
Case-study of Localization via WSN Using
Distributed Compressed Sensing

Veronika Olešnaníková, Michal Kochláň, IEEE Student Member, Róbert Žalman
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Abstract—Distributed compressed sensing task can be paral-
lelized into several nodes that is highly suitable for using in
Wireless Sensor Networks. Localization is one of the critical tasks
solved in wireless systems. This paper investigates the possibilities
of localization using compressed sensing implemented on wireless
nodes and aggregation node. The presented case study simulates
the application scenario of a target deployed in the field. This
target is being localized by the wireless sensor network based
on the emitted acoustic signal. Several types of the emitted
signals have been used during the simulation runs. The emphasis
was put on the properties of the reconstruction process such as
compression ratio and minimization of the reconstruction error.

I. INTRODUCTION

T
HE PROBLEM of target localization, in general, can be
defined as finding an object in the space. Localization

process in wireless sensor networks aims to localize a target
based on the sensor data from the spatially distributed wireless
nodes. For a single target and/or source localization in wireless
sensor networks, there are various methods. For outdoor
localization, this can include localization in traffic monitor-
ing (vehicles, aircraft, bicycles, etc.). In indoor environment
persons as well as animals and object can be tracked. Scientific
literature refers to two core ways for estimation of the target
location:

• Angle of Arrival (AOA) [1];
• Time Difference of Arrival (TDOA) [2-5].

In this paper, we are focused on the algorithms for single-
source localization. The literature recognizes two basic groups
of these algorithms:

• Energy Decay Model-based Localization Algorithms
(EDMLA);

• Model Independent Localization Algorithms (MILA).

A. Decay Model-Based Method

The following formula shows the decay model which is in
detail described in [6-8]. The received signal strength at i-th
wireless node in time instant t can be expressed as follows:

yi(t) = gi
E(t)

d2ik(t)
+ ni(t), (1)

where gi means gain factor of i-th sensor. E(t) is the energy

of the received signal in 1 meter distance from the wireless

node, and dik is the Euclidean distance between i-th sensor

and the target. Moreover, ni represents measurement noise

with zero mean value and Gaussian probability distribution

with variance σ2

i , i.e.N(0, σ2

i ).

B. Model-Independent Method

Authors in [9] describe a kernel averaging approach which
does not need information about energy decay model. On
the other hand in [10], the authors propose novel model-
independent localization method and employed a distributed
sorting algorithm. The research relies on the fact that the nodes
closer to the target can measure higher RSSI (received signal
strength indicator). Assuming that the wireless nodes know
their rank, the distance estimates can be calculated from the
respective probability density functions. RSSI indicator at i-th
sensor in time instant t is as follows:

yi(t) = gi

K∑

k=1

Ek(t)

dαik(t)
+ ǫi(t), (2)

where dik(t) is the distance between the i-th sensor and k-th

target. K is the number of targets. gi is gain of i-th sensor.
ǫi(t) is random variable with mean value equal to µi and
variance given as σ2

i . Ek(t) is the energy of the received signal

in 1 meter distance from k-th target. α represents attenuation

exponent.
The target localization task can be performed by the dis-

tributed nodes of a wireless network. An interesting approach
arises from combination of compressed sensing and wireless
sensor networks using distributed compressed sensing.

II. DISTRIBUTED COMPRESSED SENSING

A wireless sensor network (WSN) is formed by numerous
spatially distributed devices (nodes) that process sensor data.
Each node has a power source e.g. in form of battery thus
having a limited lifetime. Since the energy consumption is a
critical point, low power and efficient signal processing units
are used in wireless nodes. Thus, wireless sensor nodes have
limited computing and communication capabilities. Although,
these nodes have low individual computing power, they can
cooperate so that the computational power of the whole
network allows performing advanced signal processing tasks
[11]. Having the ability of advanced processing tasks leads to
higher degree of robustness and greater versatility in low-lost
scenario. This represents one of the most attractive reasons
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why WSNs are used for wide range of remote sensing and
environmental monitoring applications [12].

