
APIS – Agent Platform for Integration of Services

Michał Wójcik

Faculty of Electronics, Telecommunications and Informatics

Gdańsk University of Technology

Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

Email: michal.wojcik@eti.pg.gda.pl

Paweł Napieracz and Wojciech Jędruch

Faculty of Electronics, Telecommunications and Informatics

Gdańsk University of Technology

Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

Email: wjed@eti.pg.gda.pl

Abstract—This paper presents an approach to create a plat-
form for development and evaluation of task execution algorithms
relying on services composition. Proposed solution is based on
an agent paradigm where autonomous agents can cooperate and
negotiate in order to execute specified tasks which are defined
by input/output descriptions. Tasks are realized by the means
of services exposed by different agents. In case when there is
no a single service fulfilling the submitted task requirements,
there is a need for an automated composition of services into
one complex workflow. The platform provides ready to use
communication blocks which can be easily used for algorithms
development without consideration for complex conversation
protocols handling. All the algorithms developed on the platform
are service implementation independent and oriented on inter-
agent communication.

I. SERVICE COMPOSITION PROBLEM

T
HE SERVICE composition is not a new problem and

has been already considered in the literature. There is a

number of different approaches to this problem:

• Centralized service providers systems which do not pro-

vide any kind of composition [1], but only give the user

access to different resources in a uniform manner.

• Centralized systems providing workflow static compo-

sition and dynamic services selection features [2], [3].

Those require the user to define all the tasks in the work-

flow and the system itself performs only dynamic services

selection based on the requested QoS parameters. They

are often focused on the specific services architecture

instead of generic algorithms.

• Decentralized agent service providers systems [4]. Those

consider mainly broker agents providing features for dis-

covering and negotiating services execution parameters.

They do not provide any means of workflows composition

but can be used as underlying systems.

• Decentralized agent systems with static workflow compo-

sition [5], [6]. In contrast to centralized systems, they can

use autonomous agents for dynamic services selection.

Agents acting as services brokers can negotiate compat-

ibility and QoS parameters of the services.

• Systems, both centralized and decentralized, with dy-

namic workflow composition [7], [8]. Those require from

the users only definition of the required output and

optional input. Decentralized agent systems with dynamic

composition are often used in the simulation of business

processes used in the virtual organizations.

Most of the services composition systems are focused on

the particular services architectures and description standards

(UDDI, WSDL, OWL-S). The implemented cooperation algo-

rithms are tested together with services efficiency which does

not give the generic knowledge about the algorithms itself.

Moreover, agent solutions not always consider agent commu-

nication standards which makes them even more limited to a

particular solution.

A generic testbed environment, APIS (Agent Platform for

Integration of Services), was created. Because the platform

is not based on any particular service architecture it allows

for testing cooperation algorithms with a focus on their

performance rather than on services execution performance.

The platform provides means for discovering, negotiating and

executing abstract services using inter-agent communication

based on the FIPA communication protocols [9].

There is a number of approaches for describing services for

the composition process needs. Those can be full ontological

descriptions concerning input/output syntactical definitions as

well as semantical process definitions and some additional

preconditions [10]. This allows for full ontological reasoning

about services compatibility as well as desired output. Another

known approach is syntactical input/output description com-

bined with semantical service description based on thesaurus

allowing for services matching based on words semantical

distance [11]. Possibly simpler approach is semantical and

syntactical input/output description with only I/O compatibil-

ity reasoning [12].

This paper proposes different solution, based on input/out-

put and QoS ontological descriptions allowing for reasoning

output → input compatibility between services. It assumes

that I/O and QoS descriptions are enough for describing

what and how should be done. Because this work does not

consider different services architectures, at this point services

adaptation has not been taken into consideration.

