
A blended learning model for practical sessions

Nuno Barreiro, Carlos Matos
Department of Computer Science,

Royal Holloway, University of London,

Egham Hill,

TW20 0EX, UK

Email: {Nuno.Barreiro, Carlos.Matos}@rhul.ac.uk

Abstract—We describe an education model that was developed
and put in place to improve student engagement and attainment
in a first year undergraduate programming course.

The work is founded in a checkpoint-based formative assess-
ment experiment undertaken for two years, the success of which is
analysed in this document. The results provide evidence leading to
a move towards a blended model of education, which requires the
design of a software application to support the system. We present
the main features of that application, covering aspects that range
from traditional approaches and established delivery methods, to
e-learning and MOOCs with, for instance, gamification.

This blended model of education fosters the development of
a teaching practice that adapts to student diversity through
informed teaching.

I. INTRODUCTION

F
IRST year higher education undergraduate teaching is

normally challenging for most areas: students face issues

when transitioning from the school system; the class as a

whole presents an inhomogeneous skill diversity. This is

certainly the case in computer science, an area that attracts

candidates with many different backgrounds. A particularly

challenging topic within the discipline is the induction of

students to programming [1], [2]: students taking a first year

undergraduate course in that subject range from those who

have never seen a line of code, to those who have completed

software projects at school.

This document describes and evaluates a formative assess-

ment experiment undertaken for two years in such a first-year

course: the practical sessions were radically transformed by the

introduction of a checkpoint system. The main goal of this new

approach was to improve student engagement and attainment,

but other objectives were also taken into consideration when

designing the system.

Lab sheets with strategically placed low granularity check-

points drive the practical sessions, which are supported by

teaching assistants (TAs). Their role is to validate the check-

points, provide help and feedback to the students, and gather

data. Updated on a weekly basis, a checkpoints map measures

how students progress through the course, and is used to

inform teaching: early failure triggers quick remedial actions;

high achievers are provided with challenging material; the

contents of the sessions are adapted weekly to the overall

pace and performance of the class. The experience of running

this model for two years proved successful, with high student

engagement and very positive feedback both from academic

staff and students.

The analysis of the experiment has led to the development

of a blended learning model to support practical sessions.

Blended learning [3], [4], [5] uses both paradigms of tradi-

tional brick-and-mortar teaching, and online digital technolo-

gies, taking stock of techniques proven successful in e-learning

and MOOCs, for example in the context of primary school

mathematics education [6].

The course already uses Moodle to publish all its material,

namely the weekly lab sheets used in practical sessions. The

approach we propose includes extensions based on gamifica-

tion [7] and a semi-automation of the checkpoint validating

process. This is achieved through a software application, which

design is described in this document.

The remainder of this paper is organised as follows: Sec-

tion II provides context to both model and experiment, which

are described in Section III. Section IV details the qualitative

analysis of the experiment, and leads into a discussion on

moving towards a blended model of education, presented

in Section V. The checkpoint system is supported by an

application described in Section VI. Section VII discusses

related work, and Section VIII presents the conclusions.

II. CONTEXT

A. Teaching first year students

Formative assessment plays a major role in teaching com-

puter science at our department, in particular when it comes to

programming. Students start the degree with a great diversity

of individual skills, which adds to the challenge of getting

all of them to the end of first year with a similar body of

knowledge. Treating that range of ability as an homogeneous

body raises lack of engagement at both ends of the spectrum,

which has been observed during many years of teaching

experience in the department. As such, we need tools that help

us both address failure at a very early stage, and encourage

students who have a high level of familiarity with the subject

to move on to more challenging material.

Each course delivery takes that diversity into account, to

some extent. However, when it comes to first-year practical

sessions, this aspect plays a major role: those sessions are, for

many students, the first contact with written computer code.

Students with different backgrounds proceed at different paces,

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 903–912

DOI: 10.15439/2016F432

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 903

and a one-size-fits-all approach will inevitably fail to engage

at least two kinds of students:

• those that are further dragging behind after each session,

skipping most practical exercises and writing very little

code;

• those that already know how to write some code and

would appreciate a higher degree of complexity in the

presented material.

An example of a first-year course with a strong practical

component is CS1801 – Object-oriented programming. It

spans over the two teaching terms and is taken by all single

and joint-honours undergraduate computer science degrees.

During the course, students learn the concepts of object-

oriented programming that will be used through the entire

degree and in their future profession. Acquiring those essential

skills is critical to their success during the following years.

B. The CS1801 course

The course structure follows a traditional approach. Every

week, there are two one-hour lectures, delivered to all the co-

hort in one go, and one three-hour practical session, organised

in groups of approximately 30 students each. The uneven level

of the students prevents the lecturer, during a practical session,

from addressing the attendants as a whole. That problem is

addressed by the presence of TAs for one-to-one interactions

with students that have questions or are lost.

Each practical session is attended by three TAs, one per 10

students, which amounts to an interaction average time of 18

minutes per student per session. This can seem a lot of time,

but in a three-hour session it corresponds to 6 minutes per

hour – too short a time for detailed feedback.

Students are given a lab sheet that they are supposed to

complete by the end of the session, but can carry from

one session to the following ones, proceeding at their own

pace. The lab sheets consist of several programming exercises,

which the students have to code, compile and run. The

exercises cover material from the lectures, and also include

revisions from previous practical sessions. Completing the

lab sheets plays an essential role in acquiring the skills of

a proficient programmer: any developer knows that going

from the pseudo-code written in a piece of paper to the

real thing running on a computer requires a great deal of

craftsmanship [2]. This learn-by-doing process of trial and

error is regarded as one of the central aspects of education,

and is not specific to computer science. For instance, In his

1984 book on experiential learning [8], Kolb emphasises the

role of discovery and experience as sources of learning and

development.

