

Abstract—Internet of Things (IoT) networks are being

continually developed in several domains, however no

systematic processes for their modeling and simulation exist so

far. In this paper, an agent-oriented approach to IoT networks

modeling is proposed by exploiting the ACOSO model. Then,

agent-modelled IoT networks of different scales are simulated

through the Omnet++ simulation platform, with the goal of

analyzing issues and bottlenecks at communication level.

I. INTRODUCTION

MART Objects (SOs) constitute a new generation of

enhanced everyday things (able to perceive the

surrounding physical environment, elaborate and

communicate the acquired information, and hence provide

cyber-physical services) that are globally networked and

mutually interacting, even without a steady human

orchestration [1]. SOs are technologically and functionally

heterogeneous, thus their clustering constitutes “Internet of
Things” (IoT) networks [2] that look like loose collections of
heterogeneous devices and sub-networks requiring

distributed mechanisms of communication and management.

Whereas defining methods to model, design and simulate

IoT networks before their final implementation is an open

challenge, no research efforts have currently been devoted to

systematically address such issue.

As IoT networks share many substantial features/issues

with multi-agent systems (MAS) [3] and SOs may be

effectively modeled as agents, in this paper an agent-oriented

approach to model IoT networks is presented. In particular,

the ACOSO (Agent-based Cooperative Smart Object)-based

SO model [4] has been exploited to describe, from the agent

perspective, SO main features, relationships and interactions.

Moreover, in order to analyze IoT networks at SO

communication level, the Omnet++ [5] network simulation

platform has been used to evaluate bottlenecks and issues in

specifically defined scenarios. The rest of the paper is

organized as follows: in Section II, the ACOSO-based SO

model and other concrete examples of the Agent-oriented

Modeling (AoM) applied to the SO-based IoT context are

 This work has been partially carried out under the framework of

INTER-IoT, Research and Innovation action - Horizon 2020 European

Project, Grant Agreement #687283, financed by the European Union.

introduced and compared. In Section III, the designed

simulation scenarios, the selected metrics, and the obtained

results are presented and discussed. Finally, conclusions are

drawn and future work is briefly delineated.

II. AGENT-ORIENTED MODELING

Agent-based Computing paradigm has been successfully

used over the years for the analysis, modeling and

implementation of complex, cooperative and adaptive

distributed systems [3]. The agent abstraction, indeed, is

suitable to model and implement autonomous, intelligent and

interacting entities, characterized by different behaviors and

goals. Nevertheless is well-established that the AoM [6],

differently to other modeling paradigms (e.g. object-

oriented, service-oriented, etc.) is able to fully support

proactiveness and situatedness, key features in SO-based IoT

networks, to date few agent-oriented models are available in

the literature in this context.

With reference to the agent-oriented SO modeling, [7] and

[8] present coarse-grained models, characterized by a high

degree of abstraction and therefore mostly suitable to

support the SO analysis phase; the ACOSO-based SO model

[4], instead, specializes the SO ecosystem in a deeper degree

of detail, thus supporting also the SO design and

implementation phases. In detail, in [7] the authors envision

an IoT system architecture where each resource (e.g.

computer, SO, human user) is represented by an agent and

interconnected to the rest of the cyber-physical world by

means of specific adapters. Each agent has a role (and not an

identifier) that determines its own behaviors, tasks and

communication paradigms. Both roles and behaviors are

taken from two repositories which are assumed to be

managed depending on the application scenario. In [8] the

SO model comprises five elements: the execution

environment (to run the actual agent task and manage its

lifecycle), a repository (which contains both database and

knowledge base), a set of physical components (such as

sensors and actuators), the agent interface (to enable the

intra-agent information exchanges among the

aforementioned SO-model elements) and the object interface

(for communication with other SOs and with the system).

