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Abstract—Game theory is a tool that may be used to model
a player as an intelligent being – one who seeks to optimize
his own performance while taking into account the performance
of his opponent. However, it is often challenging to apply the
theory in practice. In the naval environment, this approach may
be used, for instance, to find the best strategy for an Autonomous
Underwater Vehicle (AUV) while considering the intelligence of
the submarine opponent. Classic approaches based on Minimax
suffer from an explosion of states, and they are difficult to use in
real-time. The paper introduces an approach that improves the
Minimax algorithm in a complex naval environment. It assumes
limited and scalable computational resources. The approach takes
advantage of a flexible utility function based on a neural network
with parameters tuned by a genetic algorithm.

I. INTRODUCTION

A
N AUTONOMOUS Underwater Vehicle (AUV) is a

robot that travels underwater (Fig. 1)[1]. Compared to

other Unmanned Underwater Vehicles (UUVs) such as Remote

Operating Vehicles (ROVs), it is not guided by an operator.

AUVs are mostly employed in the field of oceanography

and are beginning to be considered for military use [2]. For

instance, they can be used for patrolling and monitoring the

vicinity of a naval port, or for supporting a surface platform

in its search for a submarine. An AUV has an advantage over

an ROV because it does not reveal its location by continuous

communication with an operator.

A submarine is a very difficult opponent to detect because

of its ability to exploit the complicated nature of underwater
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Fig. 1. The picture shows an example of AUV used in military [3]. The
Blackghost AUV can attack with no outside control.

sound propagation. As a result, it can stay hidden for a

long time owing to its superior endurance and speed. By

comparison, an AUV has limited mobility, sonar capabilities,

computational power, and battery life. More importantly, a

submarine is commanded by qualified personnel making it a

deliberate and intelligent competitor. Therefore, the robot con-

troller must meet high requirements. AUV’s software should

provide as much intelligent behavior as possible to mitigate

its limited resources.

In order to maximize the ability of the AUV to detect the

submarine, we consider here a bistatic sonar employment.

This means that the sonar source and receiver are separated

– rather than collocated on a single platform in the more

traditional monostatic case. In this study, the sonar source

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 31–40

DOI: 10.15439/2016F53

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 31



is in a fixed location while the receiver is assumed to be a

linear array of hydrophones towed by the AUV. Importantly

this means that the AUV can receive bistatic sonar contacts

– with range and bearing information – without needing to

transmit. Sonar transmissions are easily counter detected by

a submarine, thereby revealing the location of the asset and

allowing the submarine the opportunity to evade.

To achieve an efficient strategy model for an AUV, it must

be validated against a challenging foe. Thus, to find the

best strategies for both naval units we use game theory [4].

The problem is described as a naval version of a pursuit-

evasion game. The players hold different properties; therefore,

a skirmish is asymmetrical. It is a multistage non-zero-sum

game placed in a complex environment with uncertainty and

incomplete information about the game state. The non-zero-

sum assumption is introduced because the players may have

specific and unique objectives. In addition, having a limited

access to information about an opponent’s state, they might

unconsciously cooperate in some cases.

Finding the game equilibrium, which is the problem solu-

tion, is a difficult task. In theory, the game should be defined

as an extensive-form game. However, adding equivalent state

nodes that denote the space of hidden possibilities would

greatly increase the problem complexity by extending the

game tree, which is already very large. In other words, it is

nearly impossible to traverse the entire game tree (extensive

or not) in practice. The approach considered here is to employ

a pure strategy form of a sequential game with discrete time.

Another complication is that each player receives input that

is not readily convertible to a utility value, which expresses

how desirable a given state is for a player. There is a significant

distance in the state space between actions in the past and their

real effect in the future.