What we observe, however, is that many students fail to

engage with the lab sheets: they do not tackle most of the

exercises, leaving the sessions with important gaps in essential

skills. This leads to a gradual block in their progress (most

tasks require material from previous checkpoints). Further-

more, given that the acquisition of craftsmanship is a slow

process requiring repetition, the more they drag behind, the

less a chance they have to recover: it becomes a slow road to

failing the course and, most probably, the first year.
The lack of engagement of some other students happens

for different reasons: the presented material is trivial for their

level; attending practical sessions is viewed as a mandatory

boring activity. To address that issue, there are exercises,

towards the end of the lab sheet, specifically aimed at highly-

skilled students. They present interesting challenges requiring

both problem solving and code proficiency. These are exercises

that benefit from fruitful one-to-one interactions, which would

need to be longer that the 18 minutes allocated to each student.
Overall, regardless of the motives, we observe a general

tendency among students: even if the TAs are available and

willing to help, most students will choose skipping exercises

over calling the TAs.

III. AN EXPERIMENT IN THE PRACTICAL SESSIONS

A. Checkpoint system

During the last two academic years, with the main goal

of overcoming the lack of engagement, but also in response

to feedback provided by student and staff on the teaching

of programming, we have conducted a formative assessment

experiment in the CS1801 practical sessions: in each session,

students have several checkpoints that help us (and them) keep

track of their progress.
The process is coordinated by a lecturer, and follows the

steps detailed below. We would like to note, as an early

motivation of a blended model, that all these steps were

conducted without any tool support, being therefore onerous

in terms of time and dedication.
1) Lab sheet: A highly structured lab sheet is published on

Moodle at the start of each practical session – this contains

not only exercises, which are separated by well-identified (and

strategically placed) checkpoints, but also examples and hints

on how to approach the different tasks.
2) Practical session: During the session, each TA has a

list with the checkpoints that every student has completed so

far. When a student reaches a checkpoint and calls a TA, the

checkpoint is verified – which consists in checking if the tasks

were correctly completed, and the checkpoints list is updated

accordingly.
3) Processing the information: Before the next practical

session, the lecturer merges the information from the indi-

vidual sheets, and publishes the updated list on Moodle. The

history of those weekly updates is kept for reference – it shows

the individual learning curves.
4) Publishing the results: At strategic points during the

term, the lecturer produces a report with every student’s

achievements. This is used for internal monitoring of progres-

sion, and for deciding on any remedial actions.

B. Verifying the checkpoints

Every student has a different way of approaching check-

points: some will regularly call the TAs at each checkpoint,

others will prefer to have them verified in bulk. Nonetheless,

whatever the approach, we have identified three stages at

which students choose to have their checkpoints verified.

904 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

1) Complete solutions: Some students make sure that they

have gone as far as they can, and present a program that not

only works, but often will have different solutions for the

same task. They expect the TA to give them advice on which

solution is better, to comment on the code, and to encourage

them to dig deeper.

2) Good attempts at a solution: Most students will consider

a checkpoint ready to be verified as soon as they have written

a snippet of code that compiles and presents a reasonable

behaviour. Those programs will often miss particular cases

and clever solutions, and the role of the TA is to inform the

student about those alternatives.

3) Insufficient work: There are a few students that call the

helper as soon as they have something that resembles the

desired outcome. They expect to get major help from the TA

in order to complete the task.

C. Acting on the results

One of the main aspects of using the checkpoint system is

the ability to act on the gathered information. This is done

at two levels: the information concerning a student allows for

quick remedial actions; the information about the progression

of the class as a whole provides a measure of the overall pace,

informing the design of the lab sheets from session to session.

If the entire class is lagging behind on a specific lab sheet,

the following session can be lighter, allowing the students to

catch up and relieve a possible frustration.

IV. ANALYSIS OF THE EXPERIMENT

A. Student engagement

The results of the experiment are presented in Table I, which

only covers the first term of each year. There are significant

differences in the approach to course delivery within both

terms, which led us to focus mainly on the first term.

1) Differences between the two terms: In general, the level

of student engagement drops during the second term, which

is partially due to an increase in the number of checkpoints

from one term to the other. Both terms have eleven practical

sessions, but the last four sessions of term one are dedicated

to the students that still have checkpoints to verify. All the

other students no longer have to attend the sessions, dedicating

this extra free time to other courses where their new skills

will thrive in concrete applications (like, for example, games

or robotics). For the students that are required to attend

the remaining CS1801 sessions, there is no introduction of

new material, and given the reduced number of students, the

average support time from TAs is much higher.

We have observed that, during the second term of both

years, the increase of 50% in the number of checkpoints (from

26 to 44 in 2014/15, and from 28 to 40 in 2015/15) leads

to a decrease of approximately 75% in the overall rate of

completion, when compared to the corresponding first term.

The material studied in the practical sessions is also more

complex during the second term, and the number of exercises

is higher. All these contribute to the lack of engagement during

the second term, and one of the reasons we went for the design

TABLE I
STUDENT ENGAGEMENT DURING THE FIRST TERM

2014/15 2015/16

Number of checkpoints 24 28

Number of students 83 113

Students with more than 50% of the tasks verified 93% 88%

Students with more than 75% of the tasks verified 87% 77%

TABLE II
CS1801 RESULTS FOR NON-REPEATING STUDENTS

2012/13 – 2013/14 2014/15 – 2015/16

Grade average 59.4% 66.2%

Failing students 19.6% 13.6%

of a blended model is to achieve, during the entire year, the

success rate of term one.

2) The success of term one: In term one, as Table I shows,

approximately 90% of the students complete more than half

of the tasks. Given that this corresponds to the least amount

of work expected from an average student, the percentage

shows a very good level of overall engagement. Moreover,

approximately 80% of the students complete more than three

quarters of the tasks, which shows a high level of participation.

