
Development of Human-friendly Notation
for XML-based Languages

Sergej Chodarev
Technical University of Košice, Department of Computers and Informatics, Letná 9, Košice, Slovakia

Email: sergej.chodarev@tuke.sk

Abstract—XML is a popular choice for development of
domain-specific languages. In spite of its popularity, XML is a
poor user interface and a lot of languages can be improved by
introducing custom notation. This paper presents an approach
for development of custom human-friendly notation for existing
XML-based language together with a translator between the
new notation and XML. This approach is based on explicit
representation of language abstract syntax that can be decorated
with mappings to both XML and the custom notation. The
approach supports iterative design and development of the
language concrete syntax, allowing its modification based on users
feedback. Development process is demonstrated on a case study
of language for definition of graphical user interface layout.

I. INTRODUCTION

X
ML is very common and easy to parse generic language,

it is well supported by existing tools and technologies

and therefore it is a popular basis for domain-specific lan-

guages (DSLs). While XML is appropriate choice in many

cases, especially for program-to-program communication, it is

not well suited for cases, where humans need to manipulate

documents. Although they are able to create, modify and read

XML documents, it is not a pleasurable experience, because

of uniformity and syntactic noise that makes it difficult to find

useful information visually [1].

While a more appropriate syntax can be chosen for de-

velopment of new languages, a lot of languages was already

implemented based on XML and their reimplementation would

be complicated and time-consuming. One of the possible ways

to solve this problem is to develop a translator that would read

documents written in a specialized human-friendly notation

and output them in the XML for further processing using

existing tools. Ideally, the new notation would be specifically

tailored to the domain of the language as is usual for DSLs [2].

Development of the translator requires implementation of

parser and generator. Proper separation of these two com-

ponents also involves some internal representation of the

language that would be created by the parser and then traversed

to generate the XML. Development of all these components

may be very tedious, even using parser generators.

This paper presents an approach to development of the

translator that simplifies the process and allows to evolve the

new syntax iteratively. The main idea of the approach is in

extracting definition of language structure into a format that

can be easily augmented with the definition of a new notation.

For example, Java classes representing the structure of an

XML-based language can be generated automatically from

the XML Schema using JAXB1. The generated classes are

already annotated in a way that allows automatic marshalling

and unmarshalling their instances in the XML form. Additional

annotations can be added to the classes that define their

mapping to a different textual notation. In the next step an

annotation based parser generator, like YAJCo [3], can be

used to generate a parser for the new notation. Connecting

the parser with the XML unmarshaller one would get a

complete translator from a custom human-friendly notation to

the original XML-based.

Main topics discussed in the paper and its contributions are

the following:

• It explains the approach to language translator develop-

ment that is based on explicit representation of language

abstract syntax in a format that allows attaching defini-

tions of different concrete notations (Section II).

• The approach allows to develop a round-trip translator

based on a single specification of abstract syntax. This

enables iterative development of the notation in contrast

to classical approach where complete syntax should be

defined upfront. The process of iterative notation devel-

opment is described in Section III.

• The whole approach is demonstrated on a case study of a

language for specifying layout and properties of graphical

user interface components (Section IV). The case study

shows possible challenges of the approach and can be

used as a guide to develop similar translators.

Presented case study also demonstrates that object-oriented

programming language like Java can be successfully used as a

format for abstract syntax description, provided that it allows

attaching structured meta-data [4] (known as annotations or

attributes) to program elements. This allows to use numerous

existing tools and also avoids the need for special purpose

representations and related technologies.

II. MODEL-DRIVEN DEVELOPMENT OF LANGUAGE

TRANSLATOR

Similarly to model-driven software development [5] it is

possible to drive development of the language translator by the

model of the language – metamodel2. The metamodel defines

language concepts with their properties and relations to other

1Java Architecture for XML Binding, available at https://jaxb.java.net/.
2If we consider documents written in a language to be models, then a model

of the language itself is metamodel.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1565–1571

DOI: 10.15439/2016F530

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1565

Text Document

XML Schema Compiler

XML Marshaller Generator

XML Unmarshaller

XML Marshaller

Parser generator

Prettyprinter

Parser

Model

MetamodelXML Schema

XML Document

Compile-time

Run-time

describes generates

generates

Fig. 1. Model-driven language translator development (arrows represent data-flow)

concepts. It can be annotated with additional information about

concrete syntaxes of the language that need to be translated.

