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Abstract—We consider concept of approximate query in
RDBMS i.e. query that returns results which may differ from
common (exact) query results in a way but its evaluation requires
less resources. In the work we focus mostly on time and storage
space aspects. We follow one of the state-of-the-art trends using
synopses of data as the input of approximate query evaluation.
We propose some measures of approximate query results quality.
Basing on them we present steps of adaptive elaboration of
synopses quality measure that should be mutually corresponding.

Index Terms—Approximate Query, Quality Measures, His-
tograms.

I. INTRODUCTION

A
PPROXIMATE query concept emerged as a tool of

coping with continuous growth of data volume gathered

in databases. Disposing limited budget of resources like time,

storage space, computing power etc. database user wanted

to gain information from the data quickly but accepting fact

that achieved results may not be crisp. Two main classes of

solutions are present in the literature: data sampling techniques

[1], [2] and data synopses calculation [3], [4]. The former

one utilizes statistical apparatus for choosing representative

sample of the data, considerably smaller than whole data set,

and using it to estimate results of query for whole data. The

latter is based on concepts of data synopses which are data

descriptions built once during load, stored and exclusively used

during query evaluation. Some compact comparison between

both approaches is contained in e.g. [5].

In the world of RDBMSs synopses are considered as the

descriptions of e.g. columns value data sets. We may consider

both one or multicolumns descriptions. The most common

and well-examined types of data synopses described in the

literature are histograms. In standard approaches, histograms

are built per whole column (or more columns) and inference

based on histograms is done for whole relation.

Our approach differs from this while we utilized some

elements of granular computing1 in the query evaluation

process. Despite our approach may be treated as an example of

the synopses calculus trend, we create synopses and inference

1https://en.wikipedia.org/wiki/Granular_computing

on their basis not on whole relation level but on their parts.

This may require some additional operations during query

evaluation like compound partial results of evaluated query

from each data packs. On the other hand it enables reflecting

potential changes or differences in columns value sets in

time and avoiding complex operations on synopses when e.g.

consecutive loads into relations are considered.

Other consequence of this fact is that the size (in bytes) of

generated synopses must be of orders of magnitude smaller

than compressed data themselves and synopses build in stan-

dard approaches for whole column. For effectiveness sake and

in order to easily control storage we assume also existing size

budget for single synopsis. That means in particular that for

most cases we cannot afford storing e.g. exact histogram of

value set from part of the table (i.e. histogram in which all

intervals are single-valued). The idea of utilizing granularity

concepts may go further in building hierarchical structures of

synopses e.g. for subsets of row/data packs.

The presented analysis concerns measures of histogram

quality. We will say that the histogram is of good quality when

applying used methodology led to achieve good approximation

of query results. That raises immediately question of quality of

the latter one. In the article we introduce measures of quan-

tifying approximate query results and their selected aspects.

The main purpose of the work remains though developing

and analyzing measures of histogram quality that will directly

translate to proposed quality measures of the query results.

Section II describes basics of the Infobright RDBMS engine

that we had chosen for experiments, explains terminology we

use in the work and presents methodology used in experiments

framework. We discuss problem of measuring approximate

query results in Section III and propose some formulas for it.

In Section IV we describe standard methods of 1dim histogram

generation and classic quality measures for them. As the

experiments result presented in latter section run for standard

approaches were not satisfactory, we propose in Section V

some modifications of them.
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II. BASIC DEFINITIONS AND METHODOLOGY

A. Definitions

We consider 1–dimensional histograms as a collection

of bars (buckets), each of which then consists of: interval

(determined by 2 numbers - interval’s begin and end) and

frequency which in our work is cardinal (but finite) number.

If single histogram bars’ intervals are disjoint, frequencies

should be interpreted as number of elements which occur in

the interval. Exemplary 1dim histograms are in Figures 3 –

5 . We may easily extend this definition to multidimensional

histograms changing intervals to cubes however we do not

consider multidimensional case in the article so we omit it

here. Histograms might be generated using many algorithms.

Some of them are presented in Section IV. In the work we

may refer to information contained in synopses as to rough

data or granuled data.

