
ReSA Tool: Structured Requirements Specification
and SAT-based Consistency-checking

Nesredin Mahmud∗, Cristina Seceleanu∗, Oscar Ljungkrantz†
∗Mälardalen University, Sweden, {nesredin.mahmud, cristina.seceleanu}@mdh.se

†Volvo Group Trucks Technology, Sweden, oscar.ljungkrantz@volvo.com

Abstract—Most industrial embedded systems requirements are
specified in natural language, hence they can sometimes be
ambiguous and error-prone. Moreover, employing an early-stage
model-based incremental system development using multiple
levels of abstraction, for instance via architectural languages
such as EAST-ADL, calls for different granularity requirements
specifications described with abstraction-specific concepts that
reflect the respective abstraction level effectively.

In this paper, we propose a toolchain for structured require-
ments specification in the ReSA language, which scales to multiple
EAST-ADL levels of abstraction. Furthermore, we introduce
a consistency function that is seamlessly integrated into the
specification toolchain, for the automatic analysis of requirements
logical consistency prior to their temporal logic formalization
for full formal verification. The consistency check subsumes
two parts: (i) transforming ReSA requirements specification into
boolean expressions, and (ii) checking the consistency of the
resulting boolean expressions by solving the satisfiability of their
conjunction with the Z3 SMT solver. For validation, we apply
the ReSA toolchain on an industrial vehicle speed control system,
namely the Adjustable Speed Limiter.

I. INTRODUCTION

MOST often, the development of dependable automo-

tive systems that are nowadays increasingly complex

[1] relies on intricate requirements, given the nature of the

system that has to interact with the environment. Therefore,

the importance of establishing non-ambiguous and consistent

requirements is even higher than for closed systems. Despite

this acknowledged situation, current specification methods and

tools [2][3][4] lack adequate support to formally analyze the

logical consistency of high-level natural language require-

ments, in order to improve the quality of their specification.

Moreover, to be able to manage the complexity of auto-

motive embedded systems during development, incremental

model-based design approaches that assume multiple levels of

abstraction are becoming appealing to industry. Among oth-

ers, dedicated architectural languages, such as Electrical and

Software Technology - Architectural Description Language

(EAST-ADL) [5] are good candidates for such approaches.

In EAST-ADL, an automotive system’s structure and function

are modeled at multiple levels of abstraction, that is, vehicle,

analysis, design, implementation levels, and each abstraction

level employs distinct concepts worth considering during re-

quirements specification. For instance, the vehicle level of

EAST-ADL abstraction describes the high level function

of the system. Therefore, it would be inappropriate to use

concepts from the design level, such as ports, signals, hardware

elements, to describe requirements at the vehicle level, since

such details usually hinder communication with non-technical

stakeholders. Consequently, the requirements specifications

need to be adapted to the appropriate levels of abstraction.

In this paper, we propose an Eclipse-based tool chain

for structured requirements specification in ReSA [6], which

scales to multiple EAST-ADL levels of abstraction. ReSA

is an ontology-based requirements specification language tai-

lored to automotive embedded systems development, which

uses requirements boilerplates to structure the specification

in natural language. Furthermore, we propose a consistency-

check function that seamlessly integrates into the tool chain,

for the automated consistency check of requirements using Z3

SMT solver [7]. The consistency checking is a preliminary

task during elicitation and specification of requirements that

paves the way for formal verification at later stages of software

development. Our approach for consistency checking does not

require a behavioral, or architectural model of the system,

which might increase its attractiveness to industry as there is

often the case that no system models exist for industrial sys-

tems. Checking for requirements consistency has been widely

used in the field of requirements engineering, e.g., to describe

consistent use of terms (words, phrases), logical consistency of

requirements statements, or consistency between requirements

and subsequent refinements [8][9]. The term can also refer to

checking against type errors, or circular definitions [10]. In this

paper, the consistency checking refers to checking the logical

consistency of ReSA requirements specifications, in Z3.

Consistency checking of requirements specification helps

detect possible logical errors at early stages of software de-

velopment, and reduce the communication cost between man-

ufacturers and suppliers [11]. However, checking for logical

consistency of requirements expressed in natural language is

not an easy task, mainly because: (i) unconstrained natural lan-

guage is inherently ambiguous when it comes to reasoning, (ii)

substantial assumptions used during requirements specification

are hidden, and (iii) the size and complexity of requirements

specifications are considerable.

In this work, we reduce the problem of checking the logical

consistency of ReSA requirements to a boolean satisfiability

problem, hence we propose algorithms for transforming the

ReSA specification into boolean expressions, encode the latter

into Z3 assertions, and perform consistency check using the

Z3 SMT solver. The remainder of the paper is organized as

follows. In section II, we recall the main features of ReSA,

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1737–1746

DOI: 10.15439/2016F404

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1737

the EAST-ADL levels of abstraction, xText grammar, and

the boolean satisfiability problem. We introduce the ReSA

toolchain in section III, after which we describe our con-

sistency checking steps in section IV. The applicability of

the tool is shown in section V, where we specify and check

the consistency of sample requirements from an industrial use

case, called the Adjustable Speed Limiter (ASL). We compare

to related work in section VI, before concluding the paper in

section VII.

II. PRELIMINARIES

In this section, we overview the ReSA language, and its

adaptation to EAST-ADL levels of abstraction, as well as the

xText grammar, and the basic boolean satisfiability problem.

A. Overview of ReSA

ReSA [6] is an ontology-based requirements specification

language tailored to automotive embedded systems devel-

opment. The language (i) renders natural language terms

(words, phrases), and syntax, (ii) uses an ontology that defines

concepts and syntactic rules of the specification, and (iii) uses

requirements boilerplates to structure specification.

1) Requirements Specification Ontology: A snippet of the

ontology specification is shown below.

[System ∗ x1][ActOnPara ∗ x2][Para ∗ x3] (1)

(Is-fb ?x1 ?x2)(Is-fb ?x2 ?x3) (2)

This ontology snippet defines requirements specification

concepts (1), and syntactic rules between instances of

concepts (2). The specification states that an instance

of System precedes both an instance of ActOnPara, and

an instance of Para in a requirement specification, e.g.,

ASL:system shall control:ActOnPara vehicle

speed:para, is a valid example that conforms to the ontol-

ogy specification.