From the point of signal processing theory, a major chal-
lenge in WSNs is effective design of set of sensor-local
signal processing operations and strategies suitable for inter-
sensor communication and networking in order to address the
desired trade-off among energy consumption, simple design,
and overall system performance [13]. This trade-off shows, for
example, in sensor lifetime maximization and effective battery
utilization when reducing communication bandwidth. This
can be achieved by each sensor by locally compressing the
observed data and thus low rate inter-sensor communication
is required. Such techniques can be represented by distributed
compressed sensing (DCS).

Typical DCS scenario comprises numerous sensors measur-
ing individually sparse signals, which are correlated among
each other [14]. It should be noted that the signals are sparse
in a certain basis. Each sensor individually encodes its signal
by transforming it into another, incoherent basis (for example
a random one). Then the sensor broadcasts only a few of the
resulting coefficients to the aggregation node [14]. One of the
advantages of DCS is that it does not require collaboration
among the sensors when obtaining and processing the signal.
Moreover, random projections in DCS are universal [15]. This
means that any sparse basis can be used, which allows the
same encoding strategy to be applied in different scenarios.
This contributes to the robustness of the solutions based on
DCS, i.e. the measurement stream from each sensor has equal
priority. This is different from Fourier or wavelet transforms.
It should be also mentioned that random measurements allow
a progressively better recovery of the data, that means single
measurement or more can be lost without the effect on the
entire recovery process.

The problem of DCS illustrates the described example that
follows. Let’s have a network of n nodes, where each node
has a piece of information given by xj where j = 1, . . . , n.
Let’s assume that each piece of information xj is a scalar
quantity. Together, the scalar quantities form a data vector x =
[x1, . . . , xn]

T , which is called networked data. This underlines
the fact that the data is distributed across the network and that
the data may be shared over the network [17].

In wireless sensor networks, n can be a large number, thus
having the networked data large as well. Therefore, the process
of data acquisition at a single point is daunting. However, let’s
imagine that it is possible to create highly compressed version
of vector x in a decentralized fashion. Scientific literature
states several decentralized compressed sensing strategies. One
strategy relies on the correlations among the a priori known
data at different nodes [21]. In such case, a technique called
distributed source coding known as Slepian-Wolf coding can
be utilized as a compression scheme that allows none or little
collaboration among the nodes. However, in lots of application
scenarios the prior knowledge of the data correlations is
not known. This situation supports research in collaborative
signal processing within the sensor networks as well as data
compression techniques [20]. It can be quite challenging to

propose and implement an effective algorithm of distributed
and collaborative processing for wireless sensor network [22].
Such algorithms rely to a great extend on specific prior
knowledge and the relation of the expected signal correlations.
The success of the implementation of such algorithms lies
in sophisticated communication pattern and good processing
capabilities of a sensor node.

The mentioned projections in standard multi-hop wireless
networks utilizing compressed sensing can be expressed as
vector y, which components yi can be calculated as follows:

yi =
n∑

j=1

Ai,jxj . (3)

The components yi are able to be computed in a decen-
tralized fashion and efficiently because each value of the
compressed data is represented as a simple linear combination
of the values obtained at each node [23].

Basically, there are two simple steps in the computation
and transmission of each compressed data sample yi, where
i = 1, . . . , k [23]:

1) Let’s consider n sensor nodes in the wireless sensor
network. Each of the sensors as its index j = 1, . . . , n.
Each node nj computes locally properties Ai,j and xj

so that the measured data are being multiplied with
the corresponding element of the measurement matrix.
The measurement matrix can be distributively created as
local (at node) realization of Ai,j using a pseudo-random
number generator initialized by the node identifier, e.g.
integers j = 1, . . . , n. Having these node identifiers, par-
ticular node can simply calculate the vectors {Ai,j}

k
i=1

,
where sensors are indexed as j = 1, . . . , n.

2) The local sensor node variables Ai,jxj are being con-
tinuously combined and transmitted over the sensor net-
work using so called randomized gossip. The random-

ized gossip represent a decentralized algorithm, which
computes linear functions such as:

yi =
n∑

j=1

Ai,jxj . (4)

To summarize compressed sensing, one could say that it is
a technique for signal processing and signal representation,
where the signal can be sensed only by such number of
samples, which corresponds to the signal sparsity in some
base. The overall nature of compressed sensing matches the
nature of event-driven control presented in the previous sec-
tions. Event-driven signal representation and reconstruction
mechanism also leads to signal sampling and its reconstruction
by as many (little) samples as are truly needed.

