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Abstract—In this paper the problem of segmentation of vol-
umetric medical images is considered. The fast and effective
segmentation is obtained by applying the proposed approach
which combines the idea of supervoxels and the Fuzzy C-
Means algorithm. In particular, Fuzzy C-Means is used to
cluster supervoxels produced by the fast 3D region growing.
Additional acceleration of the method is achieved with the
support of graphical processor (GPU). The detailed description
of the proposed approach is given. The results of applying the
method to volumetric CT and MRI brain images and CT images
of various phantoms are presented, analysed and discussed. The
issues related to accuracy of the method, memory workload and
the running time are also considered.

I. INTRODUCTION

O
NE of the main challenges of recent medical image

processing is the development of 3D image segmentation

algorithms. These algorithms should be fast, efficient and

accurate. Additionally, they should be easy to use and thus

diminish the amount of user interaction required to extract the

region of interest.

Although the problem of 3D image segmentation have

been widely considered and numerous dedicated segmentation

approaches have been proposed (e.g. [1], [2], [3]), it is still

far from the satisfactory solution. This is caused mainly by

the constant increase of the resolution of volumetric images

acquired by computed tomography (CT) and magnetic res-

onance imaging (MRI) scanners. This manifests itself both,

by the increase of the spatial resolution of single slices as

well as the number of slices included into a scan. This in

turn translates into the significant increase of the time and

the memory workload required to perform segmentation of

volumetric medical data.

Because of these reasons the existing approaches to image

segmentation often cannot be directly used in everyday clinical

routine. Therefore, recently a lot of effort have been put into

the optimization and adaptation of popular segmentation ap-

proaches to fast and efficient processing of high resolution 3D

medical images. This problem is also considered in this paper

where Fuzzy C-Means (FCM) algorithm [4], [5] is adapted

to segmentation of three dimensional images of brain. This

is obtained by processing so called supervoxels (i.e. blocks

of connected voxels of similar intensity) instead of single

voxels. In particular, the input image is firstly divided into

a number of supervoxels which are next clustered using FCM

approach. This kind of processing significantly reduces the

memory workload required to perform image segmentation.

It should be also mentioned, that supervoxels used in

this paper extend the idea of superpixels, which has been

known for few last years. However, the existing approaches

to image division into blocks of pixels of similar intensity

(e.g. watersheds [6], mean-shift [7], SLIC superpixels [8],

Turbopixels [9] or FH superpixels [10]) are mainly dedicated

to 2D images and their extension into the third dimension

is not explicit or significantly increases time and memory

workload and thus reduces benefit obtained due to processing

blocks of pixels instead of single pixels. The method incorpo-

rated in this paper for creation of supervoxels is simple and

straightforward. It is based on the fast and efficient region

growing and thus can be directly adapted to three dimensional

images [11].

Additionally, the graphical processor (GPU) support is also

proposed to diminish the running time of both image division

into supervoxels and FCM segmentation. What is more, the

proposed approach reduces a user interaction to minimum,

since only indication of one point is required to select the

region of interest.

The following part of this paper is organised as follows.

Firstly, in Section II the proposed approach is described in

details. This is followed in Section III by the presentation

and discussion of the results provided by the introduced

method. These include both: the test performed on the CT

and MRI brain scans, as well as the tests performed on various

phantoms. Finally, Section IV concludes the paper.
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II. THE PROPOSED APPROACH

A. Building supervoxels in the image space

The main idea behind the introduced approach is to use

Fuzzy C-Means algorithm to cluster supervoxels produced by

the fast region growing [11], [12]. The supervoxels divide an

image into blocks of similar intensity. Each of the supervoxels

is built starting from a randomly selected seed voxel still not

assigned to any region. The growing is performed with regard

to the allowable difference in pixel intensities ∆IIMAX and

the maximum size VMAX limiting the supervoxel size.

Fig. 1. Algorithm creating the label image L of three dimensional regions
from the input intensity image I, L(p) - the label assigned to the voxel p ∈

[0,S), lb - the currently used label number.

The algorithm of image division into supervoxels shown in

Figure 1 initially shuffles the voxel linear indices p of the input

image I in the range [0, S), where S is the number of voxels in

the image. It speeds up the selection of unlabelled seeds. The

indices randomly swapped in pairs can later be sequentially

searched providing random selection of region seeds at the

pixels which remain unlabelled. The procedure of growing

image region around the seed p is shown in the Algorithm 1.