2) Requirements Boilerplate: The language uses

requirements boilerplates (or boilerplates) [12] in order

to structure a requirement. A boilerplate is a reusable

specification template, which is constructed from variable,

and fixed syntactic elements, e.g., if <button> is

<pressed> then <system> shall be <state>

within <10><ms>, where syntactic elements within pairs

of angle brackets are variable syntactic elements, and the rest

are fixed syntactic element. Table I displays the boilerplate

elements of the language.

B. EAST-ADL Levels of Abstraction

The ReSA language can be tailored to express require-

ments at multiple levels of abstraction in the development

of automotive systems. This helps achieving a consistent

specification style across several abstraction levels. We show

this for automotive embedded systems development based on

EAST-ADL. EAST-ADL [14] is a model-driven approach to

the development of complex automotive embedded systems. It

covers a wide range of development aspects, such as analysis,

design, implementation, verification&validation. The language

TABLE I: The ReSA Language Boilerplates

Boilerplate Description

Simple Instantiates a simple statement, and contains a modal verb,
such as, shall, e,g., system shall be activated.

Proposition Similar to Simple, except it is a proposition (or an assertive
statement) [13, p.435], e.g., button is pressed.

Complex Instantiates a complex statement, and is constructed from
a Simple, a Proposition boilerplate, and an adverbial
conjunctive (such as while, when, until). For example,
the error shall be reported while the

fault is present

Compound Instantiates a compound statement, and is composed of
two or more Simple or Proposition boilerplates and the
logical operators, AND/OR, e.g., system shall be

activated and driver shall be notified.

Conditional Instantiates a conditional statement. The boilerplate can be
instantiated to a different variant of conditional statements,
i.e., if, if-else, if-elseif, or if-elseif-else, and conditional
nesting.

Prepositional

Phrase

Instantiates a prepositional phrase, and can be used to de-
scribe timing properties, occurrence of events, other com-
plements to the subject of a main phrase. e.g., within
5ms, by the driver

uses various levels of abstraction to conceptualize a system

with different degrees of detail, that is, vehicle, analysis,

design, and implementation levels. We briefly describe the

levels of abstraction in light of requirements modeling.

• Vehicle level: a vehicle is modeled using interconnected

vehicle features, that satisfy high level requirements.

• Analysis level: the vehicle feature is refined using anal-

ysis level functions, that are design, and hardware inde-

pendent. These functions satisfy the refined version the

high level requirements specified at the vehicle level.

• Design level: the analysis level functions are refined using

design level functions, that are enriched with periodic

triggering, and execution time constraints. These func-

tions satisfy the refined version of requirements specified

at the analysis level.

• Implementation: the design level requirements are re-

fined, and are satisfied by AUTOSAR [15] implemen-

tation, which we don’t discuss it in this paper.

The specialization of the ReSA language to express re-

quirements for EAST-ADL’s levels of abstraction is done

by specializing the ReSA concepts to appropriate concepts

found in EAST-ADL. Table II shows an example of the

specialization of the System concept at vehicle, analysis, and

design levels of EAST-ADL levels of abstraction.

C. XText Grammar

ReSA is implemented in xText Eclipse framework, a power-

ful, and popular Integrated Development Environment (IDE)

for the development of Domain Specific Languages (DSL),

and programming languages. The main component of the

framework is the xText grammar language [16]. Among other

constructs, the xText grammar contains the declaration of an

xText file header (1-3), and parser rules (4-7). Line (1) states

1738 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

TABLE II: Concept specialization for System concept

Vehicle-level Analysis-level Design-level

VehicleFeature
(VF)

AnalysisFunctionType
(AFT)
FunctionalDevice
(FD)

DesignFunctionType
(DFT)
BasicSoftwareFunction
(BSF)
LocalDeviceManager
(LDM)
HardwareFunctionType
(HFT)

the grammar’s name to be a valid java extension; (2) states

the reuse of common terminal rules, e.g. rules for string,

whitespace; (3) generates EPackage for the implementation

of the grammar with the name resaDSL located at the stated

Uniform Resource Identifier (URI). Rules (4-7) state the

different parser rules in Extended Backus-Naur Form (EBNF)

notation [17][18].

(1) grammar org.volvo.resadsl.ResaDsl

(2) with org.eclipse.xtext.common.Terminals

(3) generate resaDsl

"http://www.volvo.org/resadsl/ResaDsl"

...

(4) UnAssignedPRule: AssignedRule;

(5) AssignedPRule: feature = STRING;

(6) DataTypePRule: 'dType ' name = ID;

(7) CrossRefPRule: feature = [DataTypePRule];

D. The Boolean Satisfiability Problem (SAT)

The consistency of ReSA specifications can be reduced

to a satisfiability problem of boolean expressions (proposi-

tional formulas) [6]. A requirement specification in ReSA

is constructed from one or more propositions connected by

logical operators (and, or, implies, not), and parentheses. SAT

techniques can be used to determine if the conjunction of

ReSA requirements are satisfiable.

The satisfiability problem (SAT) [19] is defined as follows:

given a propositional formula φ = f(x1, . . . , xn), over a set

of boolean variables x1, . . . , xn, decide whether or not there

exists a truth assignment to the variables such that φ evaluates

to true. SAT problem instances are usually expressed in

a standard form called conjunctive normal form (CNF). A

propositional logic formula is said to be in CNF if it is a

conjunction (and) of disjunctions (ors) of literals. A literal is

either x, or its negation ¬x, for a boolean variable x. The

disjunctions are called clauses.

Theorem 1 (Inconsistency of requirements specifications): Let

Ψ = ψ1, ..., ψn denote the system requirements specification,

where each of the formulas (ψ1, . . . , ψn) encodes require-

ments. We say that the set is inconsistent if the following

implication is satisfied: ψ1 ∧ ψ2∧ . . .ψn ⇒ False.

In order to check the consistency of requirements specifica-

tion, one has to disprove Theorem 1 by showing its negation

true, that is, find a counterexample that satisfies the CNF of

the requirements specification, Ψ. In this paper, we check the

consistency of ReSA requirements via the Z3 tool [7]. Z3

is an efficient Satisfiability Modulo Theories (SMT) solver

developed at Microsoft Research, which integrates several

decision procedures for verification.