In our work, we solve the problem by using a flexible and

trained utility function model that is optimized according to

specified criteria. A utility function then converts player’s input

into a utility value of the game state. Both players use the

Minimax decision rule to choose the best action. They have

their own utility function model that is tuned to gain the best

outcome assuming that an opponent is doing the same. In the

presented approach, a neural network was chosen as the utility

modeling function [5]. Its weights are trained by a genetic

algorithm to maximize each player’s fitness [6]. The fitness is

calculated taking into account the players’ objectives.

In the following section, a general overview of the method

framework is introduced. Next, a short survey of the existing

works related to the stated problem is provided. Subsequently,

important properties of the naval environment are described.

The following part of the document provides formal founda-

tions and describes the problem as a pursuit-evasion game.

Next, naval players are characterized, and their cost functions

are defined. A utility function model and its training method

are presented in the next part of the document. Finally, results

of the experimental study are collated and described.

II. METHOD OVERVIEW

This section provides a general overview on the proposed

approach. It briefly summarizes the method framework and its

components (Fig. 2).

Mission Area
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Underwater 
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state Neural Network utility
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Fig. 2. The picture visualizes the game and the method of solving it.

The proposed method searches for the optimal strategies of

players operating in a simulated environment. The problem

description uses game-theoretic formalism to model the naval

environment as a game. The solution is a saddle-point equi-

librium. It is a state in which no player can gain by changing

his strategy. In accordance with theoretical foundations, it is

assumed that players are rational. The quality of a strategy

is represented by its cost value. It is an accumulative cost

calculated for a sequence of states from an initial state to a

final one.

For the adopted game model, an optimal strategy is ex-

pressed by the Minimax decision rule. Application of the

algorithm is not straightforward, because a utility value for

a given game state is unknown. The utility is a system-wide

feedback to the Minimax algorithm. In this approach, a utility

value is returned by the output of a multilayer neural network,

which is employed as a utility function. Its input is fed with a

game state perceived by a player. Each player has a separate

neural network, because the players have different capabilities,

and they do not share the same view of the environment and

its state.

Because the desired (optimal) output of a neural network is

unknown, weights inside the network are tuned using an evo-

lutionary approach, rather than the backpropagation learning

algorithm. In this method, a genetic algorithm optimizes the

cost of the Minimax strategy, which is guided by the output

of the neural network. The evaluation procedure requires the

game to be simulated over a number of steps. During the

optimization process both players improve their strategies until
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they reach the equilibrium. It is a theoretical state in which

the players have found their optimal strategies.

III. STATE OF THE ART

The problem stated in this work is fresh and specific. In the

literature, there is a range of works directly addressed to this

field but not this particular problem. Most of the papers discuss

fundamental issues related to the naval environment [7]. One

of the most elementary is modeling of underwater signal

propagation and communication [8], [9]. Another is a classic

flaming datum problem, in which a fleeing submarine is

relocated after momentarily revealing its position [10].

Modern navies are beginning to procure and test multi-

static sonar systems at sea. Locations of the sensors are

optimized based on a game-theoretic approach, and their

efficiency is evaluated in the previous works [11], [12]. Recent

technological progress enables us to employ an AUV as

a mobile signal receiver instead of using a fixed-position

sensor [13]. Despite the fact that an AUV can be considered

as a more effective tool against a submarine, the topic is

rarely undertaken so far. Related works are focused on the

problem of building a probability density map of possible

locations of an opponent [14]. Many of the approaches employ

simplified behavioral models [15], rather than considering the

best strategies for both players and optimizing towards the

equilibrium.

Solutions designed for similar problems are often bounded

to their domains and cannot be directly applied to this specific

case [16]. They are intended for less demanding environments.

In the air, aerial vehicles can easily communicate with the

command and exchange information. They rely on radar and

visual information, which can be processed more efficiently

than sonar input. Underwater communication is slow, has a

very limited bandwidth, and above all, using it immediately

exposes the location of a vehicle to an opponent. Underwater

vehicles exploit properties of underwater signal propagation

to remain stealthy. They must plan their route very carefully

while drones can maneuver more freely, because their environ-

ment is mostly uniform. A very limited computational power

makes it impossible to run an expensive optimization process

on-board while the requirements regarding the method are still

high.