It uses the queue QS of the next seed pixels and the queue

of seed candidates QC . The queue QS is initially loaded with

the primary seed pixel p, selected as shown in Figure 1.

For each pixel from QS the queue QC is created from

its nearest 6 neighbours, assuming that their intensities fit

in the range I(p) ∓ ∆I . Labelling the QC voxels increases

the cumulated region volume VR, explicitly limited to the

value VMAX . Exceeding volume limit VMAX and empty voxel

queue QS stops the region labelling process. Supervoxels are

assigned label numbers as consecutive non negative integers.

The supervoxel intensities are computed after the labelling

process as the means of all original voxel intensities in the

region.

Algorithm 1 The algorithm of limited region growing around

the randomly selected non-labelled image pixel p

Input: I, lb, VMAX , ∆IMAX

Output: L

1: QS ← p, QC ← ∅
2: VR ← 0
3: while QS 6= ∅ do

4: p← QS

5: foreach q ∈ NB(p) do

6: if ∆I < ∆IMAX then

7: L(q)← lb
8: QC ← q
9: VR = VR + 1

10: end if

11: if VR ≥ VMAX then

12: return

13: end if

14: end foreach

15: QS ← QC

16: end while

The results of image division into supervoxels are shown in

Figure 2, where different colours represent different supervox-

els. In particular, Figure 2a presents a sample CT brain slice,

while the remaining subfigures show the corresponding slice

after CT volume division into supervoxels of the increasing

size VMAX . All the results were obtained for the constant

allowable difference in voxels intensity ∆IMAX equal to 20.

Due to the limited number of colours, they repeat for different

supervoxels.

B. Fuzzy C-means specific solution

The segmentation of CT or MRI images with Fuzzy C-

means (FCM) method [4] allows to assign any voxel with the

intensity vi, i ∈ [1, NV )] to a certain post-segmentation class

(region) with the membership degree uij , j ∈ [1, NC)]. The

final deterministic assignment selects the class of the highest

membership degree (probability) for each voxel vi. FCM

segmentation can be understood as an optimisation method

minimizing the objective function Gm given in Equation (1).

Gm =

NV
∑

i=1

NC
∑

j=1

um
ij‖vi − cj‖

2, (1)

where m > 1, NV is the image vector size, NC is the given

number of clusters (regions) of different intensities, uij is

the membership degree of the voxel vi to the region j, cj
denotes the intensity of j-th cluster centre and ‖·‖ represents

the distance between the voxel vi and the cluster centre cj .
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a) b)

c) d)

Fig. 2. The result of image division into supervoxels shown on a sample CT
brain slice; a) original slice; b) ∆IMAX = 20, VMAX = 5000; c) ∆IMAX

= 20, VMAX = 10000; d) ∆IMAX = 20, VMAX = 100000.

The execution of the FCM algorithm relays on the in-

teractive correction of the class centres cj based on the

memberships uij . Next iteration class centres imply further

modifications of uij until stopping uij changes or achieving

the limit of iterations. Assuming the array of class centres

C = [cj ], U = [uij ] - the array of membership degrees and

m = 2 the following computations are applied iteratively:

c
(k)
j =

NV
∑

i=1

u2
ijvi

NV
∑

i=1

u2
ij

, (2)

u
(k)
ij =

(

NC
∑

k=1

‖vi − cj‖
2

‖vi − ck‖2

)−1

, (3)

The iteration stops when ‖U (k)−U (k−1)‖∞ < eMAX . The

number of intensity classes NC must be defined a priori.

In the case of 3D CT or MRI images including tens of

millions of voxels the FCM clustering process may be unac-

ceptable slow. Therefore the authors proposed its acceleration

in two ways:

• by using smaller number of supervoxels,

• by applying parallel computations with GPU.

The pseudocede of FCM algorithm with CUDA GPU com-

puting [13], [14] is presented in Algorithm 2. The command

par foreach built inside means a for loop executed in parallel

by GPU processors. Capital letter symbols in the code refer

to host data buffers, bold font of capital letters denotes arrays

Algorithm 2 FCM segmentation algorithm using GPU parallel

computing. NV –the number of supervoxels, NB –the number

of GPU memory blocks, Nt –the number of GPU threads

per block, NC –the number of classes, b –the current block

number, t –the thread number in a block, sync() –the thread

synchronization.