In the following consecutive sections, we describe the main

contribution of the paper regarding the tool implementation,

including its architecture, and consistency checking.

III. THE RESA TOOLCHAIN

The ReSA toolchain is an Eclipse-based implementation

of our requirements specification language [6]. The toolchain

supports contextual content completion, and text validation

features. Furthermore, it seamlessly integrates a function

for checking the logical consistency of requirements us-

ing the Z3 SMT solver [7]. The toolchain also supports

specifying requirements at different levels of software de-

velopment, using appropriate concepts valid at a specific

level of abstraction. We specialize this approach for EAST-

ADL, with respect to the vehicle, analysis, and design

level of abstraction. The Graphical User Interface of the

toolchain is shown in Figure 1, displaying demo projects

for ASL, both EAST-ADL generic specification, as well

as EAST-ADL abstraction level aware specification. The

toolchain is available for download from the web link:

https://github.com/nasmdh/ReSA-Tool-0.0.git

A. The Toolchain Architecture

Figure 2 shows the architecture of the ReSA toolchain. It

consists of requirements specification and consistency check-

ing of requirements. The specification part is basically the

ReSA specification editor (a.k.a. Resa App), and a domain

model. During writing requirements specifications, domain

elements can be accessed from the domain model, but also

model elements can be populated during specification. Such

approach allows the consistent use of terms among differ-

ent requirements engineers, reduces typographic errors, and

maintains a knowledge base for later system refinements. The

consistency checking part consists of a consistency checking

plugin that calls the Z3 SMT solver. The result of the consis-

tency checking is returned to the editor perspective.

Requirements sepcification Consistency-check

ReSA Editor

Domain Model

Model elements

result

Z3 SMT Solver

Consistency-check Plugin
triggers

Fig. 2: The ReSA toolchain architecture

1) ReSA Specification Framework: Figure 3 shows the

framework for specifying requirements with our ReSA tool.

The framework consists of the Hierarchical Grammar, the

ReSA Application, and the System Model. The Hierarchi-

cal Grammar is composed of a generic grammar, Gs, and

grammar definitions for each EAST-ADL abstraction level,

indicated by Gv, Ga, Gd, for vehicle, analysis, and design

NESREDIN MAHMUDET AL.: RESA TOOL 1739

Generic

specification

EAST-ADL

specification

Triggers Z3 SMT solver

content

completion

Fig. 1: The ReSA toolchain user interface

levels of abstraction, respectively. The grammar definitions for

the EAST-ADL levels of abstraction are specializations of the

generic grammar (indicated by the relation <specialize>),

that is, concepts and syntactic rules are adapted to suit the

specification at each levels. Through the <import> relation,

concepts, and rules from the top level grammar are imported

to the low level grammar, which enables referring to higher

level concepts from lower level abstractions.

The ReSA Application is an implementation of the Hier-

archical Grammar, and an editor for ReSA, indicated by the

relation <implements>. The file extension *.resa imple-

ments the application for the generic grammar, whereas file

extensions *.vl, *.al, *.dl represent the applications for vehicle,

analysis, and design levels, respectively, and implement their

corresponding grammar definition. The System Model pro-

vides access to the model elements of the application, during

the specification at the respective abstraction level.

Gs

Gd

Ga

Gv *.vl

*.resa

*.al

*.dl

<implement>

<
sp
e
c
ia
liz
e
> <import>

<import>

<
im
p
..
.>

<
im
p
..
.>

<
im
p
..
.>

Vehicle-level

Analysis-level

Design-level

Generic-level

a
cc
e
ss

<
a
cc
e
ss
>

a
cc
e
ss

a
cc
e
ss

<specialize>

<specialize>

 Hierarchical Grammar ReSA app System Model

Fig. 3: Grammar architecture, and support for EAST-ADL

B. Implementation

We have implemented the toolchain in the xText Eclipse

Framework. The framework provides an xText editor for

grammar specification using the xText grammar language, and

generates a start-up IDE based on Eclipse, which includes

Parser, Compiler, Linker, and textual editor [16]. In this

subsection, we go through the implementation of the ReSA

grammar, and its adaptation to EAST-ADL.

1) Generic Grammar: This grammar defines the generic

rules of constructing requirements specification in automotive

systems. It uses automotive concepts to typeset domain ele-

ments, and action verbs associated to instances of concepts.

The grammar defines the syntax of the boilerplates, and the

requirements specification that is built from the boilerplates.

a) Boilerplate Rules: The following grammar rules de-

fine how a requirement specification is structured using boil-

erplates. Line (1) defines an unassigned rule that delegates

rules to the compound boilerplate (2), and the conditional

boilerplate (4). Lines (2) and (4) define a left-refracturing to

handle the left-recursive nature of compound, and conditional

boilerplates. Line (4) defines a rule for the different cases of

conditional boilerplates, i.e., if, if-else, if-elseif, if-elseif-else,

and nested-if.

(1) Boilerplate : Compound | Conditional;

(2) Compound:

cx=Simple ({cmOp.left=current} biOp=LgOp

rt=Compound)?;

(3) Condition:

pr=Proposition ({cnOp.left=current}

biOp=LgOp rt=Condition)?;

(4) Conditional:

'IF'cnl=Condition 'THEN'({cnlOp.left =

current} rt=Conditional)?

then=Compound?

('ELSE' else=Compound | elseif=Elseif)?

'ENDIF';

b) Syntactic Element Rules: The following grammar

snippet states rules for constructing boilerplates elements.

Rule (1) creates datatypes, that is, system and state; rule

(2), (3) create syntactic elements. The syntactic elements can

be typed inline, e.g., "ASL":system, or referred from a

model; rule (4) creates the fixed syntax element shall be,

and finally rules (5) and (6) create Simple, and Proposi-

tion boilerplates using the above parser rules, respectively.

For example, Simple boilerplate, such as, <term:system>

shall be <term:state>, and Proposition boilerplate,

such as, <term:system> is <term:state>.