II. AGENTS AS SERVICE PROVIDERS

According to the most basic definition, an agent is a

computer system that is situated in some environment, and

that is capable of autonomous action in this environment in

order to meet its delegated objectives. It might as well be an

environment of some kind of services. Those can be both,

Web Services distributed on remote machines connected to

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 247–254

DOI: 10.15439/2016F379

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 247

the Internet as well as business services representing com-

pany activities mapped into computer system for the sake of

simulations and automation. Agents can be treated both, as

autonomous services providers and executors existing in such

an environment. Moreover multi agent systems which assume

communication and interaction between agents residing in the

system, are suitable for this case.

When one agent is going to invoke a service of another one,

there is a need for some kind of agreement between them to be

established. Such an agreement should be made on the basis of

some negotiations and be profitable for both sides. This actions

can be described by Service Level Agreement (SLA) which

is contractual obligations between a service consumer and a

service provider, which can represent guarantees of quality

of service (QoS), non-functional requirements of a service

consumer and promises of a service provider [13].

III. MODEL OF SELF-ORGANIZATION

This section presents a proposal of solution for the tasks

composition problem. It distinguishes between different roles

which can be taken by composing agents as well as between

different communicative acts used in the composition process.

A. Agent Architecture

Figure 1 presents the APIS agent abstract architecture

overview. It is a variation of the layered architecture where

each of the layer can have a number of sub layers. All the

layers (even the sub layers) can perceive input by a means of

the see function which basically receives messages from other

agents in the environment as well as produce output made of

messages directed to those agents. Layers can be spawned

dynamically by other layers and be attached as sub-layers or

top level ones. All the layers are connected to agent inner

state (for the sake of simplification, the architecture figure

shows only one such a connection) which basically is a set

of a services (both owned and those provided by other agents)

known to the agent. Moreover, each of the layers contains

its own state which is shared only with parent layer and sub

layers. This state allows for performing long running actions

based on previous interactions with other agents.

In this model, the only agent interactions with its envi-

ronment are done through messages exchanged with other

residing agents. The environment state can be described as one

ore more messages (possibly from different agents) perceived

within some context (e.g.: asking about particular service):

e = {µ1, µ2, . . . , µn} (1)

where:

• µ ∈ M which is a set of all possible messages.

This leads to defining agents actions also as set of messages

(possibly addressed to different receivers):

α = {µ1, µ2, . . . , µn} (2)

action output
sensor input

Agent
see

sensor input

action

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

see

sensor input

action

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

Environment

action

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

see

layer 1

layer 2

layer 2-1

layer 2-2

layer 2-2-1

layer n

services

...

Fig. 1. Agent and its environment in the APIS platform

Finally, the agent decision function can be defined as a

mapping from sequences1 of messages sets2 to messages sets:

a : ℘(M)∗ → ℘(M) (3)

The agent run function can be defined as subsequent en-

vironment state (message set) to action (messages set) transi-

tions:

r : Mi
0

Mo

0−−→ . . .
Mr

u−1

−−−−→ Mo
u (4)

where:

• Mi ∈ ℘(M) is a set of input messages,

• Mo ∈ ℘(M) is a set of output messages.

The run function can be formally presented as a mapping

of environment states sequences and action sequences to

environment states:

r : E∗ ×A∗ → E (5)

Similarly to agent definition, the standard agent see function

mapping environment state sequences to percepts can be

defined as a mapping from a set of messages to percepts:

see : ℘(M)∗ → P (6)

and the action function mapping sequence of percepts to

actions as a mapping from sequences of percepts to a set of

messages:

action : P ∗ → ℘(M) (7)

In layered architectures, decision function is realized

through a set of behaviours, each associated with one layer.

Because single layer can take part in ongoing inter agent

negotiations, it can produce a number of different actions

(messages sent to different agents) as well as be activated

by a number of different environment states (messages from

different agents) transformed into percepts. Because this is not

a traditional layered approach where behaviours are described

1Sequences over set S are written as S∗

2Power set over set S is written as ℘(S)

248 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

as a pair of condition set and a resulting action there is a

need for additional layer action function which defines how

specified inputs are transformed into outputs:

beh = (P c,Ar, beh_action) (8)

where:

• P c is set of percepts called the condition,

• Ar is set of possible actions called the result,

• beh_action is single layer action function.