Input: V [NV ], NC , eMAX , kMAX

Output: C[NC ], U [NV ×NC ]
1: V← V
2: U_← random([NV ×NC ])
3: U[NV ×NC ]← {0}
4: allocP[NB ×NC ], Q[NB ×NC ]
5: allocC[NC ]
6: k ← 0

7: repeat

8: swap_addresses(U,U_)
⊲ kernel function #1

9: par foreach i ∈ [0, NV ) do

10: alloc S[Nt ×NC ]
11: ∀j ∈ [0, NC), S(t, j)← U(i, j)2 ·V(i)
12: sync()
13: ∀j ∈ [0, NC), P(b, j)← reduction(S(t, j))
14: ∀j ∈ [0, NC), S(t, j)← U(i, j)2

15: sync()
16: ∀j ∈ [0, NC), Q(b, j)← reduction(S(t, j))
17: end foreach

⊲ kernel function #2

18: par foreach j ∈ [0, NC) do

19: C(j)←
∑

b∈[0,NB)

(P(b, j))/
∑

b∈[0,NB)

(Q(b, j))

20: end foreach

⊲ kernel function #3

21: par foreach i ∈ [0, NV ) do

22: v ← V(i)
23: foreach j ∈ [0, NC) do

24: w ← ‖v −C(j)‖2

25: s← 0
26: ∀k ∈ [0, NC) s← s+ ‖v −C(k)‖−2

27: U(i, j)← 1/(w · s)
28: end foreach

29: end foreach

⊲ kernel function #4

30: e← ‖U−U_‖
∞

31: k ← k + 1
32: until (e < eMAX) ∨ (k ≥ kMAX)
33: C ← C

34: U ← U
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allocated in the GPU memory, double stroked font symbols

represent GPU shared memory arrays.

The algorithm input data are: the supervoxel vector image

V [NV ], the assumed number of intensity classes NC , the norm

eMAX of maximum acceptable error and kMAX – the maxi-

mum number of iterations for Equation (2) and Equation (3).

The output data consists of the host vector C[NC ] of output

class centres and the host array of each supervoxel membership

degree U [NV × NC ]. The U array is at first allocated in

the graphic card memory and randomly initialized in the

probability range of [0, 1]. The GPU memory also includes

local temporal arrays P and Q to store component parts of

the numerator and denominator in Equation (2) corresponding

to NB blocks, each of the size Nt = 256 GPU threads.

The kernel function #1 for each thread computes the mono-

mials in the numerator of Equation (2) and copies them to the

GPU shared memory S to later evaluate partial sums P and

Q by the process of reduction.

The kernel function #2 adds the partial sums and computes

for each thread the values cj given in Equation (2).

The kernel function #3 completely fulfils the formula in

Equation (3), because it sums the relatively small number NC

of intensity classes.

The segmentation error e in a current computing cycle

is evaluated as the maximum distance norm of supervoxel

membership degrees in two successive iterations. The error

value is copied to the host memory to make the decision of

stopping iterations.

The array of membership degrees is allocated in the GPU

memory in two copies U and U_, which addresses are

swapped instead of copying data between U and U_ in every

iteration cycle (Algorithm 2, line 8).

The FCM output array U includes NC column images of the

degrees of membership to a particular class. The class of the

highest membership in each row of U is assigned to the output

vector of intensity supervoxel classes as in Equation (4).

V (i) = max
j

(U(i, j)), i ∈ [0, NV ), j ∈ [0, NC). (4)

This output vector image V [NV ] is then reshaped to the

original matrix form I[Y ×X × Z] after its reverse mapping

from supervoxels to voxels. In the image I of NC intensity

classes (labels) only a single region is identified, which be-

longs to a certain class determined by the voxel marker that

was selected interactively. The identification can be fulfilled

by the flood fill spatial expansion covering the whole region

around the marked voxel.

The complete algorithm sequence of brain image segmen-

tation starts with GPU averaging lowpass filter to reduce

data noise coming from the CT or MRI acquisition systems.