1740 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

(1) System: name=STRING; State: name=STRING;

(2) System_Rule: System | system=[System];

(3) State_Rule: State | state=[State];

(4) PModal: "shall be" | "shall be able to";

(5) Simple:

(not)? (sub=System_Rule modal=PModal

obj=State_Rule";" |...);

(6) Proposition:

(not)? (sub=System_Rule "is"

obj=State_Rule";" |...);

2) Specialization of Generic Grammar to EAST-ADL: The

requirements specification is adapted to EAST-ADL using

specialization of types, and syntactic rules defined in the

generic grammar. In the xText framework, such functionality

can be supported using grammar mixin, a feature that allows

the reuse of previously defined grammars. Rules (1), (2), (3)

show how the datatype System is specialized at vehicle, anal-

ysis, and design levels, respectively. Furthermore, a rule in the

generic grammar can be extended to cover more requirements

specification scenarios, using the keyword super, e.g., (4)

shows the extension of the Main rule with MainDesign, which

includes a signal related specification, e.g., <term:signal>

shall be "received on":verb <term:port>.
(1) System: VF;

(2) System: AF | FD | FP

(3) System: DF | BSFT | HFT

(4) Main returns reSADSL::Main:

super | MainDesign

MainDesign:

sub=Signal_Rule modal=PModal

verb=Verb_Rule obj=InPort_Rule?';'

If we consider the previous example, that is, ”ASL”:system

shall be ”activated” :state, the counterpart specification of

this requirement at Vehicle-level is, ”ASL”:VF shall be ”acti-

vated”:state.

IV. AUTOMATED CONSISTENCY CHECKING

In this paper, consistency checking refers to checking

the logical consistency of ReSA requirements specifications

without the use of a formal architectural model. This is in

contrast to the use of the term to describe the consistent

use of terms (i.e., words and phrases) in a specification

[8][9], or type checking, or identification of circular definitions

[10]. Since manual inspection of requirements specification

is cumbersome, and sometimes impractical for finding incon-

sistencies, computer-assisted (automated) methods and tools,

such as model checking, and theorem proving, have gained

popularity in embedded systems. However, most of these

methods, and tools require a formal specification language,

such as LTL, CTL, which is expensive to use in industry due to

the associated cost employing formal methods. We address this

challenge by using the ReSA language, a relatively readable,

and close to natural language, and a seamless integration

of the consistency checking (with z3) in the requirements

specification toolchain.

A. Consistency Checking Approach

Our consistency checking approach does not require a

behavioral,or architectural model, instead the input is simply

requirements specification document written in ReSA. Since,

such models are not readily available in practice, our approach

is appealing and useful to industry. The problem of consistency

checking is reduced to a satisfiability problem as follows.

The requirements, Reqi, are expressed using propositional

formulas, and the conjunction of these requirements,
∧

i
Reqi,

is checked for satisfiability, M |=
∧

iReqi, where M is an

interpretation (assignment of the proportional variables that

satisfies)
∧

i
Reqi . The propositional formulas are mostly

expressed by conditional statements, (P ⇒ Q) that hold

globally in the system, where P, Q are propositional formula,

which contains ∧, ∨, →, and ¬ logical operators [6].

The consistency-check is briefly described as follows:

input: ReSA requirement specification.

step1: ReSA requirement specification is transformed into a

boolean expression of propositions (or propositional

formula); check Section IV-B.

step2: Boolean expressions are encoded into the SMT-LIB2

format [20], with each of the expressions as an

assertion.

step3: Z3 SMT solver is triggered to check the satisfiability

of the expressions; check Section IV-C.

output:The user is notified of the consistency check result.

B. ReSA-to-boolean Transformation

Algorithm 1 shows a function that transforms a ReSA

requirement specification into a propositional formula. A

ReSA specification can be treated as a composition of

propositions, logical operators, (and, or), and fixed syntac-

tic elements, like if. . . else. The propositions are instantia-

tions of the Simple, or Proposition boilerplates. In

the ReSA requirement of Example 1, <Btn1: inDevice>

is <pressed: actOnInDev> is an instantiation of the

Proposition boilerplate, and <ASL: system> shall be

<activated: state> is an instantiation of the Simple

boilerplate:

Example 1:

if <Btn1: inDevice> is <pressed: actOnInDev>;

then

<ASL: system> shall be <activated: state>;

endif

Line 1 of Algorithm 1 reads the requirements specification

(*.resa) file, and buffers the content into reqsBuffer. For

each requirement specification, the Simple and Proposition

boilerplates are respectively replaced with temporary variables

for later use (3). Next, propositions props are extracted from

the requirement specification reqSpec (4), after which, for

each proposition, propositional variables pvs are generated

(5). Finally, a boolean expression is generated by substituting

the temporary variables with pvs in the preserved requirement

structure (6). Applying this algorithm to Example 1, we get

(p1 ⇒ p2), where p1 represents <Btn1:inDevice>

is <pressed:actOnInDev>;, and p2 represents

<ASL:system> shall be <activated:state>;.

Definition 2: A proposition p2 is the negation of proposition

p1 (p2 = not p1), if there exists a word at position i of p2

NESREDIN MAHMUDET AL.: RESA TOOL 1741

Algorithm 1: ReSA to boolean transformation

1 reqsBuffer []← ReadReqs(∗.resa)

Function ReSAToBoolean(reqsBuffer)

2 foreach req in reqsBuffer do
(id, reqSpec . . .)← ParseReq(req)

3 reqSpecStruct←
PreserveReqSpecStruct(reqSpec)

4 props[]← ParseProps(reqSpec)
foreach p in props do

5 pvs[]←GetPropVars(p)
end

6 booleanExps[]←
GenerateBooleanExp(reqSpecStruct,pvs)

end
return : booleanExps

end

(word
p2

i) that is the antonym (opposite) of a word at position i

of p1 (word
p1

i), while the rest of p2 syntactic structure matches

p1 (valid also for the reverse case, that is, p1 = not p2).�

The antonyms dictionary is a two dimensional list of

antonyms (or words with opposites). The first word in the list

represents a root word, and the rest represent opposite words

to the root word. An opposite word is replaced with its root

word. For example, the antonyms dictionary contains the word

activated as a root word, and its opposite word deactivated.