These numbers are not directly comparable to any measures

from previous years (no control was done during practical

sessions), but a measurable outcome is the level of success

in the mid-year CS1801 test, which is a piece of formative

assessment conducted on a weekly basis, from weeks 7 to

11 of term one. The students that achieve a grade above

85% are released from the lectures for the rest of the term.

Usually, by the end of term one, most students will have

succeeded in passing the test, but we have observed that,

with the introduction of the checkpoint system, students are

reaching the passing grade earlier.

3) Summative assessment outcomes: Summative assess-

ment for CS1801 consists of several small pieces of course-

work (10% of the final grade) and an exam (90% of the final

grade).

The checkpoint system was introduced in 2014/15 and

has been running for the last two academic years. Table II

presents the outcomes of those two years, comparing them to

the two previous years. In order to better measure the effect

of the experiment, we have only considered students taking

the exam for the first time – repeating students may have

undertaken more programming courses, which gives them a

clear advantage. The results indicate a significant increase in

the success of summative assessment: higher grades and fewer

failing students. However, these first observations still need to

validated by a proper statistical analysis, for which we are

gathering further data.

B. Further improvements

When looking at the numbers, and whilst the experiment can

be considered successful, there are still 20% of the students

NUNO BARREIRO, CARLOS MATOS: A BLENDED LEARNING MODEL FOR PRACTICAL SESSIONS 905

that are missing one quarter of the checkpoints, which is a

significant number. To identify these students, we need a closer

analysis of the process. The students have different levels of

interaction with the TAs; the nature of those fundamental and

time-consuming interactions reflects the level of the student,

and raises different types of frustration.

1) Skilled students: Students with a prior knowledge of

programming are very confident of their skills, and fail to

realise that, although they have some programming abilities,

there are specific requirements (for instance the style of the

code and its readability by other programmers), which they

are not familiar with. They regard the checkpoint system

as a boring formality, and will skip it altogether. However,

most of those students, when forced to check their work by

an engaging TA, come to the conclusion that having skilled

programmers reviewing the code is always a fruitful source of

knowledge.

Skilled students tend to persist on recurrent mistakes and,

in general, overestimate their abilities. It is not rare to find, in

solutions presented by those more experienced students, many

fragments of bad code that reveal misunderstanding and con-

fusion. One such example is the following Java snippet (while

being fully functional, it certainly leaves a bad impression on

any trained programmer):

p u b l i c s t a t i c boolean n e g a t e (boolean a) {

i f (a == t rue) re turn f a l s e ;

e l s e re turn tr ue ;

}

The student that produces such a piece of code is certain of

having reached the goal of the task, but is missing important

notions of programming. Those gaps in the acquired knowl-

edge are mended by the interaction with TAs.

2) Struggling students: Students that are having a great

deal of difficulty with programming feel uncomfortable asking

for help, in particular when they look around and observe

colleagues progressing at a faster pace than they are. When

talking to those students, the variety of entry requirements be-

comes apparent: since neither mathematics nor programming

are required, students that have taken those courses during

their undergraduate studies are at an advantage. We also insist

regularly on the fact that the learning outcomes should be

measured by the end of the year, and that they should keep on

trying. However, this does not prevent their frustration and/or

impression of underachievement.

3) Limited resources: There is also the overhead of check-

ing the exercises. The resources are limited, and sometimes

students have to wait a considerable amount of time before

getting checked. As they have to call a TA as soon one

becomes free, this may end up being tiresome. Some students

simply abandon the process midway.

C. Student satisfaction

There are several factors that affect the way students per-

ceive the effectiveness of a course delivery. In the context

of our experiment, we could identify two main perceptions

among students: checkpoints are viewed either as a reward

system, or as a remedial plan to address failure. Those

different perceptions entail different ways of interacting with

the system, leading to variable outcomes.
1) Feedback from students: Every term, students fill in a

feedback questionnaire provided by Royal Holloway. Those

questionnaires are highly detailed and present an overall

picture of the course status. In the feedback forms for 2013/14

– term 1, 10 comments (in a total of 18) complain about

the practical sessions. In the corresponding feedback forms

from 2014/15, when the checkpoint system was introduced,

29 comments (in a total of 56) specifically mention good

points about the practical sessions. The same tendencies were

observed for the second term, although with less significant

numbers. Anonymous comments included:

“Compared to last year, the new format of the lab is

much better.”

“The checkpoints in the labs were a good way of

tracking progress.”

“Tasks on the lab sessions were chosen very well.”

Besides those standard course feedback questionnaires, we

foster further discussion with both staff and students to iden-

tify possible improvement opportunities. The yearly feedback

provided by the students’ committee for 2013/14 (the year

preceding the introduction of checkpoints) mentioned that the

practical sessions were delivered at a “too fast pace for people

with little experience”. During the next academic year, in the

mid-term one-to-one meetings with their advisors, students

were directly asked about the impact of checkpoints on their

learning experience. The response was unanimous in acknowl-

edging the system as extremely helpful. This impression was

reiterated in the general feedback from the students’ committee

for 2014/15.
2) A rewarding system: The checkpoint system is perceived

by students as a reward for their effort. Most students view this

as an incentive, others as a way of monitoring their learning,

and some even view the system as a competition. In general,

they agree that the checkpoints really help them progress.
The responsible for the Student Experience in our De-

partment has provided feedback about the system [9]: “The

checkpoint system provides immediate formative feedback to

the students. Students can identify problems and then in the

lab discuss with the TAs what their problems are.”
Given that a satisfied student is a better student, the positive

feedback from students partially validates the effectiveness

of the process. Furthermore, it also informs the approach,

enabling a continuous fine-tuning of details in response to

input from students.
3) Personal development: There is a growing awareness

of the need to develop personal skills such as the ability

to communicate, to present oneself with confidence, and to

tackle unfamiliar problems. More generally, students’ personal

development should be understood to cover aspects of educa-

tional development (for example, the ability to use feedback to

improve performance or to make use of educational resources

such as Moodle or the library) and of career development

906 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

(for example, understand professional issues associated with

careers in IT or the ability to work effectively in teams).