A single behaviour action function can be defined as a

mapping of percepts sequences and services sets to actions

(sets of messages):

beh_action : P ∗ × ℘(Se) → ℘(M) (9)

where:

• Se = {se1, se2, . . . , se|S|} is a set of all services.

In order to compare different approaches to complex service

workflows composition, a number of different utility functions

can be introduced. A successful composition utility function

returns values 1 and 0 determining if a composition process

for a particular task was successful or not:

us : R → {0, 1} (10)

where:

• R = {r1, r2, . . . , r|R|} is a set of all possible runs in the

environment.

A message utility function gives a natural number telling how

many messages were used for a particular task execution:

um : R → N (11)

and a conversations utility function says how many different

conversations have been started:

uc : R → N (12)

A QoS utility function gives information about values of

different QoS parameters describing the composed business

process execution:

uq : R → ℘(N) (13)

A time utility function tels how much real time (this value

can vary on different hardware environment configurations)

was used for the composition process:

ut : R → R (14)

B. Agent Environment

The APIS platform assumes an agent system where a

number of agents are spawned in order to cooperate. The

multi-agent system can be formally described as:

sys = ⟨A, env⟩ (15)

where:

• A is a set of all agents in the system,

• env = ⟨E , e0, τ⟩ is agent environment with initial state

and state transfer function defined.

The classification of the agent environment in the APIS plat-

form can be considered in two different scenarios concerning

platform life time:

• short-run – all agents spawned at the same time only for

single task execution request,

• long-run – agents can be spawned dynamically during

platform lifetime, many independent task execution re-

quests.

The environment characteristics which are common for both

situations and does not change depending on platform life time

are (based on [14, p. 30]):

• non-deterministic – because agents’ actions consequences

depend on inner states of all the agents taking part in a

interaction, the single result can not be fully predicted,

• dynamic – dynamic environments change without agent

interaction, the APIS platform environment can change

only as a result of agents’ action, but not all of the agents

always take part in those interactions so the environment

can change without their knowledge.

In the short-run, agents are spawned only for a single task

execution and removed form platform afterwards. This method

can be used for testing different algorithms and comparing

them with different agents and services configurations. More-

over it can be used for cases when particular task should be

carried on without any dependencies to other possible tasks.

The environment characteristics in this situation are (based

on [14, p. 30]):

• episodic – there is no connection between scenarios as

agents are spawned only for a single task execution,

• discrete – there is finite number of environment and

agents states (especially services composition possibili-

ties) resulting from the initial platform configuration.

In the long-run, agents can be spawned and removed dy-

namically during the whole platform life-cycle. This allows

agents to learn new composed services resulting from different

tasks executions. This approach is especially useful in virtual

organizations simulations. The environment characteristics in

this situation are (based on [14, p. 30]):

• non-episodic – agents’ decisions concerning the composi-

tion process are based on their knowledge about services,

in a long-time running environment agents learn about

new services and conditions negotiated at some point can

influence future compositions,

• discrete – because number of agents residing on the

platform, and services they know can change, there is

an infinite number of services composition possibilities.

IV. INFRASTRUCTURE

The developed APIS platform [15], [16] is based on the

JADE (Java Agent DEvelopment Framework) which is an

agent development framework allowing for creating distributed

multi agent systems [17]. It is one for the mostly used and

recognizable agent platforms [5], [4], [3], [8], [6].

