in this Section. First of all, it has been 

highlighted that they are suitable in different modeling 

phases. Indeed, [7] and [8] are mostly suitable to approach 

the SO analysis phase while the ACOSO-based model 

support also design and implementation phases. This implies 

that the three models describe the main SO characteristics 

(augmentation, communication, decision-making, service 

provisioning and knowledge) with a different degree of 

detail. In particular: 

 Augmentation Devices: in SO models of [7] and [8] 

sensors and actuators are not explicitly modeled as 

they are considered minor SO components and their 

interactions are not elicited. In the ACOSO-based SO 

model augmentation devices are managed by the 

DeviceManagementSystem and handled by multiple 

DeviceAdapters. 

 Communication: in [7] the SO role determines its 

communication paradigm and structure, while in [8] 

internal/external SO communication interfaces are 

defined. In the ACOSO-based SO model 

communication is managed through the 

CommunicationManagementSystem and a set of 

CommunicationAdapters. 

 Decision-Making: in [7] an SO/agent autonomously 

behaves to achieve certain goals depending on its role 

in the domain (e.g. smart car, smart driver-support or 

smart road within the smart transportation domain), 

while in [8] task execution concerns the Execution 

Environment. Decision-making relies on the agent 

behaviors in ACOSO-based SO model, defined 

through tasks. 

 Service Provisioning: in [7] and [8] the concept of SO 

cyber-physical service is not completely declined and 

is mostly reduced to a simple Web Service. In the 

ACOSO-based SO model services are mapped on 

UserDefinedTasks (enabled by specific events). 

 Knowledge Base: in [7] the SO knowledge is stored in 

repository organized in function of the SO role, while 

in [8] relational databases record SO-related 

information. In the ACOSO-based SO model the 

information is spread between the 

KBManagementSystem and the agent behavior. 
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III. SIMULATION-BASED ANALYSIS 

As highlighted in the previous Section, the ACOSO-based 

SO model, leveraging on both the agent and MAS concepts, 

enables the effective modeling of SO-based IoT networks at 

different development phases. In this Section, the simulation 

of IoT networks allowing the validation of models, protocols 

and algorithms before the actual deployment of the network 

infrastructure, is addressed. Indeed, IoT networks simulation 

is an important but complex task because, depending of 

different scales, the number of the SOs may vary from 

dozens (e.g. home automation or body sensor networks) to 

thousands (e.g. Smart City scenario), with a different degree 

of density and different communication paradigms 

depending on the specific service. In addition, factors 

unrelated to the applications but specifically associated to 

the networking (e.g. traffic congestion, wireless signal 

attenuation and coverage, etc.) influence the SOs interactions 

and the service provision/fruition. Taking into account these 

issues and particularly focusing on communication among 

SOs, the IoT networks previously described through the 

agent-oriented approach are simulated by means of Omnet++ 

[5]. The modeling of an agent through an Omnet++ network 

node is straightforward. In fact, each network node/SO can 

be considered as an autonomous agent whose behaviors and 

tasks, which realize SO decision making and service 

provisioning (see Table I), are implemented at the 

application layer. All the other tasks related to transport-

network-link protocol implementations, wireless connectivity 

issues, physical environment modeling are carried out by 

Omnet++.  

In particular, Omnet++ makes it possible to design nodes 

with different communication boards or interface ports (to 

simulate the connection with external physical devices); in 

the following simulations, due to the intrinsic wireless nature 

of the IoT networks, nodes with 802.11 wireless boards have 

been considered. 

Simulations have inspected IoT networks in the 

Information Exchange phase (IE) by exploiting TCP-based 

reliable and UDP-based unreliable transport protocols. The 

round trip time (RTT) and the packet delivery ratio (PDR) 

have been hence measured considering nodes that exchange 

empty messages and exploiting either a Client/Server (C/S) 

or a Peer-to-Peer (P2P) paradigm. Deterministic (1 pk/s) and 

stochastic Normal (with 0.5 mean and 0.2 variance) data 

generation models (DGM) have been used. In Table II the 

communication settings exploited in the simulations for the 

RTT/PDR measuring are shown. 