The discussed problem is focused on tracking and spying

an intelligent enemy unit, rather than patrolling or engaging

in combat according to a clearly defined protocol. The task is

specific, and it consists of a range of problems that are not

addressed by the works related to autonomous vehicles.

The proposed method is based on a known idea of employ-

ing an evolutionary algorithm for finding an optimal strategy

in game theory [17], [18]. In these works, a population of

agents is optimized to achieve the best performance against

an opponent who is following a defined strategy. However,

that approach cannot be employed in this case, because the

behavior of an opponent cannot be easily described by a closed

set of rules. Here, both competing sides are optimized simulta-

neously. To avoid executing an expensive optimization process

on-board, the optimization is aimed at tuning a neural network

that is used for evaluating the game state and computing utility

(reward). The neural network plays the role of a utility function

in an on-board decision process. In the light of the above facts,

the problem setup and solution are considered as original.

IV. NAVAL ENVIRONMENT

The underwater environment in which our scenario takes

place is both harsh, from a technological standpoint, and

complex in terms of the physics that govern the propagation

of sound used to detect a submarine [8]. The performance of

a sonar system is a complex function of transmission loss,

reverberation levels and noise levels, all affected by various

oceanographic, surface, and bottom parameters. Not least of

which is the sound speed profile within the water column

which causes a bending of the sound propagation paths and

can result in large regions of water from which sound may

be diverted. These shadow zones may then be exploited by an

intelligent submarine greatly decreasing its chance of being

detected.

The eventual signal-to-noise ratio (SNR), the primary metric

used to assess the probability of detecting a submarine by

sonar, depends on water temperature and salinity, surface

roughness, depth, and shape of the sea bottom. This study

considers the use of multistatic sonar whereby performance

is a function of the specific geometry between the separated

sonar source and receiver (in this case the AUV) together with

the submarine location. As a result, detailed (and time consum-

ing) acoustic propagation models are required to accurately

predict multistatic sonar performance within range-dependent

environments.

Irrespective of the complexities of actually detecting a

submarine, the simple operation of an AUV in the ocean also

has its challenges. In addition to basic underwater physics,

the AUV has limitations imposed on its motion trajectory due

to the stability of its receiving array of hydrophones [19].

The complicated propagation effects already discussed also

serve to limit the ability of the AUV to send and receive

messages through the water. This is in fact a driving force

behind the need for better autonomous decision making – since

the vehicle cannot rely on regular intervention by operators.

The goal of this study is to provide a proof-of-concept and

consequently, some simplifications are introduced to avoid vast

computations, which significantly improves the computation

time of the experiments. The system is modeled in such

a manner that a general characteristic of the underwater

environment is captured. Earlier experiments have shown that

the acoustic model is a bottleneck for the calculations. It was

replaced by a set of rules that cover only the general features.

The operational area is rectangular, and it contains the

players’ start positions, signal source position, and mission

area, which is circular (Fig. 3). It is assumed that the mission

area holds an objective that is important to a submarine. The

objective is accomplished if the unit closes to within a defined

radius of the goal. In the meantime, the AUV’s objective is to

keep as close as possible to the submarine. While the AUV is
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Fig. 3. The image presents an example of game arrangement. The objective
of a submarine is to travel to the mission area. The AUV’s objective is to
be in close surroundings of the opponent. The nearer a unit approaches the
signal source, the easier it can be detected.

not intended to prosecute the submarine, thereby preventing

it reaching its mission goal, it should nevertheless detect its

presence and alert the defenders as soon as possible. Both

players benefit from staying undetected. However, the players

have different priorities, so the zero-sum property is not valid

in this case.

V. GAME THEORY

The pursuit-evasion game (PEG) is a well-known problem

in the class of differential games in game theory [20]. It is

often referred to as a simple lion-zebra or cop-robber case.