B. Infobright Basics

In the considered RDBMS engine [6], [7], during the

data load process, the sets of relation tuples are split into

chunks of equal and fixed cardinality (apart from the last

chunk perhaps) which form row packs. Sequence of values

from row pack for single column forms data pack for this

column. As data pack range we mark interval from minimal to

maximal values of data pack. In actual implementation of the

database engine chunk size is equal to 216. Data packs are then

compressed separately and stored. For each of formed data

pack there is additionally built and stored compact information

(data synopsis) of values from data pack. Such synopsis may

be considered as the information granule of the data pack.

Prepared data synopses are loaded into memory during query

evaluation and used in several ways e.g. to filter out irrelevant

data (e.g. to avoid costly I/O operations for corresponding data

packs).

As pointed out, in the described engine, both compressed

data packs and synopses are stored. In some of our previous

works, we investigated how to further decrease the amounts

of accessed data packs and focus more on synopses-based

computations in order to accelerate computations, on the cost

of possible inexactness of query results [8], [9]. However, in

the case of the new Infobright’s engine dedicated to approx-

imate queries only synopses are stored, while exact data are

accessible only during their load (when synopses are being

generated) and then forgotten.2 This is also the assumption

that we follow in this paper. Another aspect that distinguishes

our approach from most of standard methods is the fact that

our data synopses are built for each data pack – not for each

column only.

C. Experiments Framework

As there is no room for describing methods of using

synopses in internal operations of the query engine and, on

the other hand, this is not the main purpose of this article,

we decide to emulate behaviour of the engine designed for

2https://infobright.com/introducing-iaq/

approximate queries. Generally speaking, histogram reflects

probability distribution and therefore might be the input of

random value generator. To make histogram the distribution

we assume that (1) inside each interval all values are uniformly

distributed and (2) frequencies of each value in domain should

be normalized (their sum should be equal to 1).

During query evaluation histograms were read from storage

and data pack is constructed of randomly chosen 216 column

values according to distribution described by histogram.

For the purpose of this work we assume, that each approx-

imate query evaluation consists of 2 stages: (1) generating

data according to calculated 1dim histograms and (2) evaluate

the query using such prepared (approximate) table with exact

engine. We created set of benchmark queries which were eval-

uated on data sets generated according to specific histograms.

The overall rating of specific histogram depended on query

results quality gained from experiments on these data sets (we

will call it approximate data).

D. Storage Budget Discussion

As we had chosen histograms as types of data synopsis used

in our framework, we should indicate how one can control

existing storage budget in histogram construction. Remind that

we consider budget per 1 data pack. Few question may be

raised here. The most natural way to control budget in the

case of histograms is to adjust number of stored buckets. This

parameter affects not only storage factor but has also influence

on calculation complexity (number of performed operations).

The other factor may be also method of storing histogram. In

general, as presented in definition, each bucket of histogram is

described by left and right boundary. However with additional

assumption (made also in this work) that set of histogram

intervals covers whole data pack domain, apart from storing

data pack minimum and maximum, to identify the bar in

histogram suffice to store only its e.g. right boundary (left

can be induced from prior interval). So each bucket can be

stored as 2 numbers - its maximum and its frequency. Deeper

optimizations of storage may depend on type of synopsis or

on implementation method. In the work we focus on number

of buckets as the main control parameter.

III. HOW TO COMPARE QUERY RESULTS?

In order to compare query results evaluated on exact (real)

data and on rough data one needs to elaborate quality measures

of query results. Below we describe measures used in the

article. One can easily notice that they are to some extent

inspired by the notions of fuzzy similarity and multi-label

classification, now adopted for new purposes.

The result of every SELECT has a tabular form. We will

denote it as R = (U,C), where U and C are sets of its tuples

and columns. U can refer to original rows or groups, possibly

with limit.

In C, we distinguish columns A that are results of aggregate

functions and columns G used in group by clause. Alterna-

tively, G can gather columns that are primary key and A - all

10 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



other columns. Some columns in A can be used in ORDER

BY clause. In such case the new rank function is added to C.

Let us consider two results of the same query, real result

Rr = (Ur, C) and an approximate result Ra = (Ua, C). The

idea is to check to what extent tuples in Ur and Ua match with

each other with regard to columns in G and, for those tuples

which can be matched, how similar are their values over A.

Similarity of Rr and Ra should be within [0,1], and equal to

1 only if Rr and Ra are identical.

Consider a pair of tuples tr ∈ Ur and ta ∈ Ua, such that

there is g(tr) = g(ta) for every g in G.