S

Agent-oriented Modeling and Simulation of IoT Networks

Giancarlo Fortino
DIMES - University of Calabria

Via P. Bucci, cubo 41C, 87036

Rende (CS), Italy

g.fortino@unical.it

Wilma Russo
DIMES - University of Calabria

Via P. Bucci, cubo 41C, 87036

Rende (CS), Italy

w.russo@unical.it

Claudio Savaglio
DIMES - University of Calabria

Via P. Bucci, cubo 41C, 87036

Rende (CS), Italy

csavaglio@dimes.unical.it.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1449–1452

DOI: 10.15439/2016F359

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1449

The ACOSO-based SO model allows the modeling of

high-level SO main features (basic information of an SO, its

augmentation devices like sensors and actuators, its services,

etc.) and it also extensively describes the functional

components of the system, their relationships and

interactions. Due to such reasons, the ACOSO-based SO

model represents one of the cornerstones of ACOSO (Agent-

based Cooperative Smart Object) [9], a middleware

specifically conceived for the full management and

development of agent-oriented cooperating SOs. In detail,

the ACOSO-based SO model abstracts SOs in event-driven

cooperating agents whose specific objectives are

encapsulated in their behavior and modeled as Tasks. A Task

is an event-driven and state-based component that can refer

to the common operations required for the agent lifecycle

management (SystemTask) or to specific-purpose operations

defining the specific behaviors of the SO

(UserDefinedTask). Indeed, SO services are mapped on

UserDefinedTask. By means of different tasks the SO

exploits different subsystems in order to react to external

stimulus, to fulfill specific goals and to exploit inference

rules on local/remote knowledge bases. In particular:

 The DeviceManagementSystem, through multiple

DeviceAdapters, handles the SO augmentation

devices that enables SO to interact with the physical

world generating Device Events. In particular, the

BMFAdapter [10] and the SPINEAdapter [11-13]

enable the management of environmental and

wearable sensor networks.

 The CommunicationManagementSystem provides

communication services between agents and external

entities. Different kinds of interactions (e.g. intra-

agent FIPA-ACL based interactions or inter-entities

UDP/TCP-based interactions) are enabled by means

of different CommunicationAdapters. Both events

generated inside (InternalEvent) or outside

(ExternalEvent) the SO are handled by the

CommunicationManagementSystem.

 The KBManagementSystem exploits local or remote

knowledge bases to handle information pertaining the

SO, its current status, its inference rules and other

useful data that can be shared among the agent tasks.

TABLE I

AGENT-BASED SO MODELS COMPARISON

A. Comparison

Table I shows a comparison of the three agent-oriented

SO models introduced in this Section. First of all, it has been

highlighted that they are suitable in different modeling

phases. Indeed, [7] and [8] are mostly suitable to approach

the SO analysis phase while the ACOSO-based model

support also design and implementation phases. This implies

that the three models describe the main SO characteristics

(augmentation, communication, decision-making, service

provisioning and knowledge) with a different degree of

detail. In particular:

 Augmentation Devices: in SO models of [7] and [8]

sensors and actuators are not explicitly modeled as

they are considered minor SO components and their

interactions are not elicited. In the ACOSO-based SO

model augmentation devices are managed by the

DeviceManagementSystem and handled by multiple

DeviceAdapters.

 Communication: in [7] the SO role determines its

communication paradigm and structure, while in [8]

internal/external SO communication interfaces are

defined. In the ACOSO-based SO model

communication is managed through the

CommunicationManagementSystem and a set of

CommunicationAdapters.

 Decision-Making: in [7] an SO/agent autonomously

behaves to achieve certain goals depending on its role

in the domain (e.g. smart car, smart driver-support or

smart road within the smart transportation domain),

while in [8] task execution concerns the Execution

Environment. Decision-making relies on the agent

behaviors in ACOSO-based SO model, defined

through tasks.

 Service Provisioning: in [7] and [8] the concept of SO

cyber-physical service is not completely declined and

is mostly reduced to a simple Web Service. In the

ACOSO-based SO model services are mapped on

UserDefinedTasks (enabled by specific events).

 Knowledge Base: in [7] the SO knowledge is stored in

repository organized in function of the SO role, while

in [8] relational databases record SO-related

information. In the ACOSO-based SO model the

information is spread between the

KBManagementSystem and the agent behavior.