Questionnaires give evidence of students’ perception of the

quality of support that they received. However, to act on such

responses and improve our support, one also needs to:

• understand the expectations that students have in relation

to their personal development;

• ensure that students understand how, through the received

feedback, they are given the opportunity to develop those

personal skills.

That is, students need to take ownership of their development,

and they cannot do so on a vague understanding of what

support they are provided with.

Our Head of Department has provided feedback about the

system in this context [9]: “The checkpoint system is an ex-

cellent contribution to allowing students take more ownership

of their personal development. It allows them to progress at

their own pace by getting quick feedback on their performance

and understand what they need to improve.”

D. Informed teaching

At first, the system was introduced to promote students’

engagement, by having them asking for help and interacting

with the TAs. However, it ended up covering many other

aspects of the student’s learning process that deserve more

attention and development. The system can, namely:

• maximise success and minimise failure in practical

courses by continuously giving feedback to students on

their progression;

• measure the pace at which each student progresses,

allowing for early actions to be taken on the learning

difficulties that are detected.

1) Acting on failure: The weekly feedback provided by

checkpoints allows academics to take action early on.

A co-responsible for the CS1801 lectures has provided

feedback about the system in this regard [9]: “The checkpoint

system provides me with much needed timely feedback on

student performance in the weekly labs. I can quickly grasp

how well students keep up with the course material and

can spot particularly challenging topics. This is invaluable

especially in the first year, where many students do not easily

come forward after lectures or during office hours to ask for

clarification or help. In addition, it allows to spot students

who seem to not be engaging with the course; their personal

advisors can then focus their attention on these students during

the tutorial sessions for the course.”

Together with his feedback mentioned in Section IV-C2,

the system has been deemed by the responsible for Student

Experience, with respect to providing a continuous overall

picture of students’ progression, to provide staff members

with feedback that is “immensely useful for the department

particularly with respect to quickly identifying progress in

CS1801 for the progressions committee.”

2) Promoting success: During the first year of the ex-

periment, we have regularly provided optional exercises in

the lab sheets, aimed at the students that welcome harder

challenges. However, we have observed that most students

would simply ignore those extra tasks. We were even surprised

by students complaining about not feeling challenged in the

practical sessions, and confessing at the same time that they

had never attempted to solve any of those extra tasks.

Under the hypothesis that this phenomenon was mainly due

to the fact that those extra tasks did not correspond to an

extra checkpoint, we have made small change to the lab sheets

published during the second year of the experiment: for each

practical session, we have moved those optional exercises into

a platinum checkpoint. And, in every weekly status update,

we have published the results of the platinum checkpoints

along all the other ones. The result was surprising: this simple

alteration has triggered a much higher student participation in

those extra tasks.

Observing the success of platinum checkpoints, we are led

to consider the system as a tool enabling a fine analysis of the

students’ behaviour, both when addressing failure and when

promoting a higher level of engagement for highly skilled

students.

V. TOWARDS A BLENDED MODEL OF EDUCATION

The success of the experiment lies in both the achieved

results and, more importantly, the room for improvement that

the process seems to present with respect to automation.

Indeed, there are several aspects of the checkpoint system

that would greatly benefit from automated or semi-automated

mechanisms involving online techniques.

A. Assessment and feedback

The checkpoint system provides continuous feedback on

each student’s progress. With an average of four checkpoints

per practical session, students reach the end of term with more

than 40 checkpoints.

Since the results are made available every week, both stu-

dents and academics have a detailed perception of individual

learning curves throughout the term. We aim to combine those

qualitative appreciations with a score (1-3 stars) and a badge-

reward system (similar to the ones implemented in games

and other scenarios [10]). Platinum checkpoints are a first

simple example of what special badges can achieve, namely

when it comes to encouraging students to complete the most

challenging exercises.

B. Bringing the MOOCs to the classroom

MOOCs have been, in the past two years, gaining traction

as a model for massively teaching students off campus. Al-

though the results are mixed and debatable, some of their

characteristics are remarkable: active learning (self-pacing and

instant feedback) and gamification (with, for instance, badge-

awarding systems).

What we intend is to bring those successful aspects of

MOOCs to the classroom. According to Anant Agarwal, CEO

NUNO BARREIRO, CARLOS MATOS: A BLENDED LEARNING MODEL FOR PRACTICAL SESSIONS 907

of edX, this process is about “taking ... the technologies we

are developing in the large and applying them in the small to

create a blended model of education” [11].

We propose to bring teaching, assessment and gamification

techniques from MOOCs to the classroom, namely:

• students are able to follow the sessions at their own pace;

• progression to the next level only occurs when the previ-

ous levels have been completed, understood and verified;

• badges encourage students to perform better in the

achievement of specific goals;

• the visualisation of progress bars and learning curves

provides students with an overall perception of their

performance.

C. Advantages of an automated system

We have identified the following possible improvements.

1) A first response line: If the code written by students is

submitted to an IT system instead of being directly present

to a TA, a few automatic tests will provide feedback to

students on how to correct common mistakes. Several systems

for automatic assessment of programming assignments exist,

with different levels of support and feedback, as discussed

in [12]. In our case the complexity of the tests can vary,

but they constitute an automated line of action that will rely

on human assistance only when necessary: the TAs will be

called fewer times and their overall availability will increase.