For the example below, we say that p2 is a negation of p1:

p1 = ASL : system shall be activated : state

p2 = ASL : system shall be deactivated : state

Algorithm 2: Generates a proposition variable

1 antonymsBuffer []← ReadAntonyms(antonyms.txt)

2 propositionsBuffer []← Null

Function GetPropVars(proposition)

3 pn←NormalizeProp(proposition, antonymsBuffer)
4 foreach p in propBuffer do

if pn = p then
return : p.pv

end
end

5 newPv ←GeneratePropVars()

AddProp (pn, newPv)
return : newPv

end

Algorithm 2 implements Definition 2, hence, replaces an

antonym with its root word (3). Further, Line (4-5) checks

the propositionsBuffer for match of the proposition pn, and

returns its propositional variable if found. Otherwise, Line 5

generates a new propositional variable for the proposition pn,

and Line (5) adds the new proposition, and its propositional

variable to the propositionsBuffer.

C. Consistency Checking

In this section, we introduce Algorithm 3 that illustrates the

function for invoking the Z3 SMT Solver. Line (1) transforms

boolean expressions into an SMT-LIB2 format, which is the

input format of Z3; line (2) creates a logical context that

enables interaction with the solver; line (3) parses SMT-LIB2

into the context, and finally, lines (4) and (5) create an instance

of the solver, and invoke the solver, respectively.

Algorithm 3: consistency-check using Z3 SMT Solver

Function CheckConsistency(booleanExp)
1 smtLibStr ← GenerateSMTLIBStr(booleanExp)
2 ctx← new Context()
3 ctx.parseSMTLIBString(smtLibStr, null, null, null,

null)
4 z3Solver ← ctx.mkSolver()
5 return : z3Solver.check(ctx)

end

V. INDUSTRIAL USE CASE: ADJUSTABLE SPEED LIMITER

We have conducted an initial validation of our approach on

requirements from the Adjustable Speed Limiter (ASL) [6].

ASL is an automotive safety-critical function, which is found

along other vehicle limitation and control functions, such as

Cruise Control (CC), in modern Volvo trucks. It limits the

truck speed not to exceed a predefined and configurable vehicle

speed. ASL provides an HMI interface for interaction with

the driver, and has access to the powertrain engine in order

to limit the engine positive torque. Therefore, it is a complex

and safety-critical function.

ASL realizes 304 functional and extra-functional require-

ments, such as timing, safety, vehicle configurability, and vari-

ability. The requirements of ASL are found at multiple levels

of abstraction according to EAST-ADL requirements modeling

approach, that is, requirements defined at the lower level of

abstraction are refinements of the upper level abstraction. In

our validation process, we rewrite the requirements of ASL,

which have been previously written in natural language (En-

glish), in ReSA. Furthermore, we evaluate the language and

the tool with practitioners at Volvo Group Trucks Technology

(VGTT). In this section, we show the validation result, and

explain the consistency check function of the ReSA toolchain.

A. ASL Requirements Expressed in ReSA

Requirements of ASL describe a wide range of ASL func-

tional and extra-functional properties, including:

• Interaction of the function with the driver (Human Ma-

chine Interface, HMI Requirements)

• High level ASL functions, which are less technical, and

independent of implementation (High level FR).

• Functional-block Responsibility Requirement

(Functional-block RR) briefly describe the responsibility

of a functional block in precise and short statement.

• Low level functional requirements are more technical and

implementation dependent (Low level FR).

• Performance Requirements express, such as timing, and

concurrency, related requirements.

• Safety Requirements, such as response during faulty

operation of ASL function.

1742 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 4: The ASL Requirements Distribution

Req# 1 (ASL activation display): ...HMI Requirement

if <ASL:vf> is <selected:actOnSys> then

<"the ASL indication light":hft> shall be

<"lit":actOnDev>; on <the free wheel>;

endif

Req# 2 (ASL activation): ...High-level FR

if <increaseBtn:inDev> is <pressed:actOnDev>

then

<ASL:vf> shall be <activated:state>;

within <0.25><s>;

endif

Req# 3 (ASL activation): ...Configurability Requirement

<ASL_min:ffp> and <ASL_max:ffp> shall be

<configurable>;

Req# 4 (RSLM - ASL activation): ...Functional-block RR

<RSLM:fd> shall be <responsible>; for

<"activating ASL">;

Req# 5 (ASL activation request): ...Design-level FR

if <"ASL activation request":ffp> is

<received:actOnPara>; while <ASL:vf> is

<overriden:state>;

then

<"ASL target speed":ffp> shall be set to

<"ASL set speed":ffp>; and

<"ASL":state> shall be <activated:state>;

endif

Req# 6 (ASL activation request): ...Performance Requirement

<The engine torque":ffp> shall <"release

control on":actOnPara> <"engine":hct>;

within <0.25><s>;

Req# 7 (ASL activation request): ...Safety Requirement

if <"fault affecting ASL function":event>

occurs; while <ASL:vf> is <active:state>;

then

<ASL:vf> shall be <deactivated:state>;

in <a safeway>;

endif

In order to observe how much of information is encoded

in the different requirements categories mentioned above, we

analyze the boilerplates that are used to express requirements

of ASL. Figure 5 shows that Simple and Proposition boiler-

plates are the most widely used boilerplates, followed by Com-

pound boilerplates. Even though the number of Functional-

block Requirements are more than the Low-level Functional

Fig. 5: The ASL Boilerplates Distribution

Requirements, as shown in Figure 4, the amount of informa-

tion encoded in the requirements is higher in the Low-level

Functional Requirements, as indicated in Figure 5. This is

witnessed by the fact that far more boilerplates are used to

express the Low-level Functional Requirements than to express

Functional-block Requirements.

B. Evaluation of the ReSA Toolchain with Practitioners

We have carried out an initial evaluation of the ReSA tool

with 8 practitioners from VGTT. The practitioners include

requirements engineers, software engineers and architects, test

engineers, and researchers. The main goal of the evaluation is

to get an initial result of using the tool. The evaluation criteria

can be accessed using the web link, https://goo.gl/HwQ1vO.

The response from the practitioners is Table III.