JADE supports behavior-oriented agent model, that means

all agents actions are in a form of behaviors launched during

MICHAŁ WÓJCIK ET AL.: APIS—AGENT PLATFORM FOR INTEGRATION OF SERVICES 249

<<device2>>

: Server

<<executionEnvironment2>>

<<operatingSystem>>

: Linux

<<device2>>

: Server

<<executionEnvironment2>>

<<operatingSystem>>

: MS Windows

<<executionEnvironment2>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment2>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment2>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment2>>

<<jadeContainer>>

container-2 : Container

<<executionEnvironment2>>

<<jadeContainer>>

container-1 : Container

<<executionEnvironment2>>

<<jadeContainer>>

main-container : Main Container

<<component>>

<<ams>>

<<agent>>

ams : AMS

<<component>>

<<df>>

<<agent>>

df : DF

<<component>>

<<agent>>

agent-1 : Agent

<<component>>

<<agent>>

agent-2 : Agent

<<component>>

<<agent>>

agent-4 : Agent

<<component>>

<<agent>>

agent-3 : Agent

<<TCP/IP>><<TCP/IP>>

<<ACL>>

<<ACL>>

<<LAN>>

<<WAN>>

Fig. 2. Example JADE infrastructure

agent life cycle. One agent can make use of a number of

different behaviors purposed for realization of different goals.

New behaviors can be added while launching agent as well

as during its life-cycle from other behaviors. This allows for

dynamically adding behaviors related to the decisions made by

an agent and clearly complies with the agent model defined

in this paper.

An agent environment can be build with several nodes

(in JADE called containers) which can run on one or more

physical machines connected with network creating distributed

environment. All the agents reside in those containers. JADE

configuration requires at least one main container responsible

for the whole platform, other dependent containers connect to

the main one. JADE allows for configuration with a number

of backup main containers synchronizing during life-cycle.

Figure 2 shows an example JADE infrastructure. Only few

connection between agents components were shown for the

sake of simplification.

All agents belonging to the same platform can communicate

with each other using ACL (Agent Communication Language),

a standard language for agents communication defined by

FIPA (The Foundation of Intelligent Physical Agents) [9].

Messages content is defined by two things: Semantic Language

(SL) defining grammar of the message and domain ontology

defining vocabulary. The language is defined by FIPA and is

provided in JADE as a SL Codec whereas the ontology must

be provided by the developer.

V. AGENTS TYPES

When concerning roles in the complex tasks execution

process, different approaches can be taken. The APIS platform

allows for deploying equal peers without any relations between

them as well as agents organized into some hierarchies.

There are different roles, that can be taken by agents in the

tasks execution process:

• client – an agent that searches for agents capable of

executing particular task,

• principal – an agent that has some subordinates from

whom it can request some actions,

• contractor – an agent able to expose some services, their

QoS parameters as well as payment conditions,

• coordinator – additional role for contractor, introduced

for better readability of centralized algorithms,

• subordinate – an agent that has a principal which can

request some actions,

• collaborator – an agents collaborating with other agent

on equal rights in order to perform some actions.

Then, different relationships between agents can be listed:

• client - contractor (coordinator) – client searches for

contractors capable of executing particular tasks, during

negotiations contractor provides QoS parameters which

are evaluated by client,

• principal - subordinate – those are agents inside the same

agency, where principal belongs to the sub-agency higher

in the hierarchy, there are no negotiations and subordinate

is not able to refuse performing requested tasks unless it

is not capable of performing it,

• collaborator - collaborator – those can be agents in the

same agency and both belonging to sub-agencies on the

same level in the hierarchy, they can be requested by

principal to perform some tasks together and they must

jointly work out a solution.

One agent can be in more than one role at the same time. For

example the same agent can be contractor for external client,

collaborator for agents in the same sub-agency and principal

for agents in sub-agencies lower in the hierarchy at the same

time.

VI. COMMUNICATION PROTOCOLS

According to the FIPA standard, there is a number of proto-

cols describing in details communication between agents [9].

In order to ensure that the APIS platform is complying with

the FIPA standard, all the composition algorithms should be

based on the FIPA protocols. Initially, for the needs of this

work the five protocols were chosen: cancel, request, query,

contract net and iterated contract net protocols.

The cancel meta protocol allows the initiator to cancel on

going interaction with another participant under any proto-

col [9]. The initiator trying to cancel an interaction, needs

to send cancel message containing the message that it

250 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

wants to cancel. The participant can reply with inform

message after successful termination or failure message

when termination did not succeed.

