Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 9

Position Papers of the 2016 Federated Conference on Computer Science and Information Systems

Recognition of Compound Objects Based on Network of Comparators

,

DOI: http://dx.doi.org/10.15439/2016F571

Citation: Position Papers of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 9, pages 3340 ()

Full text

Abstract. This paper proposes a methodology for compound objects' recognition based on comparators and comparator networks. The methodology is supported by a collection of techniques and algorithms for construction and learning of comparator networks. Formal description of the methodology is accompanied by selected examples of its application in reallife problems. The described methodology has been implemented as a software library and may be used for a variety of future applications.

References

  1. A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological variations, and system approaches,” Artificial Intelligence Communications, vol. 7, no. 1, pp. 39–59, 1994. [Online]. Available: http://dl.acm.org/citation.cfm?id=196108.196115
  2. D. Ślȩzak and Ł. Sosnowski, “SQL-based Compound Object Comparators: A Case Study of Images Stored in ICE,” in Proc. of FGIT- ASEA 2010, ser. Communications in Computer and Information Science, vol. 117, 2010. http://dx.doi.org/10.1007/978-3-642-17578-7_30 pp. 303–316.
  3. Ł. Sosnowski, “Characters recognition based on network of compara- tors,” in Techniki informacyjne teoria i zastosowania, A. Myśliński, Ed. IBS PAN, 2012, vol. 4, pp. 123–134. ISBN 83-894-7555-3
  4. Ł. Sosnowski, “Inteligentne dopasowanie danych przy użyciu teorii zbiorów rozmytych w systemach przetwarzania danych,” in Analiza systemowa w finansach i zarządzaniu, J. Hołubiec, Ed. IBS PAN, 2009, vol. 11, pp. 214–218. ISBN 9788389475220
  5. Ł. Sosnowski and D. Śl ̨ezak, “How to design a network of comparators,” in Brain and Health Informatics, ser. Lecture Notes in Computer Science, K. Imamura, S. Usui, T. Shirao, T. Kasamatsu, L. Schwabe, and N. Zhong, Eds., vol. 8211. Springer, 2013. http://dx.doi.org/10.1007/978-3-319-02753-1_39. ISBN 978-3-319-02752-4 pp. 389–398.
  6. Ł. Sosnowski, “Framework of compound object comparators,” Intelligent Decision Technologies, vol. 9, no. 4, pp. 343–363, 2015. http://dx.doi.org/10.3233/IDT-140229.
  7. R. W. Quackenbush, “On the composition of idempotent functions,” algebra universalis, vol. 1, no. 1, pp. 7–12, 1971. http://dx.doi.org/10.1007/BF02944949.
  8. J. Kacprzyk, Multistage Fuzzy Control: A Model-based Approach to Fuzzy Control and Decision Making. John Wiley & Sons, 2012. ISBN 9780470744161
  9. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference Manual, 2nd Edition. Pearson Higher Education, 2004. ISBN 0321245628
  10. Ł. Sosnowski and D. Śl̨ezak, “Networks of compound object comparators,” in FUZZ-IEEE. IEEE, 2013. http://dx.doi.org/10.1109/FUZZ-IEEE.2013.6622547. ISBN 978-1-4799-0020-6 pp. 1–8. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/FUZZ-IEEE.2013.6622547
  11. Ł. Sosnowski and D. Śl̨ezak, “Fuzzy set interpretation of comparator networks,” in Pattern Recognition and Machine Intelligence - 6th International Conference, PReMI 2015, Warsaw, Poland, June 30 - July 3, 2015, Proceedings, 2015. http://dx.doi.org/10.1007/978-3-319-19941-2_33 pp. 345–353.
  12. Ł. Sosnowski, A. Pietruszka, and S. Łazowy, “Election algorithms applied to the global aggregation in networks of comparators,” in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. P. M. Ganzha, L. Maciaszek, Ed., vol. 2. IEEE, 2014. http://dx.doi.org/10.15439/2014F494 pp. pages 135–144.
  13. Ł. Sosnowski, “Applications of comparators in data processing systems,” Technical Transactions, Automatic Control, pp. 81–98, 2013.
  14. R. Bembenik, Ł. Skonieczny, H. Rybiński, and M. Niezgódka, Eds., Intelligent Tools for Building a Scientific Information Platform, ser. Studies in Computational Intelligence. Springer, 2012, vol. 390. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-24809-2
  15. L. Han et al., “Firegrid: An e-infrastructure for next-generation emergency response support,” Journal of Parallel and Distributed Computing, vol. 70, no. 11, pp. 1128 – 1141, 2010. http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2010.06.005.
  16. A. Krasuski, A. Jankowski, A. Skowron, and D. Śl ̨ezak, “From sensory data to decision making: A perspective on supporting a fire commander,” in Web Intelligence/IAT Workshops. IEEE Computer Society, 2013, pp. 229–236. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2013.188
  17. Ł. Sosnowski, A. Pietruszka, A. Krasuski, and A. Janusz, “A resemblance based approach for recognition of risks at a fire ground,” in Active Media Technology - 10th International Conference, AMT 2014, Warsaw, Poland, August 11-14, 2014. Proceedings, 2014. http://dx.doi.org/10.1007/978-3-319-09912-5_47 pp. 559–570.
  18. A. Krasuski and A. Janusz, “Semantic tagging of heterogeneous data: Labeling fire & rescue incidents with threats,” in FedCSIS, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2013, pp. 77–82. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6643979
  19. F. Malik and B. Baharudin, “Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the {DCT} domain,” Journal of King Saud University - Computer and Information Sciences, vol. 25, no. 2, pp. 207 – 218, 2013. http://dx.doi.org/http://dx.doi.org/10.1016/j.jksuci.2012.11.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1319157812000444
  20. A. M. Rinaldi, “An ontology-driven approach for semantic information retrieval on the web,” ACM Transactions on Internet Technology, vol. 9, pp. 10:1–10:24, July 2009. http://dx.doi.org/http://doi.acm.org/10.1145/1552291.1552293.
  21. P. Resnik, “Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language,” CoRR, vol. abs/1105.5444, 2011. http://dx.doi.org/http://dx.doi.org/10.1613/jair.514. [Online]. Available: http://arxiv.org/abs/1105.5444
  22. L. Polkowski, Approximate Reasoning by Parts: An Introduction to Rough Mereology, ser. Intelligent Systems Reference Library. Springer, 2011. ISBN 9783642222795