The noise is gained in particular when setting low doses of

radiation during brain examinations in children. The filter

fulfils the formula given in Equation (5).

J(x, y, z) =

1

UVW

U

2
∑

u=−
U

2

V

2
∑

v=−
V

2

W

2
∑

w=−
W

2

I(x+ u, y + v, z + w), (5)

where [V ×U ×W ] – the cube of image data averaging with

the odd numbers U, V,W . The segmentation is finalized with

the operation of morphological opening (Equation (6)).

JB = (IB ⊖ S(RX , RY , RZ))⊕ S(RX , RY , RZ), (6)

where S(RX , RY , RZ) denotes an ellipsoidal structuring el-

ement with the radii RX , RY , RZ in the particular space

directions, IB and JB are the input and output binary im-

ages of a selected region in the original brain image. The

ellipsoidal structuring element S represents an ellipsoid mask

mapped into the discrete space of image voxels with the radii

RX , RY , RZ respectively in X,Y, Z space directions. Using

the ellipsoid instead of the ball shape enables mapping differ-

ent image resolutions in space directions into the voxel space

(in particular, the spacing between slices). Post processing

morphological operations allow controlled smoothing of the

borders in the extracted brain region.

III. RESULTS

A. Tests on brain images

The results of applying the proposed segmentation approach

to sample volumetric CT and MRI brain images are shown in

Figures 3 and 4 respectively. In both figures the top panel

shows the original brain slices with the region of interest

indicated by the green square marker. In the middle panel the

corresponding segmentation results overlaid on the input slice

are presented. Finally, the segmentation results are visualised

in 3D in the bottom panel. In both figures, cases are numbered

from the left to the right. In the case of CT images the image

division into supervoxels was performed for the maximal

volume of supervoxel equal VMAX = 7500 and maximal

intensity difference ∆IMAX = 40. For FCM segmentation the

number of classes was set to NC = 6, while maximal number

of iterations kMAX was set to 400 (with eMAX = 0.001).

In the case of MRI images image division into supervoxels

was performed for VMAX = 5000 and ∆IMAX = 40. The

number of classes NC ranged from 8 (for case 1) to 6 (for

the remaining cases). As previously, the maximal number of

iterations kMAX was set to 400 (with eMAX = 0.001). In

both cases the parameters were tuned manually, to obtain the

subjectively best results. Prior to segmentation all images were

subjected to preprocessing (Gaussian filtration).

The time and memory workload required to perform im-

age segmentation in the considered CT and MRI datasets

is summarised in Table I and Table II respectively. In both

tables the first column indicates the case ID. This is followed

by image resolution given in the second column. The third
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Fig. 3. The results of applying the proposed approach to sample CT brain images; top row - original images with a region of interest indicated by green
square marker; middle row - the results overlaid on a sample slices; bottom row - the results shown in 3D. Cases are numbered from left to right.

column shows the level of data reduction r due to image

division into supervoxels. In particular, it means that the

number of supervoxels was r% lower than the number of

voxels. The fourth column shows the GPU memory workload

given in MB, while columns five, six and seven present time

T0 of preprocessing (filtration), time T1 of image division into

supervoxels and time T2 of FCM execution respectively. All

times are given in miliseconds. The tests were performed on a

computer with Intel Core i7 3.6 GHz processor, 32 GB RAM

memory and graphical card Nvidia GeForce Titan (6 GB).

TABLE I
THE TIME AND MEMORY WORKLOAD OF THE PROPOSED METHOD - THE

RESULTS FOR CT DATASETS.

ID Image size r GPU T0 T1 T2

[px.] [%] [MB] [ms] [ms] [ms]

1 512×512×115 95.02 140.9 426.2 5410.2 560.5

2 512×512×112 96.59 80.4 435.3 9313.5 288.8

3 512×512×216 97.03 314.0 548.9 15366.1 818.9

4 512×512×220 97.24 293.9 538.8 18518.3 1087.7

5 512×512×202 97.34 344.4 544.6 17022.1 1103.9

From the Figures 3 and 4 it can be seen that the proposed

TABLE II
THE TIME AND MEMORY WORKLOAD OF THE PROPOSED METHOD - THE

RESULTS FOR MRI DATASETS.

