
Comparison of Network Architectures for a
Telemetry System in the Solar Car Project

Cody R. Barnes, Ethan G. Toney, Jerzy W. Jaromczyk
University of Kentucky

Department of Computer Science

Lexington, KY 40506, USA

Email: cody.barnes@uky.edu, egto222@uky.edu, jurek@cs.uky.edu

Abstract—A solar car is an electric vehicle that runs entirely
on solar energy. Designing, building and racing solar cars has
been a longstanding worldwide challenge for engineering and
computer science students, with the overarching goal being to
design devices that use sustainable energy sources. This article
describes our experience and educational outcomes (the modeling
and design of computer-based systems in a way that demonstrates
comprehension of the trade-offs involved in design choice) attained
while designing the network architecture for a solar car project.

The computer science members of the University of Kentucky
Solar Car Strategy Team are tasked to reliably collect and analyze
car data in real-time, both to assist in the car development
process, and then to provide important sensor readings to the
driver during racing. The challenges in designing the architecture
and protocols for the computer system that supports the solar
car are to ensure that: (1) energy consumption is minimal, (2)
data collection is reliable, (3) the network system is secure, and
(4) the implementation of the system is not overly complex.

Our computer system supporting the telemetry tasks uses
three micro-controllers to collect and send data over serial
communications to a master micro-controller (the Raspberry Pi),
that parses and stores data in an on-board database.

We compare three protocols: a simple USB-based protocol,
and two protocols used in traditional non-solar cars: CAN and
Ethernet. We analyze (1) their energy consumption over a period
of time, (2) their reliability (by performing stress tests such as
disconnecting devices and driving over bumpy terrain), (3) their
security (by attempting to compromise the system by remotely
sending data over communication lines), and (4) their complexity
in terms of time and effort for implementation and development.

I. INTRODUCTION

S
OLAR Car racing (see Figure 1), the competitive racing of

fully electric vehicles using solar energy, has existed since

1985. Universities and businesses around the globe participate

with different goals in mind. Universities typically participate

in order to improve engineering and technical knowledge and

skills of the students, while businesses typically participate

to develop renewable energy technologies. Traditionally, a

solar car requires a collaboration of electrical, mechanical,

and computer engineers (see [6]). However, with data stor-

age becoming cheaper, and micro-controllers becoming more

abundant and inexpensive (such as the Arduino and Raspberry

Pi) these make programming embedded systems just as easy

as programming an application for a typical computer. In other

words there is a growing need for computer science students to

be a part of the team. Solar car teams can easily capture, store,

and analyze data in order to improve the overall performance

of the car.
In the context of power consumption, we analyzed a teleme-

try system for the solar car project. An automated communica-

tions process collected and transmitted car performance data to

receiving equipment and personnel for monitoring, processing,

testing and decision making. When choosing the network

architecture to support telemetry to achieve the aforementioned

capturing, storing, and analysis of data, we must determine

trade-offs that are critical to the car’s functionality. It is also

important to carefully consider and design the underlying

software architecture that is the driving force behind the

network architecture.
Minimizing the power consumption, and comparing various

solutions and their trade-offs, are some of the contemporary

challenges, addressed in many projects, including the past

workshops of this conference. See for example, [1], [2], [4],

and [5].
This paper reports on experimental results of a student team,

for whom the Solar Car project serves as an attractive way of

learning engineering topics. Clearly, tools, instruments, and

methods are unequal to sophisticated, advanced, and likely

expensive telemetry systems developed for professional motor

racing, such as in Formula One. However, the experience with

a real-life project of designing the network architecture for a

solar car project, contributes to the important computer science

student outcome: the modeling and design of computer-based

systems in a way that demonstrates comprehension of the

trade-offs involved in design choice. See also [3] for a discus-

sion on using real-life projects for “developing skills needed

for the proper formulation of system visions and requirements

specifications.”
The subsequent sections describe and compare three differ-

ent network solutions, the architecture of our telemetry system,

and finally, provide our conclusions.

II. NETWORK COMPARISON

We now discuss the trade-offs of using USB [7], CAN [8],

and Ethernet while trying to meet these four challenges: low

power-consumption, reliability, security, and simplicity.