Figure 1 shows the whole architecture of model-driven lan-

guage translator development in the case of translating XML

to textual notation and vice versa. The metamodel augmented

with definition of concrete notations is the central element.

It is used as an input to generate parser and prettyprinter for

both the textual notation (using parser generator) and XML

(using XML marshaller generator). The generated tools can

be connected into a pipeline that handles translation of one

notation to the other with the internal representation of the

model (defined by the metamodel) as an intermediate format.

What is important, the first version of the metamodel itself

can be retrieved from the existing description of XML-based

language – XML Schema. This allows to significantly shorten

the development process, because large part of the language

definition – its abstract syntax – is derived automatically. This

style of development also follows the “Single Point of Truth”

principle, because the structure of the language is defined only

once and its mappings to concrete notations are attached to it.

The described approach does not depend on concrete tools.

It, however, requires an XML marshaller and a parser/pret-

typrinter generator that both use the same format for meta-

model specification. In Section IV is presented the case study

that uses Java classes to represent the metamodel. They are

augmented using annotations, JAXB is used as an XML mar-

shaller and YAJCo as a parser generator. Alternative solution

can use Ecore from Eclipse Modeling Framework (EMF) [6]

to represent the metamodel and Xtext [7] as a parser generator.

III. ITERATIVE DEVELOPMENT OF THE TRANSLATOR

Design of notation for an existing language is, actually,

design of a user interface. As such, it requires evaluation of

various alternatives, and testing new alternatives in conditions

similar to real-life. This process is iterative by nature [8]. On

the other hand, classical approach to language development

assumes that the language syntax is designed upfront (for

example [9]). A complete specification of grammar is then

augmented with semantic actions and processed to generate

a parser. Changes in the syntax often require modification of

semantic rules, making the process laborious.

The fact, that the model-driven approach described above

allows to easily receive bidirectional translator, makes it pos-

sible to use a different process:

1) Extract language metamodel from the XML Schema.

2) Augment the metamodel with initial definition of the

new concrete syntax.

3) Generate a prettyprinter based on the definition and

convert examples of existing XML documents to the new

notation.

4) Evaluate the new notation on examples of converted

documents.

5) If the notation is not satisfactory, modify concrete syntax

definition and go back to the step 3.

6) If the notation is satisfactory, complete the syntax defi-

nition and generate a parser.

This process allows to easily use existing documents for

testing new notation instead of some artificial examples.

Complete real-life documents in the new notation can be

generated automatically immediately after the definition of

the syntax has changed. This allows very fast evaluation and

modification cycles, so problems in the notation can be spotted

and resolved, even if they occur only in complex documents.

This approach also provides a simple method for testing

correctness of the developed translator, i.e. that no information

is lost or corrupted during translation. A set of example XML

documents can be automatically converted to the new notation

and then back to the XML. Result of the conversion can be

compared with the original XML documents to reveal missing

support for some language features or other errors. If the

translator is correct, no data is lost and documents are identical

(except of differences in formatting that can be removed using

normalization before the comparison).

IV. CASE STUDY

The approach can be demonstrated on the development of a

new textual notation for the GtkBuilder language. GtkBuilder

is a part of the GTK+ GUI toolkit that allows to declaratively

specify layout of a user interface using an XML-based lan-

guage3. There is a Glade tool4 that allows to edit GtkBuilder

specifications visually, however it tends to lack support for

3Specified at https://developer.gnome.org/gtk3/stable/GtkBuilder.html
4Available at https://glade.gnome.org/