The query protocol allows the initiator to ask the participant

if a given proposition is true by sending query-if message

or ask for information concerning a given object by sending

query-ref message [9]. The participant can agree or not

agree to respond by replying with respectively agree or

refuse message. If the participant agreed to response, it

sends inform message containing true/false reply or infor-

mation concerning provided object. It can also send failure

message if an attempt to acquire the answer finished with an

error.

The request protocol allows the initiator to request an

execution of a given action by the participant by sending a

request message [9]. The participant can refuse performing

the given action by replying with a refuse message or

agree by replying with an agree message. The participant

replies with an inform message which contains an action

outcome. The participant can reply with a failure message

if performing the action finished with an error.

The contract net protocol allows the initiator to gather a

number of proposals of performing some action from one

ore more participants [9]. Firstly, the initiator sends a cfp

message containing action description to potential performers.

The participants can reply with a propose message contain-

ing some conditions of executing the given action or with a

refuse message when they are not interested. After gather-

ing all the replies or exceeding a deadline (specified in the first

cfp message) the initiator browses the proposals and selects

one or more the best ones. Authors of the selected proposals

receive an accept-proposal message and authors of the

rejected ones receive a reject-proposal message. All the

proposals received after the given deadline are automatically

rejected and their authors receive a reject-proposal

message with a corresponding information. Similarly to the

request protocol, after finishing the action, the participants

send an inform message which can contain an action result

or failure message in case of a failure.

The iterated contract net enriches the contract net protocol

with a possibility of stating more exact conditions in a nego-

tiation process [9]. After selecting propositions, the initiator

can decide if that was or not the final iteration. If it was the

final iteration, protocol proceeds as in standard contract net

protocol. If it was not the final iteration, the initiator sends

more exact cfp message. This process can be repeated until

the initiator decided, that further negotiations are not required.

VII. ALGORITHMS BUILDING BLOCKS

The idea of the APIS platform is to develop complex tasks

execution algorithms using pre-made block providing all inter-

agent communication actions so the developer can focus on

the algorithms structure. Normally developer would be forced

to implement all the communication stack including packing,

unpacking, sending, receiving and filtering messages within a

number of ongoing conversations.

ContractNetBehaviour

BaseCommunicationBehaviour SimpleBehaviour

RequestBehaviour

QueryIfBehaviour

IteratedContractNetBehaviour

CancelBehaviour

Fig. 3. Active behaviours

Figure 3 presents hierarchy of behaviours which can be used

by the developer while creating an active side of the execution

process. Those behaviours are:

• SimpleBehaviour – basic JADE behaviour class for

all agent behaviours,

• BaseCommunicationBehavior – basic communi-

cation stack operations common for all the used proto-

cols,

• CancelBehaviour – implementation of meta cancel

protocol, allows to cancel any ongoing conversation,

• QueryIfBehaviour – implementation of query if

protocol, allows to check if given fact is true according

to other agents, requires only providing the fact and a

receiver,

• RequestBehaviour – implementation of the request

protocol, allows to request performing some action by

another agent, requires providing the action definition and

a receiver,

• ContractNetBehaviour – implementation of the

contract net protocol, allows to call for proposals of

performing some action, gather those proposal, select

the best one and gather the result, requires providing

the action definition, a list of receivers and a proposals

comparator,

• IteratedContractNetBehaviour – implementa-

tion of iterated contract net protocol, allows to do the

same as the ContractNetBehaviour but with nego-

tiation iterations.

Figure 4 presents hierarchy of behaviours which are auto-

matically used by the passive side of the execution process.