A. Low Power-Consumption

Low power-consumption is by far one of the most critical

requirements in the development of a solar car. Naturally, the

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 751–755

DOI: 10.15439/2016F481

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 751

Fig. 1. Solar Car – team UK

architectural design of the network was not exempt. Since

we are racing the car, keeping the power consumption down

allows us to allocate more power towards other critical parts

of the car. Saving this power for the motor has the potential to

result in more mileage out of the total amount of power. We

hypothesized that USB and CAN would require about the same

amount of power and that Ethernet would require much more

than the previous two. Consequently, we chose to compare

USB and CAN first and then talk about Ethernet afterwards.
1) USB versus CAN: USB and CAN are known to be very

low power networks as long as they are not being used to

power a device. To accurately compare these two approaches,

we chose to measure the amount of power required to power a

CAN chip and a USB chip with no data being sent over them.

From experiments, we found that the CAN chip required 11%

less power than the USB chip. Although 11% may appear big,

in practice the difference is negligible due to the measured

values being low.
2) Ethernet: Compared to USB and CAN, Ethernet is

known to use significantly more power. This is because of

larger hardware requirements to allow for an Ethernet network.

Not only would one need to put a router or switch on the

car, one would also have to add more hardware on the actual

micro-controllers to be able to communicate with Ethernet.

B. Reliability

The reliability of each of the protocols is important because

it ultimately determines whether or not data are received.

When discussing the reliability of the three network archi-

tectures, we focus on the hardware aspects.
1) USB: USB provides data integrity within the cables,

meaning that there is a high degree of confidence that the data

sent over the transmitting end will make it to the receiving end.

Any unrecoverable errors will likely be noticed and reported

to the appropriate end of the cable. Data integrity is provided

through USB’s self-recovery system. This approach guarantees

that a message will be resent at least three times before

reporting an error to the client software, and will throw time-

outs for lost or invalid packets.

Unrelated to the actual data integrity within the cable, but

still considered in our evaluation, is the observation that USB

has a high likelihood of becoming mechanically disconnected

from its transmitting or receiving end due to jostling that

occurs while the car is in motion.

2) CAN: CAN is similar to USB in that it also provides data

integrity. The CAN protocol defines no less than five different

ways to detect error:

• Cyclic Redundancy Check (CRC) acts similar to a check-

sum by doing polynomial division on the bits and com-

paring the end result to the 15 bit CRC field located

within the packet.

• Acknowledgment (ACK) Check - The node that transmit-

ted a message has essentially sent a recessive level and

would expect to receive a dominant ACK message. If it

does not, then it acts as if the previously sent message

was lost and responds accordingly.

• Form Error Check - If there is a dominant bit in the

CRC field delimiter, ACK field delimiter, or EOF (end of

frame) then the message is re-sent because, per protocol

definitions, there must not be a dominant bit in these

fields.

• Bit Stuffing - If six consecutive bits with the same polarity

occur between the SOF (start of frame), then the CRC

field throws an error. The EOF field should be the only

field with six consecutive bits of the same polarity.

• Bit error occurs when the transmitter reads a signal that

is opposite of what it sent except during arbitration and

in the ACK field. Arbitration is a method that provides

a bitwise losslessness if all of the nodes on the CAN

network are synchronized to allow for every bit on the

CAN network to be sampled at the same time.

In contrast to USB, the few devices on the car that utilize

CAN have never had any issues with disconnectivity due to

the jostling of wires.

3) Ethernet: Ethernet in itself is not reliable. It does not

support retransmission, it does not provide acknowledgment

of successful frame delivery, and if a frame were to become

corrupt it simply drops it without letting the transmitting or

receiving end know. Due to this characteristic, we consider

the use of Ethernet with TCP, Transmission Control Protocol.

TCP is a protocol that is often overlaid on top of Ethernet.

TCP supports detection of duplicate data, retransmission, and

sequencing. Because Ethernet is usually used to send packets

over long distances, and because multiple Ethernet switches

are used, packets can be duplicated. TCP detects duplicate

packets and drops the unnecessary ones. In conjunction with

this duplication, packets can get out of order. Therefore TCP

752 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

supports sequencing - placing packets in the order that they

were sent. Additionally, if a packet gets lost or corrupted, TCP

provides retransmission of the affected packet.