Let us define a naval version of PEG as a state-feedback

discrete-time dynamic game with two non-cooperating play-

ers, where P1 is a pursuer (AUV) and P2 is an evader (a

submarine) executing actions sequentially in each game stage

k, Eq. 1:

a(k) =

{

a1
k

if k is odd

a2
k

if k is even
, (1)

where a(k) is an action at stage k, a1
k

is P1’s action, and a2
k

is P2’s action. The game corresponds to dynamics of the form

(Eq. 2):

sk+1 = ∆k

(

sk, a(k)
)

, ∀k ∈ {1, 2, . . . ,K}, (2)

where:

• sk is an entry state node at stage k,

• ∆k is a transition function modeling dynamics at stage

k,

• K is a finite time horizon.

A finite horizon stage additive cost is (Eq. 3):

K
∑

k=1

ck

(

sk, a(k)
)

, (3)

that P1 wants it to minimize, and P2 wants it to maximize.

A state-feedback information structure corresponds to policies

of the form (Eq. 4):

a1
k
= γk(sk), a2

k
= σk(sk), (4)

where γ and σ are state-feedback policies for P1 and P2,

respectively. The corresponding value of the cost in Eq. 3

for the policies is denoted by C(γ, σ). A saddle-point pair

of equilibrium policies (γ∗, σ∗) satisfies (Eq. 5):

C(γ∗, σ) ≤ C(γ∗, σ∗) ≤ C(γ, σ∗), ∀σ, γ. (5)

For games with a finite state space, an optimal policy cost

can be found using Minimax Theorem. It is solved algorithmi-

cally. However, the players perceive the state differently, and

they do not have strictly opposite objectives. Therefore, the

game is not considered as zero-sum. For this reason, Alpha-

Beta pruning, which would reduce the complexity, cannot be

applied [21].

VI. NAVAL PLAYERS

Each player has a set of discrete move actions to choose

in his turn. For the sake of simplicity, a move action can be

executed with a finite number of speeds and headings (Eq. 6):

a(k) ∈ {~m0, ~m1, . . . ~mn}, ~m = s ∗ ~h, (6)

where ~m is a move vector as a product of scalar speed s and

unit heading vector ~h. In order to avoid inaccuracy and provide

more flexibility, player coordinates are expressed by floating

point values rather than grid cells. Units cannot currently

change depth.

To imitate sonar features, both detection and counter detec-

tion ranges were introduced. A naval player does not have

access to information about his opponent as long as the

distance between them is bigger than the opponent’s detection

range. The detection range is not constant, and it changes

depending on the distance to the signal source. The closer to

the source, the more acoustic energy is reflected by a naval unit

and so it is easier to detect. The signal source can be received

from a far distance and, therefore, its position is always known

to all players.

At some point, the algorithm must estimate the opponent’s

actions to calculate utilities of the future states. Unfortunately,

it cannot be easily done if a player does not know the exact

position and heading of the opponent. To deal with the problem

an approximate map of possible locations of the opposing

unit is generated based on its operational range (Fig. 4). The

operational range is a circular area placed in the center of the

last revealed position with a radius equal to the maximum

distance the unit could travel since the last contact time.

The map of possible states of an opponent is limited by the

complexity of the algorithm.

VII. COST

A cost value describes how well a player performed during

the whole game. AUV is referred to as a pursuer whose

behavior is characterized by minimizing the distance to its

opponent. The pursuer minimizes cost for staying within

a specified range to an evader. The robot is penalized if
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Fig. 4. The picture shows how the algorithm handles limited access to
information about the current state of the opponent. The big circle on the left
is the actual location of the submarine. The rectangle on the opposite side
is the AUV. Small shapes represent their possible positions in the next game
step. The state of the player on the left is exposed while the opposite player
stays unrevealed, but his last position is known. A map of several possible
positions inside the operational range of the hidden player is generated.

its position is revealed. Formally, the cost for the AUV is

calculated by the following formula (Eq. 7):

C1(k) = C1(k − 1) + do+

−

{

b1 if do ≤ r1

0 otherwise
+

{

p1 if v1 = 1

0 otherwise
, (7)

where:

• k is a game stage number,

• C1(·) is the pursuer’s (AUV) cost function,

• do is a distance to the opponent,

• b1 is an award given to the pursuer if distance do is

smaller than threshold r1,

• p1 is a penalty if the pursuer reveals his position to the

opponent,

• v1 is the pursuer’s state of visibility to the opponent.

