Finding an Optimal Team
Michał Okulewicz
DOI: http://dx.doi.org/10.15439/2016F465
Citation: Position Papers of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 9, pages 205–210 (2016)
Abstract. This article proposes a metaheuristic optimization/social simulation approach to find the optimal team for a given type of the project. The quality of the team is assessed in a black-box optimization environment, where the optimized function acts as a metaphor of the project to be completed within the certain time limit (number of fitness function evaluations) and each fitness function evaluation is considered to be a metaphor of a unit task.
References
- R. M. Belbin, Management teams: why they succeed or fail, 1st ed. Routledge, 1981.
- A. Furnham, H. Steele, and D. Pendleton, “A psychometric assessment of the Belbin Team-Role Self-Perception Inventory,” Journal of Occupational and Organizational Psychology, vol. 66, no. 3, pp. 245–257, 1993. http://dx.doi.org/10.1111/j.2044-8325.1993.tb00535.x.
- K. Walędzik, J. Mańdziuk, and S. Zadrożny, “Proactive and reactive risk-aware project scheduling,” in Computational Intelligence for Human-like Intelligence (CIHLI), 2014 IEEE Symposium on. IEEE, 2014. http://dx.doi.org/10.1109/CIHLI.2014.7013392 pp. 94–101.
- K. Walędzik, J. Mańdziuk, and S. Zadrożny, “Risk-aware project scheduling for projects with varied risk levels,” in Computational Intelligence, 2015 IEEE Symposium Series on. IEEE, 2015. http://dx.doi.org/10.1109/SSCI.2015.231 pp. 1642–1649.
- Ł. Osuszek and S. Stanek, “Case based reasoning as an improvement of decision making and case processing in adaptive case management systems.” in Position Papers of the 2015 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 6. PTI, 2015. http://dx.doi.org/10.15439/2015F61 pp. 217–223.
- K. M. Carley, “Computational organizational science and organizational engineering,” Simulation Modelling Practice and Theory, vol. 10, no. 57, pp. 253 – 269, 2002. http://dx.doi.org/http://dx.doi.org/10.1016/S1569-190X(02)00119-3 Organisational Processes. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S1569190X02001193
- M. Żytniewski, A. Sołtysik, A. Sołtysik-Piorunkiewicz, and B. Kopka, “Modeling of software agents’ societies in knowledge-based organizations. the results of the study.” in Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 5. IEEE, 2015. http://dx.doi.org/10.15439/2015F216 pp. 1603–1610.
- R. C. Eberhart, J. Kennedy et al., “A new optimizer using particle swarm theory,” in Proceedings of the sixth international symposium on micro machine and human science, vol. 1. New York, NY, 1995. http://dx.doi.org/10.1109/MHS.1995.494215 pp. 39–43.
- C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in ACM SIGGRAPH computer graphics, vol. 21, no. 4. ACM, 1987. http://dx.doi.org/10.1145/37401.37406 pp. 25–34.
- R. Šenkerık, M. Pluhácek, A. Viktorin, and J. Janoštık, “On the application of complex network analysis for metaheuristics,” in 7th BIOMA Conference, 2016, pp. 201–213. [Online]. Available: http://bioma.ijs.si/proceedings/2016/14%20-%20On%20the%20Application%20of%20Complex%20Network%20Analysis%20for%20Metaheuristics.pdf
- M. Clerc, “Standard Particle Swarm Optimization. From 2006 to 2011,” 09 2012. [Online]. Available: http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf
- T. M. Blackwell and P. J. Bentley, “Dynamic search with charged swarms,” in Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’02. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002. ISBN 1-55860-878-8 pp. 19–26. [Online]. Available: http://dl.acm.org/citation.cfm?id=646205.682961
- B. L. J. Zhang, C. Fan and F. Shi, “An Improved Particle Swarm Optimization Based on Repulsion Factor,” Open Journal of Applied Sciences, vol. 2, no. 4B, pp. 112–115, 2012. http://dx.doi.org/10.4236/ojapps.2012.24B027.
- R. M. Belbin, Team roles at work, 2nd ed. Routledge, 2012.
- BELBIN Associates, “Belbin Team Roles,” 05 2015. [Online]. Available: http://www.belbin.com/
- P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002. http://dx.doi.org/10.1023/A:1013689704352.
- R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,” Evolutionary Computation, IEEE Transactions on, vol. 8, no. 3, pp. 204–210, 2004. http://dx.doi.org/10.1109/TEVC.2004.826074.
- A. Auger, N. Hansen, M. Schoenauer, O. A. Elhara, A. Atamna, D. Brockhoff, A. Liefooghe, T.-D. Tran, R. Datta, R. L. Riche, E. Touboul, X. Bay, X. Delorme, D. Fongang-Fongang, H. Mohammadi, D. Villanueva, G. Rudolph, M. Preuss, H. Trautmann, O. Mersmann, B. Bischl, and T. Wagner, “COmparing Continuous Optimisers: COCO,” 01 2015. [Online]. Available: http://coco.gforge.inria.fr/