1450 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

III. SIMULATION-BASED ANALYSIS

As highlighted in the previous Section, the ACOSO-based

SO model, leveraging on both the agent and MAS concepts,

enables the effective modeling of SO-based IoT networks at

different development phases. In this Section, the simulation

of IoT networks allowing the validation of models, protocols

and algorithms before the actual deployment of the network

infrastructure, is addressed. Indeed, IoT networks simulation

is an important but complex task because, depending of

different scales, the number of the SOs may vary from

dozens (e.g. home automation or body sensor networks) to

thousands (e.g. Smart City scenario), with a different degree

of density and different communication paradigms

depending on the specific service. In addition, factors

unrelated to the applications but specifically associated to

the networking (e.g. traffic congestion, wireless signal

attenuation and coverage, etc.) influence the SOs interactions

and the service provision/fruition. Taking into account these

issues and particularly focusing on communication among

SOs, the IoT networks previously described through the

agent-oriented approach are simulated by means of Omnet++

[5]. The modeling of an agent through an Omnet++ network

node is straightforward. In fact, each network node/SO can

be considered as an autonomous agent whose behaviors and

tasks, which realize SO decision making and service

provisioning (see Table I), are implemented at the

application layer. All the other tasks related to transport-

network-link protocol implementations, wireless connectivity

issues, physical environment modeling are carried out by

Omnet++.

In particular, Omnet++ makes it possible to design nodes

with different communication boards or interface ports (to

simulate the connection with external physical devices); in

the following simulations, due to the intrinsic wireless nature

of the IoT networks, nodes with 802.11 wireless boards have

been considered.

Simulations have inspected IoT networks in the

Information Exchange phase (IE) by exploiting TCP-based

reliable and UDP-based unreliable transport protocols. The

round trip time (RTT) and the packet delivery ratio (PDR)

have been hence measured considering nodes that exchange

empty messages and exploiting either a Client/Server (C/S)

or a Peer-to-Peer (P2P) paradigm. Deterministic (1 pk/s) and

stochastic Normal (with 0.5 mean and 0.2 variance) data

generation models (DGM) have been used. In Table II the

communication settings exploited in the simulations for the

RTT/PDR measuring are shown.

TABLE II

INFORMATION EXCHANGE (IE) SETTINGS
Parameters DGM (Data Generation Model)

Patterns P2P (Peer-to-Peer), C/S (Client/Server)

Protocols R (Reliable), U (Unreliable)

Both RTT and PDR have been evaluated in the context of

small-, medium-, large-scale IoT networks with different

SOs density. In particular, simulations took into account:

 The number of involved SOs (#SOs), since network

congestion may increase depending of the SOs

population. In the following SOs population is

considered limited to 100 nodes for small-scale

networks, 500 nodes for medium-scale networks and

1000 nodes for large-scale networks;

 SO distribution in a different number of subnetworks

(#subnetworks). In the following it is assumed that

small-scale networks are constituted by a single

network, medium-scale networks comprise two or more

subnetworks deployed in the same area so that their

coverages overlap, and finally large-scale networks

comprise two or more subnetworks deployed in not

adjacent area;

 The deployment area in which SOs are located (supposing

that they have no mobility patterns) since the proximity

of multiple SOs may cause signal interferences in the

wireless communications. For sake of simplicity, square

grid areas with different side dimensions have been

considered.

Table III summarizes the scenarios tested during the

simulation phase.

TABLE III

SIMULATION SCENARIOS

 #SOs # subnetworks Grid side [m]

Small Scale (S) 5..100 1 5..100

Medium Scale (M) 20..500 1..10 From 100

Large Scale (L) 20..1000 1..20 From 100

In the following, for the sake of space, only some results

of the simulations are shown, and in particular the PDR in

the case of small-scale networks with #SOs increasing (see

Fig. 1) and the RTT in the other two scales with

#subnetworks increasing (see Fig. 2 and 3).

Figure 1: PDR when the #SOs increases in a square grid of side 100 m

Fig. 1, in the case of unreliable protocol shows that (i)

with increasing of SOs, PDR decrease due to communication

fails caused by interferences; (ii) with the same DGM, C/S

and P2P patterns are equivalent; (iii) with a small number of

SOs (less than 70) non-deterministic data generation models

GIANCARLO FORTINO ET AL: AGENT-ORIENTED MODELING AND SIMULATION OF IOT NETWORKS 1451

outperform the deterministic ones, while with the increase of

SOs the trend inverts. In the case of reliable protocol, as

might be expected, the PDR keeps the maximum value

regardless of the DGM, patterns, and #SOs.

Fig. 2: RTT of 500 SOs equally distributed into 5 and 10 subnetworks

Fig. 2 shows that the RTT decreases if the same number of

SOs (500) is deployed on the same area but distributed on

more subnetworks (5 and 10 square grids of side 100 m),

since the traffic is well-balanced. As might be expected, the

unreliable protocols outperform the reliable ones.

Fig. 3 shows that in the large-scale scenario (5, 10 and 20

subnetworks deployed in a squared area of side 100m with

50 SOs each) the absence of interferences among the

subnetworks generates RTT values quite stable and lower

than the correspondent ones in the medium-scale scenario.