Furthermore, the automation trivially orders TA requests by

submission time, which frees the student to start working on

the next checkpoint after the submission of the code, instead

of recurrently looking for an available TA.

2) Speeding up feedback: The automated submission also

provides different levels of feedback, going beyond the typical

interaction with the TAs. After passing the code through

several tests, the student may get specific feedback on par-

ticular mistakes without interacting with a TA. Nonetheless,

the TAs will always be available to provide further detail, if

necessary. When the system is not able to provide automated

feedback, a TA is called. Whatever the reason to call for human

help, the responding TA will have a device with available

information about the student’s checkpoint history, the current

checkpoint, and the code issues. This will speed up the process

of interaction, during which the TAs can spend a considerable

amount of time going through the checkpoints and looking for

problems in the code before being able to help the student.

3) Increased promotion of different paces: The lab sheets

are published on a weekly basis, rather then in bulk. The

rationale behind this procedure is to allow the progressive

unfold of a story during the term, for which the sessions

sequence is essential. However, this approach has two main

drawbacks:

• the faster students will finish the lab session in less than

two hours, even when completing some optional harder

tasks, which leaves out an hour that could be used to

progress to the next tasks;

• some students will get stuck on a particular task and,

although we insist that students may move on and come

back later to that particular problem, some future tasks

may depend on the left-behind task, and students get

sometimes confused about what they know, and what they

still have to acquire.

An automated system would overcome these issues by using

a graph of task precedences that would allow all the tasks to

be published at the same time, disabling those that require

previous tasks to be completed. As soon as a student completes

one checkpoint, the system will display any new available

checkpoints. Also, any disabled checkpoint will display the

tasks that are required for its unlocking. This also doubles as

a knowledge map, where students can easily find paths leading

to the acquisition of a specific skill.

D. Further aspects of an automated system

Beyond the advantages described in Section V, the check-

point system automation would also provide a realtime source

of information about the students’ progress, both individually

and as a whole. Different ways of looking at the data provide

different insights. An automated system could easily provide

charts with realtime statistical analysis, that can include the

progression curve of one student or of the class, a classifi-

cation of students according to several filter options (number

of completed checkpoints, total score, ranking), comparison

between several years and sessions, etc.

VI. DESIGNING THE APPLICATION

In order to fulfil the mentioned goals and provide a better

service to both students and academics, we have designed a

web-based application that automates the checkpoints process.

Running on the browser of any computer (desktop, laptop,

tablet or phone), the application may be used by lecturers

and students alike. The basic functionality of the checkpoints

mechanism will be supported by a core module, and an API

will provide the ability to extend the application with addi-

tional useful features that can enhance the learning experience

of students, individually and as a whole. A proof-of-concept

prototype has been developed and is functional, covering

some of the essential features. The final application is under

development since early 2016.

The outcome of this development is a software system that

will not be specific to computer science, and that can be used

by any discipline to provide formative assessment in practical

sessions. The overall goals of the system are to:

• monitor student achievement and performance;

• reward the student with a score corresponding to those

achievements and performances;

• measure the difficulty of exercises by looking at the

overall performance of the class;

• adapt at runtime the delivery of the practical sessions to

the level of the class, and propose course revisions for

the next years;

• give tailored content to students that have specific diffi-

culties or a higher level of achievement;

• provide a methodology for exercise-based sessions that

can be used in a systematic way.

908 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

A. Overall description

During a typical session, students are working on computers

where they can submit their checkpoints. TAs will have

portable devices (tablets) that they use to identify students in

need of help, and to verify the checkpoints.

When the users log into the system they have access to

a general view of their account where they can either edit

personal information, or select a course. Inside the course,

each type of user has different options, as described below.

1) Students: Students are able to view rankings, individual

achievements, and an overall picture of the checkpoints. In that

view, students access the graph of checkpoints for the course,

as well as the checkpoints that are completed and those that are

unlocked, given the current score. There is also a graph with

the learning curve of the student with respect to that course.

2) Academics: Academics are able to edit the graph of

checkpoints, add new checkpoints, and monitor all the stu-

dents’ activities. They are also able to create rewards awarded

to students when they reach certain points of the graph, or

certain scores.

3) Administrators: Administrators have a different kind of

access, allowing them to create courses and to perform func-

tionalities such as management, monitoring and maintenance.

B. Definition of checkpoint

A checkpoint is a set of tasks that students have to perform.

Usually that set is small, as fragmentation is an essential aspect

of checkpoints: overcoming several small challenges is more

rewarding than dealing with a complex task that will take long

to complete [13].

The contents of a checkpoint can have several declinations:

tutorial with simple tasks, complex tasks requiring problem

solving, quizzes, etc.

The students’ general view of all the checkpoints in the

application highlights those that are accessible. Regardless

of accessibility, each checkpoint displays a description of its

content. This allows the student to understand, with the help

of the graph, which checkpoints need to be completed before

acquiring a specific knowledge.

The students’ work on a checkpoint is independent of the

software application, which only manages checkpoints and

deals with the submitted material. This allows different kinds

of disciplines to use the system. In the case of CS1801, for

example, students work on a Linux server using an editor of

their choice, and a Java compiler. Once the student considers

that the tasks are completed, they upload the relevant files to

the application and wait for the verification process.

C. Verifying a checkpoint

The solutions to the checkpoint tasks are verified by an auto-

mated system and/or a TA. The verification by an automated

system requires the solution of the tasks to be submittable

to an electronic system. In the absence of that feature, the

system will always rely on a TA to verify a checkpoint. In

this document, we will consider that the students are able to

submit a file to get the checkpoint verified by an automated

testing mechanism.
The verification process may have several outcomes, includ-

ing the need to go back to the tasks in order to correct critical

mistakes. One crucial aspect of a checkpoint is that is can be

attempted several times: each attempt can result in a better

outcome, which may also be awarded a higher score. This

characteristic is aligned with literature on gamification [14],

and with the article by Karpicke and Blunt [15] where they

conclude:

“Research on retrieval practice suggests a view of

how the human mind works that differs from ev-

eryday intuition. Retrieval is not merely a readout

of the knowledge stored in one’s mind; the act of

reconstructing knowledge itself enhances learning.”