A score of similarity of tr and ta is as follows:

s(tr, ta) =
∏

c∈A

sc(c(tr), c(ta))

where
∏

denotes multiplication and:

sc(c(tr), c(ta)) = 1−
|c(tr)− c(ta)|

|c(tr)|+ |c(ta)|+ 1

If rank is added, it can take a form of:

r(tr, ta) = 1−
|rank(tr)− rank(ta)|

|rank(tr)|+ |rank(ta)|

While rows (and groups) from results achieved from exact

query and approximate query may differ we distinguish two

types of mismatched rows (groups):

• False Positives (FP) - rows (groups) which shouldn’t

occur but did

FP = card(Ua\Ur) = card(Ua)− card(Ur ∩ Ua)

• True Negatives (TN) - rows (groups) which should occur

but didn’t

TN = card(Ur\Ua) = card(Ur)− card(Ur ∩ Ua)

We define Aggregation Similarity as follows:

AggSim(Rr, Ra) =

∑
tr∈Ur,ta∈Ua:G(tr)=G(ta)

s(tr, ta)

card(Ur)

We define Ranking Similarity as follows:

RankSim(Rr, Ra) =

∑
tr∈Ur,ta∈Ua:G(tr)=G(ta)

r(tr, ta)

card(Ur)

And finally, we define Total Similarity as follows:

TotSim(Rr, Ra) =

=
∑

tr∈Ur,ta∈Ua:G(tr)=G(ta) s(tr,ta)·r(tr,ta)

card(Ur)+card(Ua\Ur)

In Fig. 1 there is a simple example of calculation of

presented measures.

Fig. 1. Example of comparison between results of exact and approximate
queries

IV. STANDARD APPROACH

A. Generation of 1-Dimensional Histogram

We had started experiments with three standard approaches

to histogram generation.
As mentioned earlier we built separate histogram for each

data pack (value set of 1 column from 216 consecutive rows)

i.e. exact data were the input to create each 1-dim histogram.

After being build each histogram was stored.
Looking for the best correspondence between histogram

quality measures and approximate query results quality we

tested many different methods of histogram generation. Here

we present results of experiments on 3 most commonly used in

databases types of histograms: EquiWidth histogram (classic),

EquiDepth histogram (quant) and MaxDiff histogram (diff).
Each type of histogram splits data pack range into k buckets.

• EquiDepth histogram divides the set of values into k

ranges such that each range has the same number of

values [10].

• EquiWidth histogram divides the set of values into k

buckets of equal width [11].

• In MaxDiff histogram boundaries of intervals are cho-

sen after analyzing differences between frequencies of

adjacent bars from exact histogram (adjacency is induced

by natural order of values). k − 1 largest differences

determine split points of histograms intervals [12].

As inside each histogram’s interval we assume uniform

distribution for contained values, and intervals from each

considered 1-dim histograms cover whole range of data pack,

we may achieve in natural way from random generation values

which did not occur in original data pack (False Positives). As

turned out they constituted the biggest challenge.
Each type of histogram splits data pack range into k buckets,

where k is established parameter corresponding to storing

budget. In our experiments we took k = 64.
All experiments were run on the table containing 33

columns and 10 · 216 rows.
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B. Standard Quality Measures for Histogram

In order to use approximate query in most efficient way not

only results comparison aspect should be examined but also

methods of prediction to what extent type or scale of used

synopsis could affect query results quality. Such knowledge

would let one to choose optimal type/size of histogram and

also to control by the user threshold between storage footprint

of created synopses (or on the other hand: volume of data

processed during query evaluation) and query results quality.

We assume that the database user is aware of the existence of

such threshold.

That brings us to subproblem of defining measure of his-

togram quality which is correspondent to approximate query

results.

We acknowledged as fundamental here the ability of gen-

erated histogram to reflect original distribution of the data

pack’s values. As mentioned earlier due to existing budget,

in most cases, we are not able to store exact histogram

of value set (such case we recognize as optimal), so such

possibility is crucial to make more sophisticated inference of

approximations successfully.

At the first stage we applied standard measures of similarity

between distributions based on deviations from mean, which

work fine for the cases without generated false positives [13],

[14].