ID Image size r GPU T0 T1 T2

[px.] [%] [MB] [ms] [ms] [ms]

1 512×448×25 88.15 88.6 0 1750.5 446.5

2 512×512×22 88.97 83.3 311.3 1326 406.4

3 512×512×21 86.23 75.5 323.8 1405.4 403.5

4 256×256×23 88.54 19.0 306.7 340.2 101.9

5 256×256×20 87.10 18.5 0 360.7 89.1

approach was successful in segmenting indicated regions of

interest both CT and MRI images. Based on visual assessment

it can be concluded that the borders of ventricular fluid

and cysts were properly determined and details of its shape

were captured by the image segmentation algorithm. The

accuracy of object shape determination is sufficient for further

quantitative analysis.

In the case of CT images it was possible to run the algorithm

with a uniform setting of parameters, especially the number of

classes NC considered during FCM segmentation. In the case

of MRI images, to obtain better quality results it was necessary
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Fig. 4. The results of applying the proposed approach to sample MRI brain images; top row - original images with a region of interest indicated by green
square; middle row - the results overlaid on a sample slices; bottom row - the results shown in 3D. Cases are numbered from left to right.

to tune the number of classes in the case of one considered

dataset. Additionally, in cases 1 and 5 preprocessing was not

applied since it deteriorated segmentation results.

From the Tables I and II it can be seen, that the proposed

approach is fast and efficient. For all the considered cases the

running time of the method wasn’t longer than 20 seconds

including preprocessing, image division into supervoxels and

FCM segmentation. This is a very good result, regarding

that the considered datasets consisted of up to 220 slices of

resolution 512×512 pixels each. The corresponding time of

FCM segmentation performed with respect to single voxels

last hours. This acceleration is obtained due to significant

reduction of clustered data. In the considered cases, processing

of supervoxels instead of voxels diminished the number of data

points clustered by FCM by on average 96.6% for CT images

and 88.7% in the case of MRI images.

The memory workload of the proposed approach was also

significantly reduced due to application of supervoxels. When

run on the original datasets the FCM required several gigabytes

of RAM memory to cluster all the voxels. As it can be seen

from Tables I and II the improved method in the worst case

used less than 350 MB of GPU RAM memory. In the case

of volumetric images this is a very good results which makes

the method available for a common use on a standard PC

computer.

TABLE III
THE INFLUENCE OF SUPERVOXELS AND GPU COMPUTING ON THE FCM

SEGMENTATION TIME IN CT DATASETS. T2 - THE EXECUTION TIME WITH

SUPERVOXELS AND GPU, T2’ - NO SUPERVOXELS, T2” - NO

SUPERVOXELS OR GPU.

ID Image size T2 T2’ T2”

[px.] [ms] [ms] [ms]

1 512×512×115 560.5 9594 186873

2 512×512×112 288.8 7301 147686

3 512×512×216 818.9 21934 540873

4 512×512×220 1087.7 19562 595971

5 512×512×202 1103.9 24196 552163

In tables III and IV different variants of FCM segmentation

times are compared for CT and MRI images respectively.

The column T2 refers to the proposed method applying both

supervoxels and parallel GPU computing. Two next columns

describe the same cases omitting supervoxel creation ( T2′)
and also GPU computing (T2′′). The exclusion of supervoxels

increases CT segmentation time 17 ÷ 27 times (on average
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TABLE IV
THE INFLUENCE OF SUPERVOXELS AND GPU COMPUTING ON THE FCM

SEGMENTATION TIME IN MRI DATASETS. T2 - THE EXECUTION TIME

WITH SUPERVOXELS AND GPU, T2’ - NO SUPERVOXELS, T2” - NO

SUPERVOXELS OR GPU.

ID Image size T2 T2’ T2”

[px.] [ms] [ms] [ms]

1 512×448×25 446.5 9813 84817

2 512×512×22 406.4 11576 90933

3 512×512×21 403.5 9126 119840

4 256×256×23 101.9 2652 26286

5 256×256×20 89.1 3198 28595

≈ 22 times) and additional removing of GPU computing

extends it up to 330 ÷ 660 times (on average ≈ 510 times).