Hence, the students overcome mistakes by trial and error,

which is a procedure they are familiar with [8].
Figure 1 shows the flow involved in the verification of a

checkpoint. Each step of the process is detailed below.
1) Working on a checkpoint: The student is working on

the tasks of the checkpoint. Some help from the TAs may be

required, but students are encouraged to work on their own

and submit solutions they deem adequate.
2) Submitting the tasks: When a student finishes a set of

tasks, they upload the relevant files to the application, or fill

in a form with the outcomes of the task (depending on the

nature of the task). In the specific case of CS1801, the student

submits a Java source file. As soon as the submission is done,

the checkpoint becomes unavailable until either the verification

is completed, or the process is cancelled by the student.
While waiting for the verification, the student may start

working on any other unlocked checkpoint. The student may

also choose not to submit the solutions to the tasks, but this

means that no new checkpoints will ever be unlocked, and the

student will eventually get stuck.
3) Testing the submission: A series of automated tests are

performed. This first line of action looks for common mistakes

that are easily detectable, and for which some feedback can be

provided without any human intervention. Sophisticated tests

can also be performed, if such a test suite is available for the

discipline that is using the system. In the case of CS1801, a

series of automated tests allow a complete verification of the

checkpoint (see Section VI-D).
4) Getting feedback: If the tests are not passed, the system

will try to provide some automated feedback to the student.

If that feedback cannot be produced, the application puts

the submission in the TAs’ queue: a TA will be notified

and the student will eventually be approached to get some

oral feedback, or to have the checkpoint validated. This may

happen when, for instance, the student has an easy-to-fix error

in the code.
5) Validating a checkpoint: The validation of a checkpoint

can be automatically completed by the application, or require

the intervention of a TA. In the latter case, the TAs use

their tablets to capture a QR code on the computer of the

student (uniquely identifying the student-checkpoint pair).

NUNO BARREIRO, CARLOS MATOS: A BLENDED LEARNING MODEL FOR PRACTICAL SESSIONS 909

Fig. 1. Verifying a checkpoint with the application

This will bring up an interface that allows the TA to score

the checkpoint. When the checkpoint gets validated, some new

checkpoints may become unlocked.

6) Score: When the checkpoint is validated, the student

gets a score (1-3 stars) based on several criteria. This score

can be automatically provided by the system, according to the

outcomes of the test suite, or it can be attributed by the TA.

D. The submission assessment for CS1801

The submission of a checkpoint consists of uploading the

file with the code to the server. The file is then submitted to a

series of tests that check if the code corresponds to what was

asked in the set of tasks. The tests are sequential and follow

the steps described below, shown in Figure 2.

1) Compilation: The first requirement to complete a check-

point is that the submitted code compiles. If the compilation

issues warnings, the student may be given some automated

feedback that will suggest improvements on the code.

2) Unit testing: The exercises have specific outcomes that

allow unit testing. For example, a program that defines a class

can be tested by creating an object of that class and calling its

methods. There are several tests for each exercise; those tests

can be weighted in order to assess the student accordingly.

The number of stars the student is awarded for the checkpoint

will increase with the number of passed tests.

3) Checking the style: Students often write code that does

the required job, but presents stylistics flaws that, even if they

are optimised by the compiler, show some gaps in the acquired

knowledge. One of the goals of CS1801 is to get students to

write programs that are readable and free from bad code.

E. Prototype

We have developed an early prototype that covers the

following functionality:

• log in with testing accounts;

• set different groups of checkpoints (emulating a course);

• organise, in each group, a linear sequence of checkpoints;

• view the stages of completion of each group of check-

points;

• view the unlocked checkpoints;

• view the locked checkpoints, and the precedences that

unlock them;

• verify a checkpoint using a QR code.

F. Extensions to the prototype

The application extends the prototype with the following

additional features, most of them via an API.

1) Remote authentication: The users can use their usual

credentials, which are securely fetched from a remote server.

2) Timed checkpoints: When a student starts a set of tasks, a

timer is activated to measure the time spent on that checkpoint.

3) Graphical representations of data: Several views of the

students’ progress, individual and by groups, will help both

students and teachers have snapshots of the students’ status

and the learning curves.

4) Graph of checkpoints: Students can progress according

to their actual skills, in a non-linear fashion, instead of having

to follow a sequence of checkpoints that may not be the most

adequate to their learning curve.

5) Automated verification process: The submissions are

subjected to an automated suite of tests.

6) Enhanced gamification: Student’s achievements will be

awarded trophies, rewarding effort – not just success; those

trophies are viewed by other students and establish peer

motivation.

7) Students’ feedback on the exercises: Academic staff

will receive a constant measurement of how students perceive

the exercises, allowing them take early action and adapt the

exercises to the needs of the students.

8) Look and feel: The new features will require a revision

of the application user interface.

VII. RELATED WORK

A. Checkpoints

The notion of checkpoints applied to support teaching of

programming has been used for some time. The concrete

goals have ranged from formal assessment [16] to testing the

rate of student progress and improve the process [17]. The

910 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 2. Automated test sequence for CS1801

granularity at which these are used also varies significantly.

In some models, checkpoints are set after small exercises are

completed [18], whilst others set these only when more con-

siderable tasks are finalised [19]. In the case of our approach,

the checkpoints are designed at a low level of granularity to

allow both a detailed view of student progress, and a good

understanding of the difficulty in each set of tasks. However,

the application is also suited to different approaches, like for

instance long sessions focusing on one single difficult task.