Here is the first examined measure:

Q1(c, p) =
∑

v∈Dom(c)

min{
freq(pv)

ALLpv

, freq(v)},

where c is a column, p - data pack range split (set of

intervals), pv - interval (from split) containing v, freq(pv)
- frequency of pv , freq(v) - number of occurences of v and

ALLpv
= end(pv)− start(pv)+ 1. Intuitions of measure Q1

are presented at Fig. 2

Fig. 2. Measure Q1 components.

The second analyzed measure was the sum of squares of

deviations of exact value frequencies from corresponding bar

frequency, with additional assumption that all values from

intervals range is included in the sum (those which did not

exists in original data have frequency equal to 0)

Q2(c, p) =
∑

v∈ALLDom(c)

(freq(v)−
freq(pv)

ALLpv

)2,

where c is a column, p - data pack range split (set of

intervals), pv - split interval for v, freq(pv) - frequency

of interval containing v, freq(v) - number of occurrences

of v in data pack (non existing values have freq = 0),

ALLpv
= end(pv) − start(pv) + 1 and ALLDom(c) =

end(Dom(c))− start(Dom(c)) + 1.

Fig. 3. Exact histogram (distribution) on 1 data pack of real-life column
(Column A; logarithmic scale of frequencies)

Fig. 4. Exact histogram (distribution) on 1 data pack of real-life column
(Column B; logarithmic scale of frequencies)

Fig. 5. Exact histogram (distribution) on 1 data pack of real-life column
(Column C; logarithmic scale of frequencies)

At the first stage of experiments we calculated Q1 for

every considered type of histograms. Next we evaluated set

of prepared queries on exact data and on data generated

from every histogram. We found achieved results encouraging,

however we identified many hard cases for presented approach.
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Lack of satisfactory correspondence between Q1 and query

results quality for each histogram was visible both on simplest

single-column queries and more complex queries. Fig. 6–9

illustrate results of testing query that simulate calculation of

exact distribution of column values:

SELECT col, count(*) FROM t GROUP BY col

We chose exemplary columns from real data set and mark

them as A, B, C. Their real distributions are presented on Fig.

3–5.
Calculated value of Q1 was additionally divided by number

of rows in table t. The higher the value of Q1 the better quality

of the histogram.

Fig. 6. Illustration of lack of satisfactory correspondence between Q1 and
quality of approximate queries results. Diff, Classic and Quant stand for
MaxDiff, EquiWidth and EquiDepth histograms respectively. Values of Q1

are averages from 10 data packs.

Fig. 7. Lack of satisfactory correspondence between Q1 and quality of
approximate query on column A

Fig. 8. Lack of satisfactory correspondence between Q1 and quality of
approximate query on column B

Similar tests were run for Q2. Here also observed corre-

spondence between histogram quality and quality of approx-

imate query results was disappointing. Results are presented

Fig. 9. Lack of satisfactory correspondence between Q1 and quality of
approximate query on column C

on figures 10–13. Analogously value of Q2 was divided by

number of rows in the table. In contrast to the measure Q1, the

higher the value of Q2, the worse the quality of the histogram.

Fig. 10. Table illustrating lack of satisfactory correspondence between Q2

and quality of approximate queries (on data generated according to specified
histogram)

Fig. 11. Lack of satisfactory correspondence between Q2 and quality of
approximate query on column A

V. SPECIFIC HISTOGRAM QUALITY MEASURES

Because of discrepancies between both Q1, Q2 and ap-

proximate query results quality, some new histogram quality

measures had to be developed. Discrepancies analysis revealed

that the main reason of inadequacy of applied measures was

assumption of uniform distribution of values frequencies inside

each interval. In particular no information of gaps in data

packs domain was involved. By gap (if exists) we take interval

between two consecutive values that exists in original data set.

More formally:

AGNIESZKA CHĄDZYŃSKA-KRASOWSKA, MARCIN KOWALSKI: QUALITY OF HISTOGRAMS AS INDICATOR OF APPROXIMATE QUERY QUALITY 13



Fig. 12. Lack of satisfactory correspondence between Q2 and quality of
approximate query on column B

Fig. 13. Lack of satisfactory correspondence between Q2 and quality of
approximate query on column C

Definition. Let v, w ∈ Dom(c) be two consecutive (in

the sense of linear order on values of column c) values

that exist in considered value set. Then by gap we take set

{x ∈ ALLDom(c) : x > v ∧ x < w}

As pointed out earlier because of method of data generation

from considered types of histograms, one is exposed to gener-

ating false-positive cases. Gaps (especially wide ones), present

in original data set would cause deterioration of quality of ap-

proximate query results in two ways. First – due to numerous

false-positive cases and in the consequence also true-negative

cases – it will reduce Total Similarity value. On the other hand

too voluminous domain of interval makes average frequency

lower and as a result may decrease Aggregation Similarity.