TABLE II  

INFORMATION EXCHANGE (IE) SETTINGS 
Parameters DGM (Data Generation Model) 

Patterns P2P (Peer-to-Peer), C/S (Client/Server) 

Protocols R (Reliable), U (Unreliable) 

Both RTT and PDR have been evaluated in the context of 

small-, medium-, large-scale IoT networks with different 

SOs density. In particular, simulations took into account: 

 The number of involved SOs (#SOs), since network 

congestion may increase depending of the SOs 

population. In the following SOs population is 

considered limited to 100 nodes for small-scale 

networks, 500 nodes for medium-scale networks and 

1000 nodes for large-scale networks; 

 SO distribution in a different number of subnetworks 

(#subnetworks). In the following it is assumed that 

small-scale networks are constituted by a single 

network, medium-scale networks comprise two or more 

subnetworks deployed in the same area so that their 

coverages overlap, and finally large-scale networks 

comprise two or more subnetworks deployed in not 

adjacent area; 

 The deployment area in which SOs are located (supposing 

that they have no mobility patterns) since the proximity 

of multiple SOs may cause signal interferences in the 

wireless communications. For sake of simplicity, square 

grid areas with different side dimensions have been 

considered. 

Table III summarizes the scenarios tested during the 

simulation phase. 

TABLE III  

SIMULATION SCENARIOS 

 #SOs # subnetworks Grid side [m] 

Small Scale (S) 5..100 1 5..100 

Medium Scale (M) 20..500 1..10 From 100 

Large Scale (L) 20..1000 1..20 From 100 

 

In the following, for the sake of space, only some results 

of the simulations are shown, and in particular the PDR in 

the case of small-scale networks with #SOs increasing (see 

Fig. 1) and the RTT in the other two scales with 

#subnetworks increasing (see Fig. 2 and 3). 

 
Figure 1: PDR when the #SOs increases in a square grid of side 100 m 

 

Fig. 1, in the case of unreliable protocol shows that (i) 

with increasing of SOs, PDR decrease due to communication 

fails caused by interferences; (ii) with the same DGM, C/S 

and P2P patterns are equivalent; (iii) with a small number of 

SOs (less than 70) non-deterministic data generation models 
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outperform the deterministic ones, while with the increase of 

SOs the trend inverts. In the case of reliable protocol, as 

might be expected, the PDR keeps the maximum value 

regardless of the DGM, patterns, and #SOs. 

 
Fig. 2: RTT of 500 SOs equally distributed into 5 and 10 subnetworks 

 

Fig. 2 shows that the RTT decreases if the same number of 

SOs (500) is deployed on the same area but distributed on 

more subnetworks (5 and 10 square grids of side 100 m), 

since the traffic is well-balanced. As might be expected, the 

unreliable protocols outperform the reliable ones. 

Fig. 3 shows that in the large-scale scenario (5, 10 and 20 

subnetworks deployed in a squared area of side 100m with 

50 SOs each) the absence of interferences among the 

subnetworks generates RTT values quite stable and lower 

than the correspondent ones in the medium-scale scenario. 

 
Fig. 3: RTT of 5,10 and 20 subnetworks of 50 SOs each 

IV. CONCLUSION 

In this paper the agent-oriented modeling of SO systems 

through the ACOSO-based SO model has been presented, by 

considering that (i) SOs and software agents share multiple 

features, and (ii) agent-based modeling flexibly assists the 

conceptualizing of dynamic and autonomous distributed 

systems in different contexts. Beside the agent-oriented SO 

modeling, IoT networks of different scales have been 

simulated through the Omnet++ simulator, with a particular 

attention to the SO communication in order to evaluate 

performances (focusing on bottlenecks, issues and networks 

dynamics) and validate network design choices. Simulation 

results highlight that multiple factors influence the network 

performance (as the SO number, their more or less dense 

distribution and the selected communication settings) and 

thus their combination should be made by following an 

application-driven approach. 

Further research efforts will be devoted to (i) provide a 

full mapping between ACOSO-based SO model and 

Omnet++ simulation, in order to translate on such simulator 

the behavioral/application side of the SO systems, including 

also the simulation of the device layer; (ii) develop a full-

fledged methodology for the analysis, design, simulation, 

implementation and validation of SO-based IoT systems 

[14, 15]. 
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