The way the completion of these checkpoints is taken into

account also varies. The results are logged in various fashions,

ranging from simple manual accounting to free [20] and

commercial tool support [21], [22]. The model we present

includes the design of a toolchain that takes into account the

required granularity of the specific checkpoints, fosters a good

user experience for both assessors and students (e.g. the use

of QR code recognition so that manual input is minimised),

allows for a graph of dependencies, and is integrated with

some gamification concepts.

Checkpoints are also used either as a means to assist

in supporting students in traditional programming laboratory

settings [21] or as part of automated assessment [20]. Our

approach still includes traditional sessions, where students

are presented with exercises and benefit from the support of

teaching assistants. But it also takes advantage of modern tech-

niques, such as those widely used in Continuous Integration,

to reduce the amount of required intervention and to give

immediate feedback to students.

B. Serious games and gamification

Serious games were introduced in order to facilitate pur-

poses other than simply entertainment. These ranged from

games in a general sense as described by Abt in 1970 [23],

to digital games as presented more recently by Sawyer and

Rejeski [24] and Michael and Chen [25]. Whilst sharing some

concepts with serious games, gamification [7] focuses on

using game elements to enhance several activities, rather than

having users specifically play a game. These activies include

learning [26], [27], business [28], and even self-help [29].

The model we describe uses the concept of gamification to

improve student engagement in practical sessions (and with

the goal of improving attainment), whilst resulting in better

learner analytics.

C. Blended learning

Blended learning [3], [4], corresponds to models where

the Internet and digital media are combined with traditional

classroom settings. In his 2012 report [30], Friesen presents

the following definition:

“Blended learning” designates the range of possi-

bilities presented by combining Internet and digital

media with established classroom forms that require

the physical co-presence of teacher and students.

This technique was used in the context of our approach as a

means to reap benefits from both worlds. Traditional practical

sessions allow close support and quick and helpful feedback,

whilst the digital content and automatic checks accelerate the

administrative process and allow students to focus in learning

how to think computationally.

D. Automatic checks

Automatically checking student programming work has

been researched for many years [31], [32], and is still an active

area [12], [33]. Whilst it is possible to use these techniques to

address, for instance, issues of scale, the level of feedback and

assistance still lags behind what can be achieved with direct

support from experienced teaching assistants. Notwithstanding

this gap, it is a useful approach that can be integrated with

the traditional one. In the model we describe, this has been

achieved by including automated checks to address a first line

of issues, followed by human support when required.

VIII. CONCLUSION

We have presented a blended model of education motivated

by a successful formative assessment experiment conducted

in the practical sessions of a first-year undergraduate pro-

gramming course. That model will benefit from the support

of an application, which design was informed by building

and testing a functional prototype. The application is currently

under development, and will be deployed in 2016/17.

One of the main improvements in the final application,

compared to the prototype, is the strong gamification com-

ponent. We have observed how the introduction of platinum

checkpoints has motivated some students to engage with

harder tasks. We expect, similarly, the star-based scores and the

NUNO BARREIRO, CARLOS MATOS: A BLENDED LEARNING MODEL FOR PRACTICAL SESSIONS 911

achievement badges to stimulate a higher level of overall en-

gagement. Moreover, given the current trends in gamification

research, this is an aspect with much room for improvement:

the API will easily accommodate third-party awards like, for

instance, Mozilla Open Badges [10].

We will evaluate and monitor the initiative mainly through:

student feedback (advisor tutorials, one-to-one meetings and

student feedback questionnaires); results of further formative

and summative tests, including the final CS1801 examination.

This will allow us to consider any necessary improve-

ments and evolve the model accordingly, before moving to a

wider dissemination of the application that, by design, is not

specifically targeted at teaching programming. Nonetheless,

the system has the potential of creating a baseline of tools and

techniques for other courses in our department that include

exercise-based practical sessions, providing a clear added

value: it allows the identification of students needing additional

support, and measures the effectiveness/difficulty of particular

tasks. By increasingly adopting this technique, the Department

of Computer Science, as a whole, can have a better and up-to-

date perception of student achievement and, hence, proactively

make changes as necessary.

We also plan, in the future, to introduce a mechanism

through which students can give a simple quantitative feedback

on the quality and perceived difficulty of each set of tasks.

Based on those pieces of information – as measured through

performance and as perceived by students – academics will

move yet another step towards taking more informed peda-

gogical decisions.

REFERENCES

[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-
D. Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A
multi-national, multi-institutional study of assessment of programming
skills of first-year cs students,” in Working Group Reports from

ITiCSE on Innovation and Technology in Computer Science Education,
ser. ITiCSE-WGR ’01. New York, NY, USA: ACM, 2001. doi:
10.1145/572133.572137 pp. 125–180.

[2] T. Jenkins, “On the difficulty of learning to program,” in Proceedings

of the 3rd Annual Conference of the LTSN Centre for Information and

Computer Sciences, vol. 4, 2002, pp. 53–58.
[3] D. R. Garrison and H. Kanuka, “Blended learning: Uncovering its trans-

formative potential in higher education,” The internet and higher educa-

tion, vol. 7, no. 2, pp. 95–105, 2004. doi: 10.1016/j.iheduc.2004.02.001
[4] C. J. Bonk and C. R. Graham, The handbook of blended learning:

Global perspectives, local designs. John Wiley & Sons, 2012. ISBN
9781118429570

[5] F. A. Marco, V. M. R. Penichet, and J. A. G. Lázaro, “Drawer: an
innovative teaching method for blended learning,” in Proceedings of

the 2013 Federated Conference on Computer Science and Information

Systems, M. P. M. Ganzha, L. Maciaszek, Ed. IEEE, 2013, pp. 727–734.
[6] R. Murphy, L. Gallagher, A. E. Krumm, J. Mislevy, and A. Hafter,

“Research on the use of Khan Academy in schools: Research brief,”
SRI International, 2014.