After testing some preliminar candidates, we introduced

measure of the histogram which indicates difficulty of gaining

proper correspondence between histogram quality and approx-

imate query quality:

QHG(c, p) =

pcnt∑

i=1

freq(pi) · FALSE(pi)

, where c stands for column, p - split (set of intervals), pcnt
- number of intervals, freq(pi) - frequency of ith interval,

and FALSE(pi) - number of false-positives generated in ith

interval (which does not exist in original data set).

QHG was divided by number of rows in table t. The higher

the value of QHG, the worse the quality of the histogram.

Figures 14–16 show that QHG does not correspond to approx-

imate query quality in direct way, however we may notice

some regularities. First, calculated value of QHG explains

poor quality of query results for columns A and B. For

column C considered query returned better approximations

and corresponding value of QHG was significantly lower than

for A and B.

Fig. 14. Illustration of the rule: high value of QHG corresponds to poor
approximate query results quality

Fig. 15. Illustration of the rule: high value of QHG corresponds to poor
approximate query results quality - for column A

Fig. 16. Illustration of the rule: low value of QHG corresponds to well-
approximated query results quality - for column C

To confirm hypothesis of correspondence between high

value QHG and poor query results, we perform more experi-

ments. We defined importance ranking formula for gaps and

added to synopsis information of 100 most important gaps per

data pack.

Definition. Gap importance ranking for each data pack (of

column c) with given split p is defined as follow:

RANK_GAPc,p(gap) = freq(i(gap)) · FALSE(gap),

where freq stands for interval frequency, i(gap) stands for

index of interval containing gap , and FALSE(gap) stands

for number of false-positives covered by gap.
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We consider also the case where data packs differ between

themselves w.r.t. contained gaps. We observed such situation in

real life data. In such case we may consider aggregated budget

for gaps for several e.g. consecutive data packs (not per single

data pack like in assumptions made at the beginning). Such

modification enable to assign parts of the budget to data packs

in more flexible way (bigger part to data packs with a lot of

gaps, smaller - to the data packs with a few). In next series of

experiments instead of 100 most important gaps per data pack

we add information of 1000 most important gaps but for 10

data packs (whole column value set). Importance we calculate

using formula:

Definition. Holistic gap importance ranking for column c

and given split p is defined as follow:

BIGRANK_GAPc,p(gap) =

=
∑10

j=1 freqj(i(gap)j) · FALSEj(gap),

where freqj stands for frequency of interval in jth data

pack, i(gap)j stands for index of interval in jth data pack

containing gap, and FALSEj(gap) stands for number of

false-positives covered by gap in jth data pack.

At Fig. 17 we presented dependency between order of

magnitude of QHG and approximate query results quality.

For clarity sake dependency was shown only for MaxDiff

histogram (for other types dependency is the same). We can

observe that if value of QHG is not low there is no chance to

achieve good results of approximate query. However relatively

small values of QHG would not guarantee good quality of

approximate query results, and strength of correspondence is

depended on chosen column. Therefore, we conclude there

are some other factors that affect approximate query results

quality.

Fig. 17. Correspondence between order of magnitude of value QHG and
approximate query results quality.

VI. CONCLUSIONS AND FUTURE WORK

In the article we present preliminary method for calculation

of quality of histogram representing original column values in

data set. Such measure should in the assumption correspond

to quality of approximate query run over data generated from

the histogram. Development of such measure would allow at

the loading stage to construct histogram reflecting the input

data in the best way with limited storage budget maintained.

Performed experiments confirm that many features of input

histograms may have influence on quality of approximate

query results. Some of them are not identified yet. We suspect
such characteristics might be related to intervals width or - like

in case of gaps - to distributions of exact values frequencies

inside each interval. Probably most of these factors may be

expressible in terms of statistical measures of dispersion, sym-

metry or skewness. We can adapt them to histogram quality

formulas however proper choice and the way of applying

chosen measure requires much more experimental work.
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