1566 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

1 <interface>

2 <object class="GtkDialog" id="dialog1">

3 <child internal-child="vbox">

4 <object class="GtkVBox" id="vbox1">

5 <property name="border-width">10</property>

6 <child internal-child="action_area">

7 <object class="GtkHButtonBox" id="hbuttonbox1">

8 <property name="border-width">20</property>

9 <child>

10 <object class="GtkButton" id="save_button">

11 <property name="label" translatable="yes">Save</property>

12 <signal name="clicked" handler="save_button_clicked"/>

13 </object>

14 </child>

15 </object>

16 </child>

17 </object>

18 </child>

19 </object>

20 </interface>

Fig. 2. Example of user interface definition using XML notation

newest GTK+ widgets, requiring manual modification of XML

files.

The translator was implemented using two tools: JAXB

and YAJCo. JAXB is a standard solution for marshalling and

unmarshalling Java objects to XML. YAJCo5 (Yet Another

Java Compiler Compiler) is a parser generator for Java that

allows to specify language syntax using a metamodel in a

form of annotated Java classes [3]. This allows declarative

specification of a language and its mapping to Java objects

[10]. In addition to parser, YAJCo is able to generate pretty-

printer and other tools from the same specification [11].

This section describes a process of development of the

translator using the chosen tools. It also explains challenges

that arise during the implementation and their solutions. Read-

ers can use it as a guide to develop their own translators.

The complete source code of the translator is available for

download at http://hron.fei.tuke.sk/~chodarev/gtkbuilder/.

A. GtkBuilder Language

The GtkBuilder UI definition language allows to specify a

layout of widgets forming a user interface and their properties

using an XML notation. Each instance of a widget is defined

using an object element, which contains its type, identifier,

properties, signal bindings, and child objects. Fig. 2 presents

an example UI definition in the XML notation.

The XML notation for the language, while familiar, is very

hard to read. Document contains a lot of syntactic noise

that makes fast scanning of the definition very hard. The

same definition can be expressed using a custom notation as

shown in Fig. 3. The notation uses special symbols to provide

concise representation for language elements. For example,

object is expressed using “[Class id ...]” notation

(e.g. line 1), properties are written simply as pairs in a form

5Available at https://github.com/kpi-tuke/yajco

1 [GtkDialog dialog1

2 %child vbox :

3 [GtkVBox vbox1

4 border-width : 10

5 %child action_area :

6 [GtkHButtonBox hbuttonbox1

7 border-width : 20

8 %child :

9 [GtkButton save_button

10 label : _ Save

11 clicked -> save_button_clicked]]]]

Fig. 3. Example of user interface definition using custom textual notation

“name : value” (e.g. line 4), signal binding is expressed as

“signal_name -> handler” (line 11), and strings that

should be translated in localized versions of UI are marked

with underscore (line 10). The notation is short and quite

intuitive at the same time.

In the rest of the section the development of the custom

notation and conversion tools is described in more detail.

B. Metamodel Extraction

As was mentioned earlier, the metamodel represented by

Java classes can be generated based on the existing XML

schema using the XML binding compiler (xjc) that is a part

of JAXB. It generates Java classes corresponding to elements

of XML-based language. Generated classes contain annota-

tions that define mapping to XML elements and attributes.

JAXB uses these annotations to create instances of the classes

and set their properties based on XML document contents.

The same annotations are used to serialize objects to the XML

form.

This means that after the metamodel was extracted it is

possible to use JAXB to read existing UI definition from the

XML notation to an internal representation defined by the

SERGEJ CHODAREV: DEVELOPMENT OF HUMAN-FRIENDLY NOTATION FOR XML-BASED LANGUAGES 1567

Fig. 4. Class diagram of the GtkBuilder language metamodel

metamodel and also to marshall the internal model back to

the XML form.

In the case study, extracted classes directly corresponded

to elements of the XML-based language. Therefore, they

included classes like Interface, Object, Child, Property, Signal,

classes for definition of menus, etc. In total, 13 classes was

generated by JAXB. Full metamodel, including modifications

and additions described in next sections is depicted in Fig. 4.6

Encountered problems: Unfortunately, the schema of the

GtkBuilder language is available only in the RelaxNG format.