III. CASE STUDY AND NUMERICAL RESULTS

The idea of the localization system is to identify the position
of the target by multiple WSN nodes deployed in the area.
To decrease the consumption of the nodes the compressed
sensing algorithms are supposed to be used. In order to use
DCS the transmitted signal by the target has to follow special
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Figure 1. Continuous signal before and after reconstruction

requirements, e.g. certain sparsity in the frequency domain.
This paper investigates signals in acoustic domain, i.e. in rage
20Hz up to 20kHz.

For the simulation purposes, the Matlab version 2013b was
used. Reconstruction of original signal was performed by using
the L1-magic library. The main goal of this article was to
inspect the properties of different signals which could be used
in the localization tasks. These signals should have suitable
parameters for the reconstruction in order to use compressed
sensing. All used signals are sparse in the frequency domain.

In the first simulation case, the signal was continuously
transmitted. The signal has the sinusoid shape with the fre-
quency of 100 Hz. The reconstruction using the distributed
compressed sensing performs well with compression ratio (cr -
see equation (5)) up to 200. The compression ratio is expressed
by the following formula:

cr =
sa

χ
, (5)

where cr is the compression ratio, sa represents the number
of all samples in the original signal and χ is the number
of randomly selected compressed sensing coefficients. The
following Fig. 1 shows the reconstruction of harmonic signal
100 Hz. Despite the fact that in the reconstruction of such a
signal the compression ratio can be relatively high, this class
of signals are not suitable for localization purposes. The reason
is that we are not able to identify the same particular part of
the received signal, e.g. the start of the same period.

The second simulation scenario is based on the transmitting
the signal in bursts. By modification of the above-mentioned
continuous signal, we are able to detect the start of the burst,
thus, all nodes are able to determine the time of arrival of the
received signal.

The Fig. 3 depicts the reconstruction of the burst signal with
the same compression ratio as in the Fig. 1. The burst signal is
compounded of the carrier signal and a secondary frequency.
Carrier signal has a frequency of the 100Hz and secondary
modulated signal has a frequency of 500Hz. The burst contains
two periods of the carrier and ten periods of the secondary
signal. Having this compression ratio the reconstruction results
are insufficient for localization purposes.

Proper change of the parameters of the compression ratio
leads to reconstruction improvement. This is demonstrated on

Figure 2. Difference of original and reconstructed continuous signal, cr=100

Figure 3. Burst signal (BURST01) before and after reconstruction

Figure 4. Difference of original and reconstructed burst signal, cr=100

the Fig. 5, along with difference between the original and
the reconstructed signal on the Fig. 6. Compression ratio was
decreased from 100 to 20.

Sumarization of the parameters used in the simulation is
shown in Table I. It is obvious that continuous signals are very
suitable for compressed sensing and can be reconstructed using
high compression ratio, however, it is difficult to use them for
localization purposes. The reconstruction error was calculated
as a mean value based on differences between the original and
reconstructed signals (see Fig. 2, 4, 6).
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Figure 5. Burst (BURST02) signal before and after reconstruction

Figure 6. Difference of the original and reconstructed burst signal, cr = 20

Table I
PARAMETERS AND THE RESULTS OF THE SIMULATIONS

Type

of the

signal
Frequency

Number

of

periods

cr Error

CONTINUOUS 100Hz 10 100 9.52 · 10
−8

BURST01 100Hz 10 100 0.5638

BURST02 100Hz 10 20 0.0536

IV. CONCLUSION

This contribution investigates suitable signals for target
localization using WSN and DCS. The results show, that
continuous periodic signals can be reconstructed easily with
high compression ratio using DCS. However, these signals are
not target-identifiable. Changing the form of the transmitted
signal broadcast from the target enables the sensor network
to detect it. The changed signal has the form of burst, which
enables to detect the start of the beacon signal. Based on the
time of the arrival and the ability to detect the start of the
beacon signal, the network is able to localize the target.
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