By analogy, the submarine is referred to as an evader who

maximizes the distance to his opponent and moves towards the

mission area. If the unit is sufficiently close to the mission,

a positive cost is awarded. Whenever a player is exposed to

his opponent, a penalty cost is applied. In order to clarify, the

cost for the submarine is calculated by the following formula

Eq. 8:

C2(k) = C2(k − 1) + do − dm+

+

{

b2 if dm ≤ r2

0 otherwise
−

{

p2 if v2 = 1

0 otherwise
, (8)

where:

• C2(·) is the evader’s (submarine) cost function,

• dm is a distance to the mission center,

• b2 is an award given to the evader if distance dm is

smaller than threshold r2,

• p2 is a penalty if the evader reveals his position to the

opponent,

• v2 is the evader’s state of visibility to the opponent.

Cost parameters b, r, and p affect the behavior of players

by defining objectives and their relative importance. Distance

effects included in the cost functions serve to steer the training

towards the desired outcome. Ultimately, award and penalty

values drive the tactics of a player, and they can be adjusted

to observe different behaviors.

VIII. UTILITY

The utility value of the game state is calculated by a

neural network based on information held by a player. Among

many benefits of neural networks is an application for non-

linearly separable problems and generalization of acquired

information [22]. In this study, Multi-layer Perceptrons (MLP)

were used as a popular model often applied in a broad class

of problems [5]. The neural network has three layers. It gives

one hidden layer with eight neurons. The activation function

is the hyperbolic tangent.

The model is fed by eight inputs provided by a player:

• angle and distance to the mission area,

• angle and distance to the signal source,

• angle and distance to the opponent,

• heading relative to the opponent’s heading,

• opponent contact – informs whether the opponent is

revealed to a player or one of his possible states should

be considered.

The input contains only relative values to ensure that as much

general information as possible is acquired by the neural

network. Thus, the training process is more efficient and less

constrained to a particular case.

A. Minimax

Each player uses a classic Minimax algorithm with a limited

depth of the state tree to choose the best action (Alg. VIII-A).

IX. EVOLUTIONARY TRAINING

The utility function model (a neural network) is trained by

a classic variant of a genetic algorithm [6]. It is a powerful

tool suitable for complex optimization problems characterized

by many local extrema. The algorithm optimizes a vector of

neural network weights considered as a chromosome without

further encoding. To evaluate an individual in a population, it

must be decoded to his phenotype level, which means that a

neural network is created based on his chromosome.

The optimization process is conducted according to the fit-

ness function that is equal to the cost calculated for each player

(Eq. 7 and Eq. 8). Because the players have different goals

and fitness functions, the genetic algorithm (Alg. IX) holds

two populations – one for each player type. An individual

cannot be evaluated without an opponent. Therefore, these two

populations periodically pass the copies of their best entities

after a defined number of GA iterations. Each population adds

a new opponent to a list, and the final fitness is the average

cost achieved against a set of foes in the list. This is done to
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Algorithm 1 Minimax ( node, player, depth )

if depth ≤ 0 then

2: ComputeUtilities ( node )

return nil

4: else if IsRevealed ( player ) then

actions ← GetActions ( player )

6: else

actions ← GetPossibleStates ( player )