[7] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: Defining "gamification",” in Proceedings of the

15th International Academic MindTrek Conference: Envisioning Future

Media Environments, ser. MindTrek ’11. New York, NY, USA: ACM,
2011. doi: 10.1145/2181037.2181040 pp. 9–15.

[8] D. A. Kolb, Experiential Learning: experience as the source of learning

and development. Prentice Hall, 1984. ISBN 9780132952613
[9] N. Barreiro and C. Matos, “Checkpoint system documentation,” De-

partment of Computer Science, Royal Holloway, University of London,
Tech. Rep., 2016, internal document.

[10] “Mozilla Open Badges,” accessed: 2016-05-09. [Online]. Available:
http://openbadges.org/

[11] A. Agarwal, “Why MOOCs (still) matter,” 2013, TED talk by Anant
Agarwal, CEO of edX, Accessed: 2016-05-06. [Online]. Available:
http://bit.ly/1kZwi9Y

[12] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on

Computing Education Research, ser. Koli Calling ’10. New York, NY,
USA: ACM, 2010. doi: 10.1145/1930464.1930480. ISBN 978-1-4503-
0520-4 pp. 86–93.

[13] T. Amabile and S. Kramer, The progress principle: Using small wins

to ignite joy, engagement, and creativity at work. Harvard Business
Press, 2011. ISBN 9781422198575

[14] J. McGonigal, Reality Is Broken: Why Games Make Us Better and How

They Can Change the World. Penguin Group , The, 2011. ISBN
9780143120612

[15] J. D. Karpicke and J. R. Blunt, “Retrieval practice produces more
learning than elaborative studying with concept mapping,” Science, vol.
331, no. 6018, pp. 772–775, 2011. doi: 10.1126/science.1199327

[16] J. Bennedsen and M. E. Caspersen, “Assessing process and product: a
practical lab exam for an introductory programming course,” Innovation

in Teaching and Learning in Information and Computer Sciences, vol. 6,
no. 4, pp. 183–202, 2007. doi: 10.11120/ital.2007.06040183

[17] S. Cvetkovic, R. Seebold, K. Bateson, and V. Okretic, “CAL programs
developed in advanced programming environments for teaching electri-
cal engineering,” IEEE Transactions on Education, vol. 37, no. 2, pp.
221–227, 1994. doi: 10.1109/13.284998

[18] University of Edinburgh, “Physics 2A Scientific Program-
ming in JAVA,” 2009, course notes, Accessed: 2016-05-
07. [Online]. Available: http://www2.ph.ed.ac.uk/~aturner/teaching/
Scientific-Programming/documentation/booklet.pdf

[19] D. Parsons and P. Haden, “Programming osmosis: Knowledge transfer
from imperative to visual programming environments,” in Conference of

the National Advisory Committee on Computing Qualifications, 2007.
[20] S. Zhigang, S. Xiaohong, Z. Ning, and C. Yanyu, “Moodle plugins

for highly efficient programming courses,” in 1st Moodle Research

Conference, 2012.
[21] E. Seung, “Examining the development of knowledge for teaching

a novel introductory physics curriculum,” Ph.D. dissertation, Purdue
University, 2007.

[22] “WebAssign,” accessed: 2016-05-07. [Online]. Available: http:
//webassign.net/

[23] C. C. Abt, Serious games. Viking Press, 1970. ISBN 9780670003136
[24] B. Sawyer and D. Rejeski, “Serious games: Improving public policy

through game-based learning and simulation,” 2002.
[25] D. R. Michael and S. L. Chen, Serious Games: Games That Educate,

Train, and Inform. Muska & Lipman/Premier-Trade, 2005.
[26] K. M. Kapp, The gamification of learning and instruction: game-based

methods and strategies for training and education. John Wiley & Sons,
2012. ISBN 9781118096345

[27] B. Kumar and P. Khurana, “Gamification in education-learn computer
programming with fun,” International Journal of Computers and Dis-

tributed Systems, vol. 2, no. 1, pp. 46–53, 2012.
[28] B. Burke, “Gamification: Engagement strategies for business and IT,”

Gartner Inc, Tech. Rep. G00245563, 2012.
[29] A. M. Roepke, S. R. Jaffee, O. M. Riffle, J. McGonigal, R. Broome, and

B. Maxwell, “Randomized controlled trial of SuperBetter, a smartphone-
based/internet-based self-help tool to reduce depressive symptoms,”
Games for health journal, vol. 4, no. 3, pp. 235–246, 2015. doi:
10.1089/g4h.2014.0046

[30] N. Friesen, “Report: Defining blended learning,” 2012, accessed: 2016-
05-08. [Online]. Available: http://learningspaces.org/papers/Defining_
Blended_Learning_NF.pdf

[31] J. Hollingsworth, “Automatic graders for programming classes,” Com-

munications of the ACM, vol. 3, no. 10, pp. 528–529, Oct. 1960. doi:
10.1145/367415.367422

[32] J. B. Hext and J. W. Winings, “An automatic grading scheme for simple
programming exercises,” Communications of the ACM, vol. 12, no. 5,
pp. 272–275, May 1969. doi: 10.1145/362946.362981

[33] N. A. Rashid, L. W. Lim, O. S. Eng, T. H. Ping, Z. Zainol, and O. Majid,
Advanced Computer and Communication Engineering Technology: Pro-

ceedings of ICOCOE 2015. Springer International Publishing, 2016,
ch. A Framework of an Automatic Assessment System for Learning
Programming, pp. 967–977.

912 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