TABLE III: The ReSA toolchain evaluation

Role Summary Feedback

Software en-
gineers

found structuring of requirements appealing; they sug-
gested more expressiveness in the language.

Verification
engineers

found the tool usable, especially in test case development.

Requirement
engineers

found that reusability and extensibility of the specification
method was appealing, and suggested adding alternative
graphical specification.

Researchers found the specification method, and specialization to
EAST-ADL abstractions useful.

In the following subsection, we show a sample of the

ASL specification in ReSA. Further, we apply our consistency

checking approach on ASL requirements.

C. Consistency Checking on the Use Case

Using the ReSA toolchain, we express 37 functional require-

ments of the ASL system, that are related to the activation

and deactivation of the system. Next, we check consistency of

the requirements specifications using the consistency-checking

feature of the toolchain. In this subsection, we show the point

NESREDIN MAHMUDET AL.: RESA TOOL 1743

of inconsistency reported by toolchain, and also demonstrate

how the consistency-checking function works.

The following requirement describes enabling ASL.

req req001_ENABLING_ASL:

(p1) if interaction#driver "selects":verb

"ASL speed control":mode; and

(p2) (mode# vehicle is in mode

"pre-running"; or

(p3) mode# vehicle is in mode "running";)

then

(p4) action# "ASL":system shall be

"enabled":verbState; and

(p5) status# "ASL enabled":status shall be

"presented to" driver

endif

endreq

The boolean expression for the above requirement becomes

(p1 ∧ (p2 ∨ p3)) ⇒ (p4 ∧ p5).

To show how the consistency function catches inconsisten-

cies in requirements specifications, we now introduce a bogus

requirement for disabling ASL, as follows:

req req002_bogus_DISABLING_ASL:

(p6) if interaction#driver "selects":verb

"ASL speed control":mode

then

(p7) action# "ASL":system shall be

"disabled":verbState;

endif

endreq

/* "disabled" is antonymic to "enabled" */

Since the word disabled is antonimic to the word enabled,

p7 becomes the negation of p4 according Definition 6; and

p6 is equivalent to p1. Therefore, the boolean expression for

the above requirement becomes p1 ⇒ ¬p4. To demonstrate

how the consistency check function works, let us assume,

and assert in the specification that ASL is enabled, and the

vehicle is in pre-running mode. The SMT-LIB2 equivalent

format of the above two requirements including the assertions,

as obtained from our transformation, appears as follows:

(set-option :produce-unsat-cores true)

; declare boolean constant

(declare-const p1 Bool)

...

;req001_ENABLING_ASL

(assert (! (=>(and p1 (or p2 p3))

(and p4 p5)) :named req001))

;req002_bogus_DISABLING_ASL

(assert (!(=> p1 (not p4)) :named req002))

;Assert that driver selects ASL control

(assert (! (= p1 true) :named assumption1))

;Assert vehicle is in pre-running mode

(assert (! (= p2 true) :named assumption2))

If the Z3 solver is triggered to check the satisfiability of

the 37 requirements specifications, it returns unsat, as there

exists an inconsistency within the requirements specification.

Obviously, the ASL cannot be activated and deactivated at the

same time, given the assumptions, and this inconsistency is

identified using the toolchain. A feature of Z3’s unsat-core

tries to localize the region of inconsistency by listing the

requirements associated with the inconsistency problem using

the labels of requirements defined during the requirements

specification. For example, the following result from the solver

indicates that the region of inconsistency is related to the two

requirements, and the assertions we made.

unsat

(req001 req002 assumption1 assumption2)

The engineer is supposed to use this feedback from the solver,

and make necessary changes to the specification, and repeat

the consistency checking process until no more inconsistency

is found.

VI. RELATED WORK

The related work focuses on toolchains that use template-

based specification methods, computer-processable Controlled

Natural Languages (CNLs), and perform automated consis-

tency checking without the need for system models. These

are in contrast to tools that use tabular specification techniques

[21], graphical specification methods, or formal specification

methods, e.g., Z notation, LARCH, Linear Temporal Logic

(LTL) [22].

A. Template-based Specification Tools

In this paper, we define a template-based specifica-

tion method that uses predefined specification templates ex-

tracted from experience in requirements engineering, in or-

der to express requirements in a more structured way. The

most popular methods of this type are requirements boiler-

plates [23][24][25], and Specification Pattern System (SPS)

[26][27][28]. Specification templates are reusable artifacts,

and consist of variable and fixed syntactic elements, where

the variable part is filled by the engineer. The specification

templates facilitate communication among engineers due to

the fact that engineers use the same templates for similar

requirements from a common repository of templates. The

challenges of template-based approaches are: 1) the selection

of an appropriate template out of seemingly similar templates;

the Natural Language Processing (NLP) technique is found

to ease this challenge in the case of DODT tool [2] while

manual intervention is still necessary, and 2) the extension of

the template repository with new templates for requirements

that could not be expressed with the existing templates. The

templates extension requires a careful approach, as templates

could be ambiguous, or conflicting to each other. Therefore,

such extension mechanism should subscribe to some syntactic,

or semantic rules. By using the ReSA tool, the creation of new

boilerplates is constrained by the syntactic and semantic rules

of the ReSA language.

Boilerplate tools, such as DODT, and Requirements

Authoring Tool (RAT), use requirement boilerplates to

express requirements. Requirements boilerplate, e.g., the if

<button> is <pressed> then <system> shall

be <activated>; within <0.25><sec>; endif,

1744 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

is a typical boilerplate in ReSA language. The primary goal

of using boilerplates is to provide structure to requirements,

and make them readable, and more comprehensible than

their temporal logic counterparts. However, some tools use

knowledge management, e.g., an ontology, to analyze the

quality of requirements (such as consistency, completeness,

redundancy, vagueness), according to quality metrics defined

in their knowledge-base.