8: end if

nextPlayer ← (player + 1) % playerCount

10: bestChild ← nil

for child in Expand ( node, actions ) do

12: Minimax ( child, nextPlayer, depth - 1 )

if bestChild = nil ∨ GetUtility ( bestChild, player ) <

GetUtility ( child, player ) then

14: bestChild ← child

end if

16: end for

if bestChild = nil then

18: ComputeUtilities ( node )

else

20: CopyUtilities ( node, bestChild )

end if

22: return bestChild

Algorithm 2 GeneticAlgorithm ( )

populations ← { evaders, pursuers }
2: for pop in populations do

Evaluate ( pop )

4: end for

while g++ < generations do

6: if g mod passBestPhase = 0 then

PassBest ( populations )

8: else

for pop in populations do

10: Select ( pop )

Cross ( pop )

12: Mutate ( pop )

end for

14: end if

for pop in populations do

16: Evaluate ( pop )

end for

18: end while

optimize against a variety of enemy strategies rather than a

single one.

X. EXPERIMENT

The experimental study includes a series of tests carried out

to validate the approach. This section describes one of those

experiments that was aimed to check the characteristics of a

medium-long training process. Thus, it should be emphasized

that in the best case scenario obtained results may only repre-

sent a near-optimal solution. This study has been preceded by

a series of short experiments to select the training parameters.

Because of the scale of the problem and the large amount of

data, this section includes only selected results regarding the

optimization process of the players’ strategies.

Taking into account the nature of the research, realistic units

of measure have not been preserved. They were adjusted to

obtain easily observable behaviors and test the approach. In

the experiment, a game arrangement is the same as presented

in Fig. 3. However, the picture does not show an additional

free space below and above the signal source placed in the

center of the stage. A single game was simulated for a limited

number of turns that was sufficient for both players to fulfill

their objectives. A realistic degree of asymmetry between the

players was set by giving to the submarine a better speed

and the AUV greater stealth. Another difference is that the

submarine is more interested in being undetected than the

AUV. More detailed parameters of the experiment setup are

provided in Tab. I.

Training results are shown in Fig. 5 and Fig. 6. Surprisingly,

training of both populations begins from a relatively high level

of fitness. Notwithstanding, an initial population is random,

and there is always a chance that one of population entities

will accidentally advance to the goal. It is, however, a chaotic

behavior, and it changes drastically depending on the input.

Thus, any opponent reaction can cause that change.

Further fitness decreases are caused by filling the list of

opponents with better enemies. New opponents are added to

the list every 20 generations, which is referred to as the pass

best phase in the algorithm. Sometimes the period between

the transfers of the best entities is too short to invent a better

opponent. Nevertheless, it prevents from overtraining to a

current set of opponents, which evolve quickly. Forcing an

entity to achieve the best average cost against a number of

opponents allows it to acquire a more general strategy but

may also cause conservative and protective behaviors.

While observing behaviors of both players at the end of the

training, it turned out that they acquired interesting strategies.

The submarine does not immediately proceed to the mission.

First, it glides far below the source, where it has a good cover.

Next, it quickly travels toward the mission. It can be said that

the submarine takes advantage of its speed and lures the robot.

The AUV is not able to catch up with the submarine nor detect

the opponent near the mission, because the submarine visits

the mission only for a short moment at the end of the game.

On the other hand, the AUV tries to follow the trail of the

submarine. The robot minimizes its distance to the opponent

but never reaches a sufficient distance to receive an award.

During the experimental study, a number of long training

runs have been conducted. However, the simulation progress

and outcome turned out to be very sensitive to the random

nature of the genetic algorithm. Therefore, it was difficult to

observe regularity, and averaging results did not lead to clear

conclusions. The results from long training runs are placed in

Fig. 7 and Fig. 8. For some of the experiments, fitness tend to

stabilize in time (Fig. 7) while in other cases, the balance was

lost and the fitness of both populations fluctuated (Fig. 8).
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Minimax