For the MRI images the FCM execution is slowed down on

average 27 and 258 times in the two algorithm variants with

T2′ and T2′′. The acceleration with supervoxels is achieved at

the expense of their preparation time. Therefore real speed-up

of the algorithm in this approach is only 1.2 and 28 times for

the tested CT images or respectively 6 and 56 times for MRI

cases. The example CT images of larger size than the example

MRI require more effort to prepare supervoxels. Hence, their

use only gives less profit on time, which can be still enhanced

during subsequent parallel computations.

B. Tests on phantoms

The accuracy of the introduced supervoxels based FCM seg-

mentation approach was assessed using three different physical

phantoms including: phantom of head, phantom CIRS 045 of

prostate [15] and phantom CIRS 062 [16] used for calibration

of computed tomography scanners. All these phantoms were

scanned using a CT scanner. The resulting images were next

subjected to segmentation using the proposed approach. The

aim of the segmentation was to extract characteristic objects

contained within phantoms. Finally, the volumes of these

objects were determined based on segmentation results and

compared with the volumes given in phantom specification.

The phantom of head was prepared using the 3D printing

technique. The phantom consists of two main parts: the skull

made from a material of the density 2.1-2.3 g/cm3 and the

brain made from a material of the density 1.02-1.04 g/cm3.

In the brain there is a hole of a shape similar to ventricular

system and volume equal to 41.69 cm3. The hole was filled

with water imitating the cerberospinal fluid. The head phantom

is presented in Figure 5. In particular, Figure 5a shows the

general view of the phantom, while Figure 5b presents a

sample CT slice. Additionally, in Figure 6 the shape of the

ventricular system of the phantom is presented.

The phantom CIRS 045 is dedicated to prostate brachyther-

apy. Inside it contains three cysts of the increasing volumes

(namely: 4 cm3, 9 cm3 and 20 cm3). The general view of the

phantom is shown in Figure 7a, while a sample CT scan is

presented in Figure 7b.

Finally, the phantom CIRS 062 is shown in Figure 8. The

phantom consists of two rings with inclusions of equal size.

a) b)

Fig. 5. The brain phantom; a) the general view; b) a CT scan.

Fig. 6. The shape of the ventricular system within the brain phantom.

Each inclusion corresponds with different tissue and thus

exhibit different attenuation of X-rays (see Fig. 8b).

The results of applying the introduced segmentation ap-

proach to images of phantoms are shown in Figure 9. In

the case of head phantom, the proposed approach was used

to extract the ventricular system (see Fig. 9a). From prostate

phantom CIRS 045 the largest cyst was extracted (see Fig. 9b).

Finally, from the phantom CIRS 062 a randomly selected

inclusion was extracted using the proposed approach (see

Fig. 9c). For each case, the segmentation result is both: shown

in 3D and overlaid on a sample slice.

The results of comparison between the real and the deter-

mined volumes of the considered regions are summarised in

Table V. In particular, the considered phantom is indicated in

the first column. The real region volume V0 is given in the

fifth column, and followed by the determined volume V in

the sixth column. The corresponding relative error of volume

a) b)

Fig. 7. Phantom CIRS 045; a) the general view (©CIRS Tissue Simulation
& Phantom Technology); b) a sample slice from a CT scan.
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a) b)

Fig. 8. Phantom CIRS 062; a) the general view (©CIRS Tissue Simulation
& Phantom Technology); b) a sample slice from CT scan.

a)

b)

c)

Fig. 9. The results of supervoxel based FCM segmentation applied to the
considered phantoms; a) brain phantom; b) CIRS 045; c) CIRS 062.

determination is shown in the last column. Additionally, for

each phantom image resolution, time of image division into

supervoxels T0 and time of FCM segmentation T are given in

columns two, three and four respectively.

TABLE V
THE ASSESSMENT OF SEGMENTATION ERROR.

phantom Image size T0 T V0 V dV

[px.] [s] [s] [cm3] [cm3] [%]

head 512×512×515 36.88 1.66 41.69 40.77 -2.20

CIRS 045 512×512×61 3.85 0.42 20.00 17.44 -12.80

CIRS 062 512×512×55 3.46 0.41 42.44 53.75 1.41

From Figure 9 it can be easily seen that the proposed seg-

mentation approach successfully extracted objects of interest

from the considered phantoms. The shape of the segmented ob-

jects correspond with the real one. This is especially visible in

the case of the ventricular system segmented from the phantom

of head (see Fig. 9a). In this case all important anatomical de-

tails are clearly visible in object after segmentation. The shape

of objects extracted from the CIRS phantoms also correspond

with the description given in phantoms specification.

