Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 9

Position Papers of the 2016 Federated Conference on Computer Science and Information Systems

An Economic Decision Support System based on Fuzzy Cognitive Maps with Evolutionary Learning Algorithm

, , ,

DOI: http://dx.doi.org/10.15439/2016F411

Citation: Position Papers of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 9, pages 95101 ()

Full text

Abstract. Fuzzy cognitive map (FCM) is a universal tool for modeling dynamic decision support systems. It can be constructed by the experts or learned based on data. FCM models learned from data are denser than those created by experts. We developed an evolutionary learning approach for fuzzy cognitive maps based on density and system performance indicators. It allows to select only the most significant connections between concepts and receive the structure more similar to the FCMs initialized by experts. This paper is devoted to the application of the developed approach to model an economic decision support system. The learning and testing process was accomplished with the use of historical data.

References

  1. G. Acampora, W. Pedrycz and A. Vitiello, “A Competent Memetic Algorithm for Learning Fuzzy Cognitive Maps,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2397–2411, 2015, http://dx.doi.org/10.1109/TFUZZ.2015.2426311.
  2. J. Aguilar, “A Survey about Fuzzy Cognitive Maps Papers,” International Journal of Computational Cognition,vol. 3 (2), pp. 27–33, 2005.
  3. S. Ahmadi, N. Forouzideh, S. Alizadeh, E. I. Papageorgiou, “Learning Fuzzy Cognitive Maps using Imperialist Competitive Algorithm,” Neural Computing and Applications, vol. 26(6), pp. 1333–1354, 2015, http://dx.doi.org/10.1007/s00521-014-1797-4.
  4. A. S. Andreou, N. H. Mateou, and G. A. Zombanakis, “Soft Computing for Crisis Management and Political Decision Making: The Use of Genetically Evolved Fuzzy Cognitive Maps,” Soft Computing Journal, Vol.9, Issue 3, pp. 194–210, 2005, http://dx.doi.org/10.1007/s00500-004-0344-0.
  5. V. V. Borisov, V. V. Kruglov, and A. C. Fedulov, Fuzzy Models and Networks, Publishing house Telekom, Moscow, 2004 (in Russian).
  6. A. Buruzs, M. F. Hatwagner, R. C. Pozna, and L. T. Koczy, “Advanced learning of fuzzy cognitive maps of waste management by bacterial algorithm,” IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 890–895, 2013, http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608518.
  7. Y. Chi and J. Liu, “Learning of Fuzzy Cognitive Maps with Varying Densities using Multi-objective Evolutionary Algorithms,” IEEE Transactions on Fuzzy Systems, pp. 71-81, 2015, http://dx.doi.org/10.1109/TFUZZ.2015.2426314.
  8. A. Jastriebow and K. Poczęta, “Analysis of multi-step algorithms for cognitive maps learning,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 62, Issue 4, pp. 735–741, 2014, http://dx.doi.org/10.2478/bpasts-2014-0079.
  9. B. Kosko, “Fuzzy cognitive maps,” International Journal of Man-Machine Studies, vol. 24, no.1, pp. 65–75, 1986, http://dx.doi.org/10.1016/S0020-7373(86)80040-2.
  10. Ł. Kubuś, “Individually Directional Evolutionary Algorithm for Solving Global Optimization Problems - Comparative Study,” International Journal of Intelligent Systems and Applications (IJISA), Vol. 7, No. 9, 2015, str. 12-19.
  11. Ł. Kubuś, K. Poczęta, and A. Yastrebov, “A New Learning Approach for Fuzzy Cognitive Maps based on System Performance Indicators,” 2016 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1–7, 2016.
  12. N. H. Mateou and A. S. Andreou, “A Framework for Developing Intelligent Decision Support Systems Using Evolutionary Fuzzy Cognitive Maps,” Journal of Intelligent and Fuzzy Systems, Vol. 19, Number 2, pp. 171–150, 2008.
  13. Z. Michalewicz, Genetic algorithms + data structures = evolution programs, Springer-Verlag, New York, 1996.
  14. K. M. Miettinem, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1999.
  15. E. I. Papageorgiou, “Learning Algorithms for Fuzzy Cognitive Maps - A Review Study.” IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, vol. 42, no. 2, pp. 150–163, 2012, http://dx.doi.org/10.1109/TSMCC.2011.2138694.
  16. E. I. Papageorgiou, K. E. Parsopoulos, C. D. Stylios, P. P. Groumpos, and M. N. Vrahtis, “Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization,” Journal of Intelligent Information Systems, 25:1, pp. 95–121, 2005, http://dx.doi.org/10.1007/s10844-005-0864-9.
  17. E.I. Papageorgiou, K. Poczęta, and C. Laspidou, “Application of Fuzzy Cognitive Maps to water demand prediction,” Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on, Istanbul, pp. 1–8, 2015, http://dx.doi.org/10.1109/FUZZ-IEEE.2015.7337973.
  18. K. Pocz ̨eta and A. Yastrebov, “Analysis of Fuzzy Cognitive Maps with Multi-Step Learning Algorithms in Valuation of Owner-Occupied Homes,” 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, pp.1029–1035, 2014, http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891587.
  19. K. Pocz ̨eta, A. Yastrebov, and E. I. Papageorgiou, “Learning Fuzzy Cognitive Maps using Structure Optimization Genetic Algorithm,” 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, pp. 547–554, 2015, http://dx.doi.org/10.15439/2015F296.
  20. J. L. Salmeron, “Fuzzy cognitive maps for artificial emotions forecasting," Applied Soft Computing, vol. 12, pp. 3704–3710, 2012, http://dx.doi.org/10.1016/j.asoc.2012.01.015.
  21. V. B. Silov, Strategic decision-making in a fuzzy environment. Moscow: INPRO-RES, 1995 (in Russian).
  22. W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Genetic learning of fuzzy cognitive maps,” Fuzzy Sets and Systems, vol. 153, no. 3, pp. 371–401, 2005, http://dx.doi.org/10.1016/j.fss.2005.01.009.
  23. W. Stach, W. Pedrycz, and L. A. Kurgan, “Learning of fuzzy cognitive maps using density estimate,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 42(3), pp. 900–912, 2012, http://dx.doi.org/10.1109/TSMCB.2011.2182646.
  24. G. Słoń, “Application of Models of Relational Fuzzy Cognitive Maps for Prediction of Work of Complex Systems,” Lecture Notes in Artificial Intelligence LNAI 8467, Springer-Verlag, pp. 307–318, 2014, http://dx.doi.org/10.1007/978-3-319-07173-2_27.
  25. G. Słoń, “The Use of Fuzzy Numbers in the Process of Designing Relational Fuzzy Cognitive Maps“, Lecture Notes in Artificial Intelligence LNAI 7894/Part 1, Springer-Verlag, pp. 376–387, 2013, http://dx.doi.org/10.1007/978-3-642-38658-9_34.
  26. G. Słoń and A. Yastrebov, “Optimization and Adaptation of Dynamic Models of Fuzzy Relational Cognitive Maps,” in: S.O. Kuznetsov et al. (Eds.) RSFDGrC 2011, Lecture Notes in Artificial Intelligence 6743, Springer-Verlag, Heidelberg, pp. 95–102, 2011, http://dx.doi.org/10.1007/978-3-642-21881-1_17.
  27. E. Yesil and L. Urbas, “Big bang: big crunch learning method for fuzzy cognitive maps,” World Acad. Sci. Eng. Technol., vol. 71, pp. 815–8124, 2010.
  28. https://research.stlouisfed.org/fred2/downloaddata/ [20.04.2016]