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Abstract—In this paper a convolutional neural network is ap-
plied to the problem of note onset detection in audio recordings.
Two time-frequency representations are analysed, showing the
superiority of standard spectrogram over enhanced autocorre-
lation (EAC) used as the input to the convolutional network.
Experimental evaluation is based on a dataset containing 10,939
annotated onsets, with total duration of the audio recordings of
over 45 min.

I. INTRODUCTION

Onset detection is a well recognized and important problem

in automatic music information retrieval. It directly addresses

one of the most fundamental aspects of music – the time

flow and novelty detection; abstracting from what and how,

it concentrates on the when question and tries to answer it

as precisely as possible. Interesting on its own, this problem

is also fundamental in the analysis of many higher-level

concepts, such as rhytm, meter or tempo [1]. In a broader

context, sound attack analysis can also support other audio

processing tasks, including i.a. audio to score alignment (score

following), query-by-humming melody search, singing voice

quality evaluation and speech analysis [2][3][4][5][6][7].

While trivial when looking at the musical score, note

onset detection appears surprisingly complex when musical

recordings with real instruments are considered, with all kinds

of phenomena and effects like vibrato, glissando, varied dy-

namics, embouchure and articulation types, etc. As the result,

the precise definition of the onset time, enabling to unam-

biguously locate it on the time axis may be difficult [8][1].

Various definitions, including Perceptual Onset Time (POT),

Perceptual Attack Time (PAT), Acoustic Onset Time (AOT)

and Note Onset Time (NOT) have been proposed [9][1] in

order to highlight differences between the time when the onset

is perceivable by a human listener, when it is measurable in

the signal or when e.g. the note-on command is triggered

by a MIDI synthesizer [10]. Presence of vibrato, glissandi

or ornamentation, not to mention impulse noise or other
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distortions in low-quality recordings, may in fact render the

problem ill-posed, which makes us resort to machine learning

approaches for example-based definition of what an onset

actually is.

II. PREVIOUS WORK

The classical approach to note onset detection is based on

the onset detection function (ODF) constructed to detect novel

events in the sound signal [8][11][12][13]. Typically, the signal

waveform x(t) is first split into a series of consecutive, usually

overlapping time frames xn(t) with a windowing function

applied to each of them:

xn(t) = x(t)w(St− nh) (1)

where w(St − nh) is a windowing function stretched by

a factor of frame size S and shifted by an integer, n-th

multiple of the hop-size h between the consecutive frames.

Discrete Fourier transform (DFT) is then computed, and the

ODF construction may be based on either its magnitude

spectrum [8], the phase spectrum [11] or both [12]. Obviously,

the difference between the consecutive frames is considered,

such as in the following simple example (ODF based on the

spectral flux [1][14]):

ODFsf (n) =
∑

k

H(|Xk(n)| − |Xk(n− 1)|) (2)

where

H(x) =
x+ |x|

2
(3)

Xk(n) = DFT(xn(t))(k) (4)

and where the half-wave rectifier function H is used to

consider only positive differences, indicating new spectral

components appearing in the signal. The onsets may be then

easily detected by thresholding the ODF with a fixed threshold

T or – more frequently – with a threshold based on moving

mean or moving median.
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It should be noted that some onsets (e.g. percussive ones)

may be reliably detected also in the time domain by sim-

ply monitoring the signal energy. However, sound signal

is generally better described in the frequency domain, as

opposed to e.g. image processing, where the frequency domain

methods have usually more limited and specialized appli-

cations [15][16]. For sound, spectral analysis if far more

flexible and it opens possibilities of the construction of many

specialized algorithms where the signal may be easily split into

frequency bands, often distributed logarithmically according

to human perception of the pitch. For example, Böck and

Widmer proposed an onset detection algorithm with vibrato

suppression called SuperFlux, where the input data is filtered

with a bank of varying-length frequency domain triangular

filters spaced equally in musical scale and where the maximum

filter is applied to the resulting spectrograms in order to ignore

minor pitch fluctuations [17]. It has been shown [18] that

this approach enhances onset detection for bowed instruments

playing both with and without the vibrato technique.

In contrary to classical onset detection methods, many

recent works involve machine learning techniques – most

notably the neural networks [19][20][21], although other data-

driven techniques, such as Support Vector Machines (SVM)

have also been applied [22]. The input data usually consists

of a time-frequency representation of the sound signal, mapped

non-linearly in the frequency domain according to a perceptual

model. Böck et al [21] used a bank of triangular filters

positioned at critical bands of the Bark scale to filter the STFT

magnitude spectra, computed with three different window

lengths in parallel. In this way the redundancy resulting from

unnecessarily high frequency resolution of the STFT in the

upper frequency range may be avoided. Hertz to Mel scale

mapping [23] and constant-Q transform [20] have also been

applied for similar reasons.

Several approaches have been proposed in which the fu-

sion of many onset detection functions is applied. This is

accomplished either on the feature-level by a set of pre-defined

rules or a linear combination of ODFs [24], or in the form

of the score-level fusion in which the decisions are taken on

the basis of the already computed onsets [25][24]. Quintela et

al [25] apply i.a. KNN- and SVM-based classifiers to the lists

of pre-computed onset candidates and their locations in time.