DODT [2] is a research prototype tool, which is devel-

oped in the European CEASAR project. The tool supports

boilerplates, and unconstrained natural language (English) to

write requirements. The unconstrained natural specification

is matched to existing boilerplates using Natural Language

Processing (NLP) technique, and boilerplate mismatches are

manually corrected. The tool can assess the quality of re-

quirements specification based on the analysis of Ambiguity,

Inconsistency, Completeness, Opacity, and Noise, by referring

to the ontology that defines attributes, attribute relations,

various axioms of the boilerplates, e.g., for contradiction, sub-

classing, equivalence [29]. RAT [30] is an industry level tool,

which is being developed by the REUSE Company. It supports

advanced features, such as guides writing of requirements

using IntelliSense from Microsoft, quality analysis on-the-

fly using metrics, such as Inconsistency, Ambiguity, Over-

lapped requirements, non-atomicity with the help of a separate

knowledge-manager that stores vocabulary, patterns, syntax,

and semantic representation. Due to its proprietary nature, it

is not clear if the boilerplate extension mechanism relies on

any syntactic or semantic rules like in the ReSA toolchain.

The Specification Pattern System (SPS) proposed by

Dwyer et al. [27] is a set of property specification pat-

terns, that can better be understood, and used by domain

practitioners than, for instance, LTL specifications. Konard

and Cheng extended the SPS with real-time support [26].

Using ReSA, temporal requirements can be expressed using

the Prepositional Phrase boilerplate, e.g, within <time>,

after <time>...; however, our transformation is limited

to proportional formulas only. The toolchain by Post and

Hoenicke [28] is an implementation of the real-time SPS

grammar. The toolchain allows expression of requirements

in restricted English grammar, e.g., Globally, it is

always the case that P holds after at most

10 seconds, where P is a property to be checked, and

the pattern translation into Duration Calculus [31]. Further-

more, their toolchain can check inconsistency, rt-inconsistency

(checks timing boundaries), and vacuity (requirements that

can never be enabled). However, we couldn’t gain access

to the toolchain to do hands-on experience. As compared to

the boilerplate-based specification, the SPS mentioned above

uses architectural elements in constructing the property, e.g.,

vehicleSpeed > setSpeed, where vehicleSpeed,

and setSpeed are elements of our ASL architecture. More-

over, the SPS has representations in formal logic. Unlike

boilerplate-based specification, the SPS targets behaviour de-

scription, therefore its coverage is limited, but more precise

due to its formalized nature. ReSA, on the other hand can

express a wide range of requirement types, including be-

havioural, and requirements that express performance, and

safety. Further more, as compared to the SPS, ReSA is close

to natural language. Elen et. al [32] propose an existential

bounded consistency analysis using Bounded Model Checking

(BMC), and implement their prototyping using iSAT model

checker. The analysis does not require a system model, and

checks if a run exists that satisfies the specification in BTC

pattern [33].

B. Computer-processable CNL Tools

Computer-processable Constrained Natural Languages

(CNLs), such as the Attempto Control English (ACL), and

the Processable ENGlish (PENG), use limited words, phrases,

syntax and semantics of natural language express texts in a

simplified English language. Moreover, computer-processable

CNLs have formal semantics, e.g., in first-order-logic (FOL),

which makes them amenable to automated analysis, that is

for checking logical consistency, redundancy, and ambiguity.

The ReSA toolchain uses transformation of requirements to

proportional formula to do the consistency checking, and

supports features, such as specification guide, and provides

tips for error correction during requirements specification.

ACE supports the construction of simple, and composite

sentences (complex and compound), coordination of phrases

using and, subordination, quantification, negation, and query-

answer interfaces [34]. Texts in ACE can be translated into for-

mal specifications, such as FOL [35]. The Attempto toolchain

is a suite of tools. The tool has support for text completion, and

inline checking for ambiguity, inconsistency via its predefined

lexicon, and grammar rules. Attempto does not allow the

use of passive sentences, verb phrases, modal verbs, which

is natural to use in requirements specification, for exam-

ple, system shall be activated. Inspired by ACE,

PENG [36] is also a computer-processable language. The

PENG system uses ECORE, which is a look-ahead editor,

in order to predictively provide possible alternatives during

writing. This feature lowers the burden of memorising the

syntax rules of PENG. Yan et. al [37], in the tool SpecCC,

transformed their own CNL into LTL, and synthesize the LTL

specification using G4LTL in order to check for realizability.

VII. CONCLUSION

In the automotive industry there is a stringent need for

semi-formal requirements specification methods and tools that

integrate seamlessly into industrial practice. In this paper, we

propose an implementation of the previously proposed ReSA

requirements specification language, and provide algorithms

for the logical consistency checking of requirements formu-

lated in ReSA for a particular system. Our consistency check-

ing approach first automatically transforms ReSA require-

ments specifications into expressions in propositional logic

first, and then uses Z3 SMT solver to check the satisfiability

of the boolean specifications.

In order to handle the complexity of automotive embedded

systems development, the use of multiple levels of abstraction

NESREDIN MAHMUDET AL.: RESA TOOL 1745

is a known, and usually common practice for designing a com-

plex electrical/electronic function in architectural languages

such as EAST-ADL. In this paper, we specialize the ReSA

toolchain to support specifications tailored to EAST-ADL

levels of abstraction. We have conducted a validation of the

toolchain on the Adjustable Speed Limiter use case. The

language is expressive enough to express the 304 use case

requirements. Furthermore, the toolchain has also undergone

an initial evaluation by VGTT engineers, who answered ques-

tionnaires and specified certain requirements with our tool. In

our future work, we plan to scale the consistency checking to

support requirements with temporal, and quantifiers properties.

We also plan to extend the validation process to various

automotive use cases, including from other companies besides

VGTT, such as from Scania. In the near future, the toolchain

will be integrated into Synligare Eclipse1 for the EAST-ADL

language.

REFERENCES

[1] M. Garg and R. Lai. Measuring the Constraint Complexity of Automo-
tive Embedded Software Systems. In Data and Software Engineering

(ICODSE), 2014 International Conference on, pages 1–6, Nov 2014.
[2] S. Farfeleder, T. Moser, A. Krall, T. Stlhane, H. Zojer, and C. Panis.