C. Security

The UK solar car was designed just for races, and not

intended for mass production. Nevertheless, network security

is becoming a general concern and should always be accounted

for. Especially considering the recent cyber-security incidents

related to private cars being hacked ([10]). Even though our

specific network application represents a minimal security

threat, security was not ignored.

1) USB: From a security standpoint USB is actually a very

good option. It only allows for peer-to-peer communication,

so there is essentially no network to abuse. However, due to

the nature of peer-to-peer, there is no form of authentication.

Simply, each computer does not have a way of being com-

pletely sure who it is talking to. Given this situation, the only

realistic way to attack a USB-based system would be to plug

in directly to the device you wanted to lie to.

2) CAN: A CAN network is riddled with security problems

stemming from the underlying protocol. Much like the IP

protocol, it relies on the sender to accurately choose a message

ID. From this message ID you can tell what kind of data are

being sent, as well as what device is sending it. This is done

by a device choosing a range of IDs, and making sure that

every message it sends is inside of this range. Given this type

of protocol, it is trivial to impersonate another device on the

network. A person could just send a message onto the network

with an ID that is not their own, and the receiving device would

not know the difference. As a proof of concept, we simulated

this vulnaribility and were able to get the Raspberry Pi on

our CAN network to tell the motor to accelerate even though

the pedal was not being pressed. It is understandable why the

developers of this network originally left this vulnearibility,

because CAN was always intended to be an internal network.

Getting on to the network to abuse its security faults is not

easy. This vulnerability is also why there has been so much

news about cars being hacked lately; see [10]. Since CAN is

the industry standard, it is not too difficult for a hacker to use a

laptop with a CAN cord and plug into the network manually to

break in. In some cases, where the car has an Internet access,

there may be ways to get from the Internet network to the

CAN network and remotely hack a car.

3) Ethernet: Ethernet has almost the same set of vulnera-

bilities as CAN. However, it is substantially easier to abuse a

CAN network than it is to abuse the security vulnerabilities in

Ethernet. Numerous protocols built on top of Ethernet reduce

its vulnerability. Clearly, it is still possible for hackers to

abuse Ethernet network by misrepresenting the identity and

impersonating devices on the network.

D. Simplicity

Simplicity, a universal value and software development

practice, is commonly used by student teams. These teams

operate on schedules dictated by the academic calendar. In

addition, once they graduate, the code base is picked up by

future Computer Science students to continue assisting the

Solar Car project; see [11] for the repository with our code.

1) USB: On the software side, USB is relatively simple.

The majority of languages that would be commonly used in

these type of applications (Python, Java, C, C++, etc.) support

serial communications. One must simply identify the port to

communicate with and open a serial connection with said port.

On the hardware side, USB actually is not native to the

majority of the solar car peripherals except for the micro-

controllers themselves. As a result, USB use can cause prob-

lems for the developers with the devices on the car that

communicate through CAN. To alleviate this difficulty, the

team utilizes CAN-to-USB converters in order to receive data.

2) CAN: Even though, communicating with CAN through

software is not as common, it can be done in a relatively

standard way. In fact, communication support is implemented

in Python, the main language used on the Raspberry Pi.

However, CAN is more complex to use rather than USB or

Ethernet. In fact, even the documentation about the implemen-

tation through python-can library suggests that working

with python-can is much more complex than the imple-

mentation of USB through the pyserial library. Thus, in

our solution, we actually use a CAN to USB converter between

the CAN network and the Raspberry Pi, to keep the software

implementation as simple as possible.

The hardware side for CAN is the upside, however, with

CAN being the industry standard for regular cars due to

its reliability, upgradeability, performance, and cost. As the

benefit of standardization, one can expect that the majority of

the car peripherals communicate over CAN. Among them is

the Motor Controller that drives the rear third wheel of the

solar car.

3) Ethernet: Ethernet is very similar to USB when it comes

to software aspects. Almost all languages have some kind

of built in library that handles communication over sockets,

which are the Ethernet equivalent to ports in USB. This gives

Ethernet a distinct advantage over CAN when it comes to

software implementations.