Those can not be used directly by the developer and are

launched automatically by the agent when specified initiating

messages is received. Those behaviours are:

• ResolverBehaviour – basic resolving behaviour im-

plementing common communication stack,

• CancelResolverBehaviour – behaviour launched

when a cancel message is received,

• QueryIfResolverBehaviour – behaviour launched

when a query if message is received, checks submitted

fact and responds with a result,

• RequestResolverBehaviour – behaviour launched

when a request message is received, performs requested

action and responds with a result,

• CallForProposalResolverBehaviour –

behaviour launched when a call for proposal message

MICHAŁ WÓJCIK ET AL.: APIS—AGENT PLATFORM FOR INTEGRATION OF SERVICES 251

ResolverBehaviour

CallForProposalResolverBehaviourCancelResolverBehaviour

QueryIfResolverBehaviour

SimpleBehaviour

RequestResolverBehaviour

Fig. 4. Passive behaviours

Resolver

CancelResorlver

CallForProposalResolverQueryIfResolver

RequestResolver

Fig. 5. Passive behaviours resolvers

is received, prepares proposal and if accepted performs

request action and responds with a result.

While the passive behaviours are fixed, their outputs can be

changed by the mean of resolvers. The resolvers are interfaces

which can be implemented by the developer and which are

used by the passive behaviours. Figure 5 presents a hierarchy

of resolvers used on the platform. Those interfaces are:

• Resolver – basic interface for all the resolvers,

• CancelResolver – defines actions carried on by the

agent after receiving cancel message,

• QueryIfResolver – defines actions for checking if

giver fact is true,

• RequestResolver – defines actions of executing

specified action and returning its result,

• CallForProposalResolver – defines action of

preparing proposal and if accepted execution specified

action and returning its result.

VIII. SIMPLE COMPOSITION ALGORITHM

In order to show that the platforms fulfills its requirements,

the simple composition algorithm was prepared. During its

implementation no communication based code was prepared.

Figure 6 presents classes which were developed and their

relation to those provided by the platform. Those classes are:

• Coordinator – agent coordinating the composition

process, registers appropriate request resolver,

• Contractor – agent providing some services, registers

appropriate call for proposal resolver,

• ReqResolver – implementation of the request resolver,

when receiving a request to execute some task it starts

the composition behaviour,

• CFPResolver – implementation of the call for proposal

resolver, checks if requested task output can be provided

by any of the services known by the resolver owner and

if yes prepares an appropriate proposal,

• CompositionBehaviour – a behaviour responsible

for composing a new workflow of services in order to

provided desired task output, in order to find subsequent

BaseAgent

Coordinator Contractor

SimpleBehaviour

CompositionBehaviour

CallForProposalResolver

CFPResolver

Resolver

RequestResolver

ReqResolverBaseCommunication

Behaviour

ContractNetBehaviour

Fig. 6. Simple algorithm

workflow services it starts underlying contract net be-

haviours.

IX. RUNNING THE ALGORITHM

The designed algorithm was carried on by the following

agents exposing specified services:

• agent-pizza-maker:

– MakePizza : (base, topping, sauce) → (pizza);

• agent-baker:

– MakeBase : (flour, water) → (base);

• agent-sauce-maker:

– MakeSauce : (tomato, water) → (sauce);

• agent-topping-maker:

– MakeTopping : (vegetable) → (topping);

• agent-seller:

– ProvideFlour : () → (flour),

– ProvideWater : () → (water),

– ProvideVegetable : () → (vegetable),

– ProvideTomato : () → (tomato);

• agent-coordinator,

• testRunner.

All the agents with the agent- prefix are contractors without

any hierarchical relationships. The agent-coordinator is an

agent which receives a request from the client (the testRunner

agent). Only services exposed by the agent-seller agent do not

require any input so they should be used as the workflow initial

services.

The subsequent messages exchanged by the agent are pre-

sented in figures from 8 to 11 which were created with APIS

version of JADE sniffer agent. The communication snapshot

presents which messages belong to which conversation. The

explanation of goals of each conversation is presented in ta-

ble I. The final workflow providing desired output is presented

in figure 7 which was created using the APIS service sniffing

tool. Values for the utility (10, 11, 12, 13, 14) functions are:

us = 1, um = 129, uc = 55, uq = 9, ut = 150.5ms.