DODT: Increasing Requirements Formalism using Domain ontologies
for Improved Embedded Systems Development. In Design and Di-

agnostics of Electronic Circuits Systems (DDECS), 2011 IEEE 14th

International Symposium on, pages 271–274, April 2011.
[3] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek,

Robert Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber.
Computer Aided Verification: 22nd International Conference, CAV 2010,

Edinburgh, UK, July 15-19, 2010. Proceedings, chapter RATSY –
A New Requirements Analysis Tool with Synthesis, pages 425–429.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[4] Constance Heitmeyer, James Kirby, Bruce Labaw, and Ramesh Bharad-
waj. Computer Aided Verification: 10th International Conference,

CAV’98 Vancouver, BC, Canada, June 28 – July 2, 1998 Proceedings,
chapter SCR: A Toolset for Specifying and Analyzing Software Require-
ments, pages 526–531. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998.

[5] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Yiannis
Papadopoulos, Mark-Oliver Reiser, Anders Sandberg, David Servat,
Ramin Tavakoli Kolagari, Martin Törngren, et al. The EAST-ADL
Architecture Description Language for Automotive Embedded Software.
In Model-Based Engineering of Embedded Real-Time Systems, pages
297–307. Springer, 2010.

[6] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. ReSA:
An Ontology-based Requirement Specification Language Tailored to Au-
tomotive Systems. In 10th IEEE International Symposium on Industrial

Embedded Systems (SIES), pages 1–10. IEEE, jun 2015.
[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.

In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[8] Didar Zowghi and Vincenzo Gervasi. The Three Cs of Requirements:
Consistency, Completeness, and Correctness. In International Workshop

on Requirements Engineering: Foundations for Software Quality, Essen,

Germany: Essener Informatik Beitiage, pages 155–164, 2002.
[9] M.P.E. Heimdahl and N.G. Leveson. Completeness and Consistency

in Hierarchical State-based Requirements. Software Engineering, IEEE

Transactions on, 22(6):363–377, Jun 1996.
[10] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw.

Automated Consistency Checking of Requirements Specifications. ACM

Trans. Softw. Eng. Methodol., 5(3):231–261, July 1996.
[11] No Silver Bullet. Essence and Accidents of Software Engineering, FP

Brooks. IEEE Computer, 20(4):10–19, 1987.
[12] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineer-

ing. Springer Science & Business Media, 2010.

1https://github.com/Arccore/synligare

[13] Andrew Radford. Minimalist Syntax: Exploring the Structure of English.
Cambridge University Press, 2004.

[14] Vincent Debruyne, Françoise Simonot-Lion, and Yvon Trinquet. EAST-
ADL-An Architecture Description Language. In Architecture Descrip-

tion Languages, pages 181–195. Springer, 2005.
[15] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank

Kirschke-Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa,
and Klaus Lange. Autosar–a worldwide standard is on the road. In
14th International VDI Congress Electronic Systems for Vehicles, Baden-

Baden, volume 62, 2009.
[16] TypeFox items. XText 2.5 Documentation, 2013.
[17] Lars Marius Garshol. BNF and EBNF: What are They and How Do

They Work?, 2008.
[18] Jianan Yue. Transition from EBNF to Xtext. Alternation, 1:1, 2014.
[19] Devlin David and Barry OSullivan. Satisfiability as a Classification

Problem. In Proc. of the 19th Irish Conf. on Artificial Intelligence and

Cognitive Science. 2008.
[20] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard

Version 2.0. 2010.
[21] Constance Heitmeyer, James Kirby, Bruce Labaw, and Ramesh Bharad-

waj. SCR: A Toolset for Specifying and Analyzing Software Require-
ments. In Computer Aided Verification, pages 526–531. Springer, 1998.

[22] Axel van Lamsweerde. Formal Specification: a Roadmap. In Proceed-

ings of the Conference on the Future of Software Engineering, pages
147–159. ACM, 2000.

[23] Vegard Johannessen. CESAR-text vs. Boilerplates: What is More
Effcient-requirements? Written as Free Text or Using Boilerplates (tem-
plates)? 2012.

[24] Alistair Mavin and Philip Wilkinson. Big Ears (The Return of ”Easy
Approach to Requirements Engineering”). In 2010 18th IEEE Interna-

tional Requirements Engineering Conference, pages 277–282. IEEE, sep
2010.

[25] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak.
Easy Approach to Requirements Syntax (EARS). In 2009 17th IEEE

International Requirements Engineering Conference, pages 317–322.
IEEE, aug 2009.

[26] Sascha Konrad and Betty HC Cheng. Real-time Specification Patterns.
In Proceedings of the 27th international conference on Software engi-

neering, pages 372–381. ACM, 2005.
[27] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns

in Property Specifications for Finite-state Verification. In Software

Engineering, 1999. Proceedings of the 1999 International Conference

on, pages 411–420. IEEE, 1999.
[28] Amalinda Post, Igor Menzel, and Andreas Podelski. Applying Restricted

English Grammar on Automotive RequirementsDoes It Work? A Case
Study. In Requirements Engineering: Foundation for Software Quality,
pages 166–180. Springer, 2011.

[29] Andreas Mitschke. EAST-ADL Domain Model SpecificationVersion.
EAST-ADL Association, 02 2012. Version 2.0.

[30] The REUSE Company. Requirements Authoring Tool, 2016.
[31] Zhou Chaochen, Charles Anthony Richard Hoare, and Anders P Ravn.

A Calculus of Durations. Information processing letters, 40(5):269–276,
1991.

[32] Christian Ellen, Sven Sieverding, and Hardi Hungar. Detecting Consis-
tencies and Inconsistencies of Pattern-based Functional Requirements.
In Formal Methods for Industrial Critical Systems, pages 155–169.
Springer, 2014.

[33] BTC Embedded Systems. Attempto tools, 2016.
[34] Norbert E. Fuchs and Rolf Schwitter. Attempto Controlled Natural

Language for Requirements Specifications. In Proc. Seventh Intl. Logic

Programming Symp. Workshop Logic Programming Environments, pages
25–32, 1995.

[35] Attempto Project. Attempto Tools, 2013.
[36] Rolf Schwitter. English as a Formal Specification Language. In

Database and Expert Systems Applications, 2002. Proceedings. 13th

International Workshop on, pages 228–232. IEEE, 2002.
[37] Rongjie Yan, Chih-Hong Cheng, and Yesheng Chai. Formal Consis-

tency Checking over Specifications in Natural Languages. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2015,
pages 1677–1682. IEEE, 2015.

1746 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