For the hardware side, Ethernet is in the same category as

USB. Ethernet is not common among any of the car peripherals

besides the micro-controllers. In effect, Ethernet switches and

CAN to Ethernet converters have to be used.

Table I summarizes the above evaluation.

TABLE I
SUMMARY OF THE COMPARISON FOR THE SOLAR CAR PROJECT

Power

usage
Reliability Security Simplicity

USB low good good
poor

hardware support

CAN low good poor
nontrivial software

support

Ethernet high
good

(with TCP)
poor

poor
hardware support

CODY R. BARNES ET AL.: COMPARISON OF NETWORK ARCHITECTURES FOR A TELEMETRY SYSTEM IN THE SOLAR CAR PROJECT 753

Fig. 2. High-level overview of the software architecture

III. SOFTWARE ARCHITECTURE

There are multiple choices for the network architecture and

the final decision on whether or not CAN, USB, or Ethernet

would be better choice for us is greatly influenced by the

current software architecture.

Depicted in Figure 2 is a high-level overview of our

software architecture. When the program is started on boot,

it immediately opens the ports where data are expected, and

then connects to the corresponding devices for those ports.

Rules in UDEV - a device manager for the Linux kernel

- are used so that each device is assigned a unique identifier

based off of the product id on the USB chip.

The flow of control is as follows. The program starts off by

initially searching for any connected devices and opening up

a connection to them. After this point four threads are started

up and read from a global state containing of a list with each

device. The threads run concurrently, and access the global

state, but do not communicate directly with one another. The

first thread, the logging thread, starts off by ensuring that the

device has been identified. Then it logs the device buffer to

the database on the car, and stores the raw data logs for the

post mortem analysis.

The second thread, error correcting thread, iterates through

all of the devices and identifies their kind. Then, this thread

looks at the statistics of each device to determine whether the

device is in an error state.

The third thread, update drive display, sends the vehicle

speed and battery current measurements to the attached Ar-

duino. The Arduino then takes these values and displays them

on two seven segment displays.

The last thread, update calculations, does the calculations

that would otherwise require too much bandwidth to send

the sufficient amount of information for the other end of the

telemetry system to calculate.

The responsibilities of the threads described above, and

presented in Figure 2, are:

1) Thread Data Logging: This thread loops through every

device (port), logs any data that have been saved up in

the device buffer, pushes the data to the SQL database

and writes the data to raw text files as a backup.

2) Thread - Port Fixing: This thread also loops through

every device, but instead of logging data it checking to

ensure that the device is still connected and that we are

receiving data. If the device is in an error state then

this thread will attempt to fix it until it attains a stable

state again. This thread is also the only thread with the

capabilities to significantly change the global state, so its

actions are heavily synchronized with the other threads.

3) Thread - Updating Driver Display: This thread updates

the driver display with the current car speed and voltage

usage.

4) Thread - Update Calculations: This thread updates any

calculations that are being sent over the radio telemetry

system in the trail (chase) car. As an alternative solution,

these calculations could be moved to the Java application

on the receiving end to lessen the amount of work that

the program on the Raspberry Pi has to do. The tradeoff

would be in using more bandwidth to send the data.

The diagram in Figure 3 shows the general layout for

the current USB based telemetry system for our solar car.

There are multiple devices that are plugged into a powered

hub: two battery boxes, the motor CAN network, an Arduino,

and a telemetry box. Also you may note that the Arduino

controls many devices: two seven-segment displays (used to

show speed and current), gyro, accelerometer, and GPS. These

extra devices data are eventually sent on to the Raspberry PI

for processing. There is also a small CAN network between

the drivers control box and motor controller that must be

there regardless of the choice of architecture. Regarding the

powered hub, on the other end there is a Raspberry PI

micro-computer that uses this powered hub to create sepa-

rate connections to each device and manage each of them

individually. The micro-computer then reads and interprets

data from each device, and then sends them to the telemetry

box; a matching telemetry box in the chase car receives

these data. During the interpretation of data on the Raspberry

754 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 3. Architecture of our telemetry system

Pi that data are permanently stored in an on-board MySQL

database.