252 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 7. Service generated-0 chain for simple centralized algorithm

TABLE I
CONVERSATIONS SUMMARY FOR SIMPLE CENTRALIZED ALGORITHM

conversations protocol output service

0 request pizza generated-0

1, 7, 13, 19, 25, 31, 37, 43, 49 request agents -

2, 3, 4, 5, 6 cfp pizza generated-1

8, 9, 10, 11, 12 cfp base generated-2

14, 15, 16, 17, 18 cfp topping generated-3

20, 21, 22, 23, 24 cfp sauce generated-4

26, 27, 28, 29, 30 cfp water generated-5

32, 33, 34, 35, 36 cfp tomato generated-6

38, 39, 40, 41, 42 cfp vegetable generated-7

44, 45, 46, 47, 48 cfp flour generated-8

50, 51, 52, 53, 54 cfp water generated-9

X. CONCLUSION

The idea of this work was to provide an agent platform

allowing for developing and evaluating complex tasks execu-

tion and services composition algorithms. In order to focus

on the algorithms, the platform is not based on any services

implementation but only on inter agent FIPA communication

standard. It has been shown how APIS algorithms building

blocks comply with the FIPA communication protocols and

that they can be successfully used in developing execution

and composition algorithm. The set of building blocks can

be easily expanded with new protocols by implementing low-

level communication stack. Moreover it has been shown that

platform accompanying sniffing tools allow for good algo-

rithms evaluation. Proposed utility functions can be used for

comparing different algorithms.

Despite the fact that the APIS platform is not based on any

services implementation it can be in future easily enriched

with one by changing appropriate algorithms building blocks.

As future work, the most important possibility is developing

and evaluating more complex execution and composition al-

gorithms, especially distributed ones based on work division.

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

REQUEST:0

AGREE:0

REQUEST:1

INFORM:1

CFP:2

CFP:3

CFP:4

CFP:5

REFUSE:2

REFUSE:3

REFUSE:4

CFP:6

PROPOSE:5

REFUSE:6

REQUEST:7

INFORM:7

CFP:8

REFUSE:8

CFP:9

CFP:10

CFP:11

CFP:12

REFUSE:9

REFUSE:11

PROPOSE:10

REFUSE:12

REQUEST:13

INFORM:13

CFP:14

CFP:15

CFP:16

CFP:17

REFUSE:14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Fig. 8. Communication snapshot

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

REFUSE:14

CFP:18

PROPOSE:15

REFUSE:18

REFUSE:16

REFUSE:17

REQUEST:19

INFORM:19

CFP:20

CFP:21

REFUSE:21

PROPOSE:20

CFP:22

CFP:23

CFP:24

REFUSE:24

REFUSE:23

REFUSE:22

REQUEST:25

INFORM:25

CFP:26

CFP:27

CFP:28

CFP:29

CFP:30

REFUSE:27

REFUSE:29

REFUSE:26

PROPOSE:30

REFUSE:28

REQUEST:31

INFORM:31

CFP:32

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Fig. 9. Communication snapshot (continued)

MICHAŁ WÓJCIK ET AL.: APIS—AGENT PLATFORM FOR INTEGRATION OF SERVICES 253

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

CFP:32

CFP:33

REFUSE:32

CFP:34

CFP:35

REFUSE:34

REFUSE:33

CFP:36

REFUSE:35

PROPOSE:36

REQUEST:37

INFORM:37

CFP:38

CFP:39

CFP:40

CFP:41

CFP:42

REFUSE:40

REFUSE:41

REFUSE:39

REFUSE:38

PROPOSE:42

REQUEST:43

INFORM:43

CFP:44

CFP:45

REFUSE:44

CFP:46

REFUSE:45

CFP:47

REFUSE:46

CFP:48

REFUSE:47

PROPOSE 48

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Fig. 10. Communication snapshot (continued)