Fig. 3: RTT of 5,10 and 20 subnetworks of 50 SOs each

IV. CONCLUSION

In this paper the agent-oriented modeling of SO systems

through the ACOSO-based SO model has been presented, by

considering that (i) SOs and software agents share multiple

features, and (ii) agent-based modeling flexibly assists the

conceptualizing of dynamic and autonomous distributed

systems in different contexts. Beside the agent-oriented SO

modeling, IoT networks of different scales have been

simulated through the Omnet++ simulator, with a particular

attention to the SO communication in order to evaluate

performances (focusing on bottlenecks, issues and networks

dynamics) and validate network design choices. Simulation

results highlight that multiple factors influence the network

performance (as the SO number, their more or less dense

distribution and the selected communication settings) and

thus their combination should be made by following an

application-driven approach.

Further research efforts will be devoted to (i) provide a

full mapping between ACOSO-based SO model and

Omnet++ simulation, in order to translate on such simulator

the behavioral/application side of the SO systems, including

also the simulation of the device layer; (ii) develop a full-

fledged methodology for the analysis, design, simulation,

implementation and validation of SO-based IoT systems

[14, 15].

REFERENCES

[1] G. Kortuem. et al. “Smart objects as building blocks for the internet of

things,” Internet Computing, IEEE, vol. 14, no. 1, 2010, pp. 44-51.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A

survey,” Computer networks, vol. 54, no. 15, 2010, pp.2787-2805.

[3] W. Van der Hoek, and M. Wooldridge, “Multi-agent systems,”

Handbook of Knowledge Representation, 2008, pp. 887-928.

[4] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Towards a

Development Methodology for Smart Object-Oriented IoT Systems: A

Metamodel Approach,” in Systems, Man, and Cybernetics (SMC),

2015 IEEE International Conference on, 2015, pp. 1297-1302.

[5] A. Varga, OMNeT++. Modeling and Tools for Network Simulation,

Springer Berlin Heidelberg, 2010, pp. 35-59.

[6] C. Macal, and M. J. North, “Tutorial on agent-based modeling and

simulation,” in Proceedings of the 37th conference on Winter

simulation, 2005, pp. 2-15.

[7] A. Katasonov, et al. “Smart Semantic Middleware for the Internet of
Things,” ICINCO-ICSO, vol. 8, 2008, pp. 169-178.

[8] T. Leppänen, J. Riekki, M. Liu, E. Harjula, T. Ojala, “Mobile agents

based smart objects for the internet of things,” Internet of Things

Based on Smart Objects, Springer Int. Publishing, 2014, pp. 29-48.

[9] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, and W. Russo, “An
agent-based middleware for cooperating smart objects,” Highlights on

Practical Applications of Agents and Multi-Agent Systems, Springer

Berlin Heidelberg, 2013, pp. 387-398.

[10] G. Fortino, A. Guerrieri, G. M. P. O'Hare, and A. G. Ruzzelli, “A
flexible building management framework based on wireless sensor

and actuator networks,” Journal of Network and Computer

Applications, vol. 35, no. 6, 2012, pp. 1934-1952.

[11] G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio,

“SPINE2: developing BSN applications on heterogeneous sensor
nodes,” IEEE International Symposium on Industrial Embedded

Systems, 2009, pp. 128-131.

[12] F. Bellifemine, G. Fortino, A. Guerrieri, and R. Giannantonio,

“Platform-independent development of collaborative Wireless Body

Sensor Network applications: SPINE2,” Systems, Man and

Cybernetics (SMC 2009), IEEE International Conference on, 2009,

pp. 3144-3150.

[13] G. Fortino, S. Galzarano, R. Gravina, and W. Li, “A framework for
collaborative computing and multi-sensor data fusion in body sensor

networks,” Information Fusion, vol. 22, 2015, pp. 50-70.

[14] G. Fortino, A. Garro, and W. Russo, “Achieving Mobile Agent
Systems interoperability through software layering,” Information &

Software Technology, vol. 50, no. 4, 2008, pp. 322-341.

[15] G. Fortino, A. Garro, and W. Russo, “An integrated approach for the
development and validation of multi-agent systems,” International

Journal of Computer Systems Science & Engineering, vol. 20, no. 4,

2005, pp. 259-271.

1452 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