Recently, Stasiak et al [10] proposed to simultaneously use

several ODF functions as the input to a multilayer perceptron

with one output, playing de facto the role of a new “integrated”

onset detector. In this way the neural network learns to merge

the onset-related information from various sources, while not

being forced to extract it explicitly from raw spectral data.

On the other hand, the recent progress in theory and

practical applications of deep neural architectures enabled to

successfully use the solutions developed by the image process-

ing community also to directly process audio spectrograms,

transforming the onset detection task into a problem similar to

that of texture recognition. Apart from bidirectional long short-

term memory neural networks (LSTM) [23] and recurrent neu-

ral networks (RNN) [21], the convolutional neural networks

(CNNs) [26][27] proved to be especially useful here.
In this work we adopted the approach proposed in [27]

to test the effectiveness of a convolutional network in the

onset detection task using two different signal representations,

namely the logarithmically scaled spectrogram and enhanced

autocorrelation (EAC).

III. THE PROPOSED APPROACH

A. Neural network architecture

The input to our network is a spectrogram fragment in

the form of an image with 15 columns, representing 15

consecutive time frames and 80 rows, corresponding to 80

logarithmically distributed frequency bands (up to 16kHz).

The initial audio files are sampled 44100Hz and the spec-

trogram parameters are: window size N = 2048, hop-size

K = 512 samples, which yields time resolution of ca. 11.6

ms. The target is composed of a single value, indicating the

distance of the onset from the middle frame of the current input

image, similarly as in [10] (Fig. 1). If more onsets are present

within the fragment, only the closest one is considered. In this

way the network has to solve regression problem instead of

binary classification (onset absent/present in the middle of the

fragment). Preliminary experiments showed that it enhances

the results significantly.
The network structure is as follows:

• Convolutional layer with ten rectangular filters of size:

w×h = 7×3 with ReLU (Rectified Linear Unit) activation

function and stride value of 1 in both directions (full

overlap). Note that for input size of w×h=15×80 it yields

w×h=9×78 output.

• Max-pooling layer with non-overlapping kernels of size:

w×h = 1×3 (output size w×h = 9×26).

• Convolutional layer with twenty square filters of size

w×h = 3×3 and stride value of 1 in both directions

(output size w×h = 7×24).

• Max-pooling layer with non-overlapping kernels of size:

w×h = 1×3 (output size w×h = 7×8).

• Inner product (i.e. fully connected) layer with 256 hidden

neurons and ReLU activation function.

• Inner product (i.e. fully connected) layer with one output

neuron and tanh (hyperbolic tangent) activation function.

The neural architecture basically follows the scheme pro-

posed by Schlüter and Böck in [27] with some modifications

concerning – apart from the aforementioned regression, re-

placing classification – mostly the type of nonlinearity of the

layers. We agree with [27] that the rectified linear units in the

first convolutional layer may play the role of the half-wave

rectifier H function (cf. Eq. 3) helping to detect onset-related

energy increases. Additionally, we use the same nonlinearity

type for the fully connected layer, instead of sigmoidal units

which proved to positively influence the learning process in

our tests. We also change the unipolar sigmoid into tanh

function in the output neuron, which leads to increasing the

output range from [0, 1] into [−1, 1] (cf. Fig. 1, the top plot).
The last change influences the threshold which is applied to

the output of the network in order to find the onset positions.
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Fig. 1. Spectrogram fragment enlarged (in a black box, lower plot) and the associated target values (top plot). The middle of this fragment (frame 28) is

two frames apart from the onset (frame 30), so the target value for this fragment is -0.6 (top plot). Note, that the actual resolution of the image representing

this fragment, that is fed to the network input is much lower (w×h=15×80 pixels)

It should be mentioned here, that the output of the trained

network may be treated as a classical ODF, with the difference,

that a fixed threshold T may be used instead of moving mean

or moving median, due to general lack of dependence on the

signal energy. For the tanh activation function the optimal

threshold value Topt determined in our tests, i.e. the value

maximizing the F-measure [27][10] was always lower than

zero. After the thresholding, the peak-picking procedure is

applied and peaks found within the range of 50ms relative

to the actual onsets are treated as the properly detected ones.

Having denoted the correctly located onsets by TP (true

positives), the assessment of the quality of the onset detection

may be expressed in terms of precision, defined as the ratio:

TP/(TP+FP), and recall, defined as: TP/(TP+FN). In our

experiments we use the harmonic mean of precision and recall,

known as the F-measure, as a “balanced” result of the onset

detection procedure [10].

B. Audio material and data preparation

The dataset used in our experiments is a collection merged

from several sources, including [8][28][29][20][30]. The total

duration of all the audio files in our collection is over 45 min.

and it contains 10,939 annotated onsets. The dataset has been

divided at random into the train, test and validation subsets,

containing 6236, 2520 and 2183 onsets, respectively. Complete

files are assigned to either of the subsets (they are not split

between the subsets).