Because the support for RelaxNG schemas in JAXB is only

experimental, it was converted to the XML Schema format

using the Trang tool7.

In addition, the schema does not define the language com-

pletely. Each widget type can support additional elements for

widget-specific functionality. These elements, however, are not

specified in the schema. Instead, arbitrary elements are allowed

inside the object element.

The support for the most common widget-specific exten-

sions, that was not specified in the schema, was added later

by defining new classes in the metamodel. Generated classes

obviously need to be modified to include declaration of added

child elements of new types.

Shortcomings of the GtkBuilder language definition make

it impossible to create the metamodel fully automatically. But

on the other hand, it shows that the approach is applicable

even in such cases.

C. Syntax Definition

Definition of new concrete syntax is provided in form of

annotations added to the metamodel classes. This means that

the metamodel generated using JAXB needs to be augmented

to include YAJCo-specific annotations.

YAJCo infers abstract syntax of the language from the

inheritance relations between the metamodel classes and from

their constructors. Each constructor is transformed into a

grammar rule and parameters of a constructor determine the

6Classes Object and Interface was renamed to GtkObject and GtkInterface

to avoid clashes with Java keywords in the generated parser.
7Available at http://www.thaiopensource.com/relaxng/trang.html

@Before("%child")

public Child(@Token("ID") @After(":")

String internalChild,

@NewLine @Indent

List<GtkObject> object) {

this.object = object;

this.internalChild = internalChild;

}

Fig. 5. Example class constructor with YAJCo annotations

right hand side of the rule. YAJCo annotations are attached

to constructors to specify details of the grammar that cannot

be inferred automatically. For example, Fig. 5 presents one

of the constructors of the Child class. It defines that a child

can be constructed from a string representing an internal child

name and a list of objects (e.g. lines 2 and 5 in Fig. 3). The

child definition would start with the “%child” token followed

by the ID token representing an identifier, followed by colon

and a sequence of objects. Annotations also contain hints on

indentation and new-line placement for prettyprinter (they are

ignored by the parser).

Such constructors need to be added to the metamodel

classes. Each variation of the element concrete syntax requires

its own constructor. For example, the Child can be defined

with internalChild property specified, or without it (e.g. line

8 in Fig. 3) and therefore it needs at least two constructors.

In addition to constructors, factory methods can be used as

an annotation target. This makes it possible to define different

syntaxes even if they have the same types of parameters in

Java.

Each class also needs a non-parametrized constructor re-

quired by JAXB. This constructor must be marked using the

YAJCo @Exclude annotation so it would be ignored by the

YAJCo tool.

In the following subsections are described some details of

the implementation, typical problems and their solutions.
1) Completing the abstract syntax specification: In some

cases several alternative values of different types are expected

in the same place. For example, object definition contains a

sequence of properties, child definitions or signal bindings. In

1568 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

public class GtkObject {

@XmlElements({

@XmlElement(name = "property",

type = Property.class),

@XmlElement(name = "signal",

type = Signal.class),

@XmlElement(name = "child",

type = Child.class)

})

protected List<java.lang.Object>

propertyOrSignalOrChild;

...

Fig. 6. Alternative types of values by as defined by JAXB

public class GtkObject {

@XmlElements(...)

protected List<ObjectElement>

propertyOrSignalOrChild;

...

public interface ObjectElement {}

public class Property implements ObjectElement{

...

public class Signal implements ObjectElement {

...

public class Child implements ObjectElement {

...

Fig. 7. Alternative types of values defined using inheritance

object-oriented model this situation can be expressed by inher-

itance. JAXB, however, does not use this technique in gener-

ated metamodel classes. Instead, it uses type java.lang.Object

in the container and adds @XMLElements annotation to

specify all possible concrete types that can be used as is shown

in Fig. 6.

On the other hand, YAJCo requires the use of inheritance or

implementation relations in these situations. So a new marker

interface needs to be created and classes of all elements that

can appear in specific context are marked to implement it.

The container class is then modified to reference the marker

interface. An example of all these modifications is presented

in Fig. 7.