tree depth: 3 max. actions: 7 hidden opp. states: 7 game turns: 25

Genetic Algorithm

pop. size: 100 passBestPhase: 20 selection: tourn. tourn. size: 10%

elitist model cross: uniform cross prob.: 0.6 cross factor: 0.5

mut. prob.: 0.1 mut. factor: 0.01 opp. list: 10

Evader

max. velocity: 2 max. turn angle: Π

4
detection range: 15 bistatic

Pursuer

max. velocity: 1 max. turn angle: Π

4
detection range: 5 bistatic

Cost parameters

r1 = 4 b1 = 100 p1 = 50 r2 = 4 b2 = 100 p2 = 10

TABLE I
THE TABLE SHOWS A DETAILED PARAMETER SETUP OF THE EXPERIMENT.
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Fig. 5. The plots show the best fitness, average population fitness, and fitness standard deviation over generations of evader’s population training.

The solution space is vast, and it has may local extrema.

Therefore, it is difficult to clearly state if players could perform

any better. Surely, training results may vary depending on

the initial parameter setup. However, an important lesson is

the training can be adjusted until a satisfactory outcome is

achieved.

XI. SUMMARY

Through the training process, the players acquire knowledge

that is encoded in the utility model. The knowledge can

be used easily, requiring only reduced calculation. However,

the information stored in a neural network cannot simply be

exported to a human-readable form, unless it is a rule-based

model. The study showed that the method can be successfully
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Fig. 6. The plots show the best fitness, average population fitness, and fitness standard deviation over generations of pursuer’s population training.

used for observing how the system behaves depending on the

game configuration.

Earlier studies have shown that the deeper Minimax algo-

rithm penetrated a game tree, a more intelligent behavior of

a player was observed, which is consistent with the theory.

Also, it should be noted that the number of possible states of

an unrevealed opponent taken into account by the algorithm

has a congruent impact.

Another practical observation from the experiment is that

the training phase is computationally expensive. Regardless

of the fact that the implementation was using C++11 stan-

dard and calculations were efficiently distributed over sev-

eral threads [23], the study was strongly impeded by time-

consuming experiments. Accompanying tests proved that the

process cannot be easily accelerated by GPU computing [24],

[25]. The bottleneck is the Minimax algorithm that involves

multiple calculations of the neural network’s output. Despite

the fact that computations in each network layer can be

parallelized by GPU, the gain compared to CPU calculations

was hard to observe.

An important achievement in the experimental study is

that the players’ strategies stabilize at some point. Strategies

of competing players often oscillate when a pure-strategy

equilibrium cannot be found. Although the stabilization is only

one of the conditions that have to be satisfied to obtain a good

solution, this should be considered as a significant success.

XII. FUTURE WORK

From a theoretical point of view, adopting a pure strategy

may not be the most suitable model for this game. Nonetheless,

it is one of the simplest approaches, and proved to be suffi-

cient. One of the interesting directions is to check a mixed

strategy and stochastic decision rules. Subsequently, player

positions and environment parameters should be randomized.

Undoubtedly, it will substantially increase the training process

since additional evaluation repetitions are required to obtain

an acceptable statistical significance level. However, the new

model addresses environments with uncertain information, and

it should give better results.

Because of the overall problem difficulty, the initial study

has employed very basic tools that are commonly used in the

field of computational intelligence. In the next step, it would be

beneficial to use Minimax hybrids to increase the performance

of the tree search [26]. Deep Learning methods could be

applied to improve the training process and the generalization

capabilities of a neural network [27].

At the current stage of development, the system cannot be

used for building a universal model of AUV strategy that could
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Fig. 7. A long training run 1.

be tested on actual hardware. Preparation of a reliable strategy

requires a well-organized training process. The training should

therefore introduce more realistic environmental parameters

and cover various game scenarios including different player

and mission arrangements. It should also simulate noisy and

misleading information. Therefore, one of the primary goals

is employing an accurate model of underwater signal propa-

gation. It should be emphasized that the quality of the system

must be evaluated according to the military knowledge and

real-life scenarios.
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