The relative error of volume determination equals on aver-

age 5.5% (see Tab. V). It is worth highlighting, that in the case

of the ventricular system extracted from the phantom of head

the error is only -2.2%. This is a very good result, especially

having in mind the complex shape of the ventricular object.

IV. CONCLUSIONS

In this paper the fuzzy C-means method FCM) was specif-

ically adapted to the segmentation of volumetric brain im-

ages. In particular CT images include from tens to hundreds

of millions of voxels to analyse within a reasonable time.

Although the FCM method has the advantage of the same

functionality in two and three dimensions, the algorithm

execution time is proportional to the number of image voxels

and can exceed large values for hundreds of CT slices. The

proposed reduction of input data size based on supervoxels

varies from 85% to 95% in the tested examples at the expense

of several seconds for creating supervoxel regions. For the

assumed parameters the segmentation accuracy of about 2%
tested for the head phantom still remains acceptable. The

above data compression and GPU parallel computing limit

processing time to single seconds, practically without any extra

cost for hardware equipment. Standard CUDA compatible

NVIDIA graphic card of computing capabiility 3÷ 3.5% will

be sufficient in this case, because the GPU memory workload

falls below 0.5GB for 200 CT slices. The bottle neck of

such graphic computing is the maximum acceptable size of

shared memory per block (up to 8 kB) implying the limited

class number to preserve the parallel computation efficiency.

Additionally in some medical cases establishing a priori the

number of segmentation classes to extract desired objects is a

very intuitive task. Nevertheless the proposed approach make

the modified FCM method very promising for its very fast

processing of bulk data and dimensionality independence.
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ACKNOWLEDGEMENTS

The authors would like to thank Mikołaj Kopernik’s Hos-

pital in Lodz (Poland) for providing CT images of Electron

Density Phantom CIRS 045 and Brachytherapy Phantom CIRS

062.

REFERENCES

[1] D. D. Burdescu, L. Stanescu, M. Brezovan, C. S. Spahiu, “Efficient
Volumetric Segmentation Method”, Proceedings of the 2014 Federated

Conference on Computer Science and Information Systems, pp. 659–668,
2014, http://dx.doi.org/10.15439/978-83-60810-58-3

[2] K. Xiao, A. E. Hassanien, N. I. Ghali, “Medical Image Segmentation
Using Information Extracted from Deformation”, Proceedings of the

2011 Federated Conference on Computer Science and Information

Systems, pp. 157–163, 2014.
[3] M. R. Ogiela, T. Hachaj, “Automatic segmentation of the carotid

artery bifurcation region with a region-growing approach”, Journal of

Electronic Imaging, vol. 22(3), 033029, 2013, http://dx.doi.org/10.1117/
1.JEI.22.3.033029

[4] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-

rithms, Plenum Press, New York, 1981.
[5] R. Nock, and F. Nielsen, “On weighting clustering”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 28(8), pp. 1–13,
2006, http://dx.doi.org/10.1109/TPAMI.2006.168

[6] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watershed: A
unifying graph-based optimization framework”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 33(7), pp. 1384–1399,
2011, http://dx.doi.org/10.1109/TPAMI.2010.200

[7] W. Tao, H. Jin, and Y. Zhang, “Image segmentation based on mean
shift and normalized cuts”, IEEE Transactions on Systems, Man, and

Cybernetics, vol. 37(5), pp. 1382–1389, 2007, http://dx.doi.org/10.1109/
TSMCB.2007.902249

[8] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Süsstrunk,“SLIC superpixels compared to state of the art superpixel
methods”, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 34(11), pp. 2274–2282, 2012, http://dx.doi.org/10.1109/
TPAMI.2012.120

[9] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and
K. Siddiqi,“Turbopixels: Fast superpixels using geometric flows” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 31(12),
pp. 2290–2297, 2009, http://dx.doi.org/10.1109/TPAMI.2009.96

[10] P. F. Felzenszwalb, and D. P. Huttenlocher, “Efficient graph-based image
segmentation” International Journal of Computer Vision, vol. 59(2), pp.
167–181, 2004, http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
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