2) Conflict between reserved keywords and identifiers: The

problem arises from the different treatment of keywords in

different notations. XML uses special syntax for language

elements (tags delimited by angle brackets) and therefore it

can allow to use language keywords as identifiers inside XML

attributes and text fragments. For example, menu can be named

simply “menu”: <menu id="menu">...</menu>

On the other hand, if element names, like “menu” or

“child”, become reserved keywords in the custom notation,

they could not be used as identifiers anymore, because stan-

dard lexical analyzer would not be able to distinguish them.

Such conflicts can be resolved by decorating either language

keywords or identifiers with some special symbols that would

distinguish them. In our case percent sign was used as a

starting symbol of all language keywords. For example, the

menu would be defined like this: %menu menu { ... }

3) Model transformations: Representation of the meta-

model using Java classes allows to implement simple model

transformations using constructors. Constructors of the meta-

model classes can transform their parameters before storing

to class fields. It makes possible to define helper classes with

own syntax rules, that are not stored in the model.

For example, at different places in the language it is possible

to specify value, that can be a number, a symbol, or a string,

all with different notations. Each class where such value can

be used would need at least three constructors (for each

notation of the value). Instead of this, it is possible to define a

new helper class that would handle this aspect of concrete

syntax using its own constructors and factory methods. It

would also implement appropriate pre-processing of the values

(e.g. removing quotation marks from strings). Instances of

the helper class would become constructor parameters of the

original classes, but only the actual value would be stored in

the model, not the instance of the helper class. This allows to

avoid modification of the metamodel and XML bindings.

D. Other Implementation Notes

1) Project setup: It is useful to split the project into

two submodules: one for the metamodel definition and the

code generated based on it, and other for code that uses

the generated parser and prettyprinter to translate language

sentences. This setup explicitly divides generated code and

the code that depends on it.

The second submodule contains implementation of a

command-line tool for converting between different notations

of the language. This tool instantiates JAXB marshaller and

unmarshaller and also YAJCo generated parser and pret-

typrinter and uses them to produce the internal model from

one notation and convert it to the other notation.

In addition, the project contains script that tests the imple-

mentation by running round-trip transformation and comparing

results with original versions of example documents. In the

case study this script was implemented as a Makefile that

would produce report on differences between documents if

modifications of the code would cause errors in translation.

This approach helped to find several problems described in this

section and led to successful translation of tested examples.

2) Prettyprinter customization: Some syntax constructs can

not be handled by the YAJCo generated prettyprinter auto-

matically. For example, strings that should be translated in

localized versions of the application are marked using an

underscore “_” symbol. In the model, however, it is stored as

a value of True in the field translatable. This correspondence

is not inferred by the prettyprinter generator. As a solution,

a prettyprinter can be simply extended by a new class, that

would override the corresponding method to provide the

needed functionality. This is greatly simplified by the fact that

the generated prettyprinter is based on the visitor pattern.

SERGEJ CHODAREV: DEVELOPMENT OF HUMAN-FRIENDLY NOTATION FOR XML-BASED LANGUAGES 1569

V. RELATED WORK

The presented approach and technologies are not limited

to development of textual notation for the language. As was

shown in the work of Bačíková et al. [12], it is possible to use

the same metamodel definition to generate a graphical user in-

terface. This interface would consist of forms allowing to edit

language sentences. Input for the metamodel extraction is not

limited to XML Schema: it is possible to extract metamodel

from some non-XML notation [13], existing application [14]

or it user interface [15]. It is also possible to avoid modification

of generated metamodel code to augment definition of the

metamodel and add different methods of its processing by

using aspect-oriented programming [16].

The most similar work to the one presented in this paper

is XMLText by Neubauer et al. [17]. They use EMF for

representing metamodels and Eclipse Xtext [7] for generating

parser, prettyprinter (serializer in the Xtext terminology),

and editing support for the Eclipse integrated development

environment. They integrate these tools and develop round-

trip transformation between XML based languages defined

by XML Schema and textual notation. Their tool, however,

does not directly support custom syntax definition for each

language element. On the other hand, customization of the

textual notation should be possible using manual modification

of the generated Xtext grammar.