IV. CONCLUSION

By analyzing various network solutions, we have deter-

mined trade-offs in Solar Car network architectures that try to

meet the four challenges: low power consumption, reliability,

security, and simplicity. In comparing these solutions, we have

found that USB and Ethernet are very respectable options.

USB provides a quick starting point. For example, if a project

involves a micro-controller then it is very likely that the micro-

controller contains, at the least, a USB port. Furthermore,

communications over a serial connection, which is what USB

is, are very easy to implement. On the other hand, Ethernet,

being a class D network, can handle very high data rates (up to

100 mb/s). If the Solar car needed to transfer this much data

then Ethernet high energy usage could be countered by the

trade-off for high data rates and easy implementation. Even

with USB and Ethernet being respectable options, CAN still

has been found to be the best overall option. The hardware

is easy to implement, cheap, and upgradeable. It uses a low

amount of energy, which is highly critical to our application,

and although it is not as common to implement in software,

there exists workarounds. Working on a solar car design, along

with implementing and testing solutions, has provided us with

incomparable learning outcomes in networking, security and

teamwork, and have allowed all the participating students to

clearly see design trade-offs, even when some of them are

subtle.

REFERENCES

[1] R. Banach, P. Van Schaik, and E. Verhulst. Simulation and formal
modelling of yaw control in a drive-by-wire application. In M. Ganzha,

L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2015

Federated Conference on Computer Science and Information Systems,
volume 5 of Annals of Computer Science and Information Systems, pages
731–742. IEEE, 2015.

[2] M. Eshaftri, A. Al-Dubai, I. Romdhani, and M. Bani Yassein. A new
energy efficient cluster based protocol for wireless sensor networks. In
M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of

the 2015 Federated Conference on Computer Science and Information

Systems, volume 5 of Annals of Computer Science and Information

Systems, pages 1209–1214. IEEE, 2015.
[3] J. Král and M. Z̆emlic̆ka. Experience with real-life students’ projects. In

M. Paprzycki M. Ganzha, L. Maciaszek, editor, Proceedings of the 2014

Federated Conference on Computer Science and Information Systems,
volume 2 of Annals of Computer Science and Information Systems, pages
pages 827–833. IEEE, 2014.

[4] C. Panait and D. Dragomir. Measuring the performance and energy
consumption of AES in wireless sensor networks. In M. Ganzha,
L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2015

Federated Conference on Computer Science and Information Systems,
volume 5 of Annals of Computer Science and Information Systems, pages
1261–1266. IEEE, 2015.

[5] T. Szydlo, P. Nawrocki, R. Brzoza-Woch, and K. Zieliński. Power aware
MOM for telemetry-oriented applications using gprs-enabled embedded
devices - levee monitoring use case. In M. Paprzycki M. Ganzha,
L. Maciaszek, editor, Proceedings of the 2014 Federated Conference

on Computer Science and Information Systems, volume 2 of Annals of

Computer Science and Information Systems, pages pages 1059–1064.
IEEE, 2014.

[6] R. Mangu, K. Prayaga, B. Nadimpally and S. Nicaise, Design, Develop-
ment and Optimization of Highly Efficient Solar Cars: Gato del Sol I-IV,
in 2010 IEEE Green Technologies Conference, Grapevine, TX, 2010,
pp. 1-6. doi: 10.1109/GREEN.2010.5453800, http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=5453800&isnumber=5453775

[7] USB Specifications http://www.usb.org/developers/docs/. Online; ac-
cessed 9-May-2016

[8] CAN Specifications http://www.usb.org/developers/docs/. Online; ac-
cessed 9-May-2016.

[9] M. Faezipour, N. Faezipour, M. Adnan, S. Adnan, S. Addepall., Progress
and challenges in intelligent vehicle area networks, in Communications

of the ACM, 55 (2), 2012, pp. 90–100,
[10] J. Vanian. Hacking Cars Is Easy, http://fortune.com/2016/01/26/

security-experts-hack-cars/, Online: accessed 10-July-2016.
[11] E. Toney. https://github.com/KentuckySolarCar/RaspberryPi

CODY R. BARNES ET AL.: COMPARISON OF NETWORK ARCHITECTURES FOR A TELEMETRY SYSTEM IN THE SOLAR CAR PROJECT 755