For training, the spectrograms are cut into overlapping

fragments which are then selected so that the obtained set is

balanced, i.e. the number of “onset fragments” (for which the

target value is non-zero) is equal to the number of “non-onset

fragments”. For testing, all possible fragments are used in an

ordered sequence.

The main time-frequency representation (TFR) used in the

experiments is the spectrogram, computed as explained in the

previous section. In a separate test we use also enhanced auto-

correlation (EAC) correlogram, calculated frame-by-frame in

a similar way. EAC is an intermediate representation for the

task of pitch estimation, thus also suitable for supporting onset

detection with a degree of additional information on the input

audio features related to melodic content. The procedure itself

had been developed by Tolonen and Karjalainen [31] and (as

the name implies) it is an extension of standard autocorrelation

method. In our research we use EAC implementation operating

in frequency domain for each frame of input signal using the
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following processing scheme:

1) Transform a frame to frequency domain with Fourier

transform. In this step, we use the same parameters as

for the spectrogram computation – frame size of 2048

samples and frame step size (hop-size) of 512 samples.

2) Compute signal power

3) Take cube root of the resulting transform to compress

magnitude in a non-linear manner. For normal autocor-

relation the spectral coefficients are raised to the power

of 2, however using the factor of 1/3 (cube root) of

“generalised autocorrelation” is more suitable for the

task of periodicity detection.

4) Clip all values below zero

5) Create a stretched copy (by factor of 2) of the values

derived, and subtract it from the original (at step 4)

6) Clip all values below zero

7) Transform back to time domain with inverse Fourier

transform

Steps 4-6 are performed for the purpose of peak pruning

to improve pitch representation clarity, following Tolonen and

Karjalainen’s method. The procedure is applied to the signal

frame-wise, yielding a correlogram, which can be processed

further in a similar way as an ordinary spectrogram (Fig. 2).

C. Experimental evaluation

Caffe framework [32] has been used for training and testing

the convolutional neural network presented in Sect. III-A.

Separate validation set was used to determine the optimal

model and to avoid overfitting. Stochastic gradient descent

with momentum was used as the optimization strategy with

mini-batch size of 1000 input spectrogram fragments. We used

fixed momentum parameter of 0.4 and variable step size.

In the initial experiments we tested the influence of the acti-

vation function type on the results, as discussed in Sect. III-A.

The results are presented in Table I.

TABLE I
THE RESULTS OF THE ONSET DETECTION TESTS

Experiment F-measure

Original architecture based on [27] 82.13%
Our version with ReLU in the hidden layer
and tanh in the output layer

83.35%

Our version trained on EAC correlograms
instead of the spectrograms

73.10%

Although our modification enhanced the result by over one

percent point, yet the EAC correlogram appeared definitely

inferior to the spectrogram-based TFR. In the search of the

potential reasons we conducted a series of additional tests in

which we compensated for the potentially different annotation

procedures in our heterogeneous dataset, by artificially shifting

the onset positions by several multiples of the hop-size (from

−4×K to 4×K). All the onsets in a given file were naturally

shifted by the same displacement, but the displacement for

each file was determined independently. Due to the latter fact,

the figures presented in Table II obviously cannot be treated as

the final objective results achieved by our network – they are

rather indicators of its theoretical capabilities if some strict,

uniform rules were applied for annotating the input files. They

may also be used for a comparison of the spectrogram- and

correlogram-based representations which again shows definite

superiority of the first one. Figure 3 demonstrates the F-

TABLE II
THE RESULTS OF THE ONSET DETECTION TESTS WITH ONSET SHIFTING

Experiment F-measure

Our version with ReLU in the hidden layer
and tanh in the output layer

88.62%

Our version trained on EAC correlograms
instead of the spectrograms

81.13%

measure changes for varying values of the threshold T for

the spectrogram-based input.

Fig. 3. F-measure for varying values of the threshold T

IV. DISCUSSION AND FUTURE WORKS

In this paper a convolutional neural network has been ap-

plied in the note onset detection problem. The obtained results

demonstrate the superiority of the standard, spectrogram-based

representation of the audio signal over the EAC correlogram.

This observation confirms the potential of convolutional neural

networks which are able to successfully extract useful informa-

tion from the lower-level audio representation (spectrogram).

The EAC correlogram, on the other hand, may be seen

as a result of some more sophisticated processing, yielding

more directly interpretable information related to pitch and

melody content. However, this processing, although potentially

useful from the human perspective, inevitably removes some

information, which in consequence limits the potential of the

convolutional neural network, eventually impairing the results.
The obtained results for the spectrogram-based input are

satisfactory in terms of absolute onset detection rate. Enhance-

ments might be searched for in increasing the precision of

onset location (the annotations in the database used in the

experiments should be manually checked and corrected to

obtain more consistent annotation style [14]). Also, combining

several time-frequency representations in a single spectro-

gram fragment, possibly computed with varied window size
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Fig. 2. EAC correlogram (top) and spectrogram (bottom) of the same input file, with a bounding box around a fragment with an onset in the middle

as proposed in [27], would probably lead to some further

improvements.
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