Therefore, it should be possible to use the iterative approach

described in this paper with EMF and Xtext as well. The main

difference compared to technologies presented in this paper

is the fact that EMF and Xtext use specialized language for

defining metamodel — Ecore, while JAXB and YAJCo rely

on Java for this purpose. This allows to lower the entry barrier

by minimizing the amount of new technologies needed to be

learned. It also allows to implement model transformations in

Java using the techniques well-known by industrial program-

mers. On the other hand EMF promises independence on the

concrete programming language. Together with Xtext they also

provide a more mature platform for development of languages

with their tooling, first of all – editing environment.

A real-life example of migrating UML and XML based

modeling language to these technologies was presented by

Eysholdt and Rupprecht [18]. They, however, did not use a

single metamodel for different notations. Instead, they used

model-to-model transformations to migrate models.

Other alternative would be the use of different generic

language instead of the XML. YAML is a popular choice, for

example, Shearer [19] used it to provide textual representation

for ontologies. YAML (Yet Another Markup Language) was

specially designed as a human-friendly notation for expressing

data structures [20]. Its syntax is readable and quite simple, but

the use of generic language does not allow to use specialized

short-hand notations tailored for a developed language. While

the basic structure of our example language may be expressed

similar to the custom notation, problems start in the details.

For example, the custom notation allows to mark any string

as translatable by simply writing underscore before it, YAML

would require a different and more noisy solution.

Similar solution is the use of OMG HUTN (Human-Usable

Textual Notation) which specifies generic textual notation for

MOF (Meta-Object Facility) based metamodels [21], again

without possibility to customize concrete syntax.

The approach presented in this paper is also similar to tools

supporting development of DSLs based on existing ontologies

[22], [23]. In our case, however, existing XML-based language

is used as a basis for a DSL instead of ontology.

VI. CONCLUSION

Presented case study showed the applicability of the model-

driven translator development approach. It also allowed to

formulate several advises for practical usage of the approach

(described in Section IV). While most of them are specific to

the tools used in the study, some may be applicable to other

tools as well. The approach itself is tool-independent and can

be used with any language metamodel representation that can

be mapped to both XML and custom textual syntax.

Future work may include identification, validation and com-

parison of tools and metamodel representations that support

the described translator development approach. The YAJCo

tool itself requires further development, especially in the area

of generating tool support for the language beside parser and

prettyprinter.

ACKNOWLEDGMENT

This work was supported by project KEGA No. 047TUKE-

4/2016 “Integrating software processes into the teaching of

programming”.

REFERENCES

[1] T. Parr, “Humans should not have to grok XML,” 8 2001. [Online].
Available: http://www.ibm.com/developerworks/library/x-sbxml/index.
html

[2] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, dec 2005. doi: 10.1145/1118890.1118892

[3] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation based
parser generator,” Computer Science and Information Systems (ComSIS),
vol. 7, no. 2, pp. 291–307, 2010. doi: 10.2298/csis1002291p

[4] M. Nosál’, M. Sulír, and J. Juhár, “Source code annotations as formal
languages,” in 2015 Federated Conference on Computer Science and

Information Systems (FedCSIS), Sept 2015. doi: 10.15439/2015F173 pp.
953–964.

[5] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-

opment: Technology, Engineering, Management. John Wiley & Sons,
2006. ISBN 0470025700

[6] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse

Modeling Framework. Pearson Education, 2008.
[7] S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,”

in Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006,
p. 118.

[8] J. Nielsen, “Iterative user-interface design,” IEEE Computer, vol. 26,
no. 11, pp. 32–41, Nov 1993. doi: 10.1109/2.241424

[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006. ISBN 0321486811

[10] D. Lakatoš, J. Porubän, and M. Bačíková, “Declarative specification
of references in DSLs,” in 2013 Federated Conference on Computer

Science and Information Systems (FedCSIS). IEEE, 2013. ISBN
9781467344715 pp. 1527–1534.

1570 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

[11] D. Lakatoš and J. Porubän, “Generating tools from a computer language
definition,” in Proceedings of International Scientific conference on

Computer Science and Engineering (CSE 2010), September 2010, pp.
76–83.

[12] M. Bačíková, D. Lakatoš, and M. Nosál’, “Automatized generating of
GUIs for domain-specific languages,” in CEUR Workshop Proceedings,
vol. 935, 2012, pp. 27–35.

[13] J. Porubän, J. Kollár, and M. Sabo, “Abstraction of computer language
patterns: The inference of textual notation for a dsl,” in Formal and

Practical Aspects of Domain-Specific Languages: Recent Developments.
IGI Global, 2012, pp. 365–385, doi: 10.4018/978-1-4666-2092-6.ch013.

[14] J. Kollár and M. Vagač, “Aspect-oriented approach to metamodel ab-
straction,” Computing and Informatics, vol. 31, no. 5, pp. 983–1002,
2012.

[15] M. Bačíková, J. Porubän, S. Chodarev, and M. Nosál’, “Bootstrapping
DSLs from user interfaces,” in Proceedings of the 30th Annual ACM

Symposium on Applied Computing - SAC ’15. ACM Press, apr 2015.
doi: 10.1145/2695664.2695994. ISBN 9781450331968 pp. 2115–2118.

[16] J. Porubän, M. Sabo, J. Kollár, and M. Mernik, “Abstract syntax driven
language development: Defining language semantics through aspects,”
in Proceedings of the International Workshop on Formalization of

Modeling Languages (FML ’10). New York, NY, USA: ACM, 2010.
doi: 10.1145/1943397.1943399. ISBN 978-1-4503-0532-7

[17] P. Neubauer, A. Bergmayr, T. Mayerhofer, J. Troya, and M. Wimmer,
“XMLText: from XML schema to Xtext,” in 2015 ACM SIGPLAN

International Conference on Software Language Engineering. ACM,

oct 2015. doi: 10.1145/2814251.2814267. ISBN 978-1-4503-3686-4 pp.
71–76.

[18] M. Eysholdt and J. Rupprecht, “Migrating a large modeling environment
from xml/uml to xtext/gmf,” in Proceedings of the ACM International

Conference Companion on Object Oriented Programming Systems Lan-

guages and Applications Companion, ser. OOPSLA ’10. New York,
NY, USA: ACM, 2010. doi: 10.1145/1869542.1869559. ISBN 978-1-
4503-0240-1 pp. 97–104.

[19] R. Shearer, “Structured ontology format,” in Proceedings of the OWLED

2007 Workshop on OWL: Experiences and Directions, 2007.
[20] O. Ben-Kiki, C. Evans, and B. Ingerson, “YAML Ain’t Markup

Language. Version 1.2,” Tech. Rep., 2009. [Online]. Available:
http://yaml.org/

[21] P.-A. Muller and M. Hassenforder, “HUTN as a Bridge between Mod-
elWare and GrammarWare - An Experience Report,” WISME Workshop,

MODELS/UML, pp. 1–10, 2005.
[22] I. Čeh, M. Črepinšek, T. Kosar, and M. Mernik, “Ontology driven

development of domain-specific languages,” Computer Science and

Information Systems (ComSIS), vol. 8, no. 2, pp. 317–342, 2011. doi:
10.2298/CSIS101231019C

[23] J. M. S. Fonseca, M. J. V. Pereira, and P. R. Henriques, “Converting On-
tologies into DSLs,” in 3rd Symposium on Languages, Applications and

Technologies, ser. OpenAccess Series in Informatics (OASIcs), vol. 38.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2014. doi: http://dx.doi.org/10.4230/OASIcs.SLATE.2014.85.
ISBN 978-3-939897-68-2. ISSN 2190-6807 pp. 85–92.

SERGEJ CHODAREV: DEVELOPMENT OF HUMAN-FRIENDLY NOTATION FOR XML-BASED LANGUAGES 1571