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

REFUSE:47

PROPOSE:48

REQUEST:49

INFORM:49

CFP:50

CFP:51

REFUSE:50

REFUSE:51

CFP:52

CFP:53

REFUSE:52

REFUSE:53

CFP:54

PROPOSE:54

ACCEPT-PROPOSAL:30

ACCEPT-PROPOSAL:36

ACCEPT-PROPOSAL:42

ACCEPT-PROPOSAL:48

ACCEPT-PROPOSAL:54

INFORM:30

INFORM:36

INFORM:42

INFORM:48

INFORM:54

ACCEPT-PROPOSAL:20

ACCEPT-PROPOSAL:15

INFORM:20

ACCEPT-PROPOSAL:10

INFORM:15

INFORM:10

ACCEPT-PROPOSAL:5

INFORM:5

INFORM:0

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Fig. 11. Communication snapshot (continued)

REFERENCES

[1] P. Czarnul, “A JEE-Based Modelling and Execution Environment
for Workflow Applications with Just-in-Time Service Selection,” in
Proceedings of the 2009 Workshops at the Grid and Pervasive

Computing Conference (GPC), ser. GPC ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 50–57. [Online]. Available:
http://dx.doi.org/10.1109/GPC.2009.24

[2] ——, “Comparison of selected algorithms for scheduling workflow
applications with dynamically changing service availability,” Journal of

Zhejiang University SCIENCE C, vol. 15, no. 6, pp. 401–422, 2014.
[Online]. Available: http://dx.doi.org/10.1631/jzus.C1300270

[3] F.-S. Hsieh and J.-B. Lin, “Context-aware workflow management
for virtual enterprises based on coordination of agents,” Journal of

Intelligent Manufacturing, vol. 25, no. 3, pp. 393–412, 2014. [Online].
Available: http://dx.doi.org/10.1007/s10845-012-0688-8

[4] L. Ehrler, M. Fleurke, M. Purvis, B. Tony, and R. Savarimuthu,
“AgentBased Workflow Management Systems (WfMSs): JBees - A
Distributed and Adaptive WfMS with Monitoring and Controlling
Capabilities,” in Journal of Information Systems and e-Business

Management, Volume 4, Issue 1. Springer-Verlag, 2005, pp. 5–23.
[Online]. Available: http://dx.doi.org/10.1007/s10257-005-0010-9

[5] P. Czarnul, M. Matuszek, M. Wójcik, and K. Zalewski, “Beesybees:
A mobile agent-based middleware for a reliable and secure execution
of service-based workflow applications in beesycluster,” in Multiagent

and Grid Systems. IOS Press, 2011, vol. 7, pp. 219 – 241. [Online].
Available: http://dx.doi.org/10.3233/MGS-2011-0178

[6] P. Czarnul and M. Wójcik, “Dynamic compatibility matching of
services for distributed workflow execution,” in Parallel Processing

and Applied Mathematics, ser. Lecture Notes in Computer Science,
R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, Eds.
Springer Berlin / Heidelberg, 2012, vol. 7204, pp. 151–160. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-31500-8_16

[7] F. E. Tosta, V. Braganholo, L. Murta, and M. Mattoso, “Improving
workflow design by mining reusable tasks,” Journal of the Brazilian

Computer Society, vol. 21, no. 1, pp. 1–16, 2015. [Online]. Available:
http://dx.doi.org/10.1186/s13173-015-0035-y

[8] F.-S. Hsieh and J.-B. Lin, “A self-adaptation scheme for
workflow management in multi-agent systems,” Journal of Intelligent

Manufacturing, vol. 27, no. 1, pp. 131–148, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10845-013-0818-y

[9] The Fundation of Intelligent Physical Agents, “FIPA specifications,”
Tech. Rep., 2002. [Online]. Available: http://www.fipa.org/repository/
standardspecs.html

[10] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated
discovery, interaction and composition of semantic web services,”
Web Semantics: Science, Services and Agents on the World Wide

Web, vol. 1, no. 1, pp. 27 – 46, 2003. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2003.07.002

[11] K. Arisha, F. Ozcan, R. Ross, S. Kraus, and V. S. Subrahmanian,
“Impact: the interactive maryland platform for agents collaborating
together,” in Multi Agent Systems, 1998. Proceedings. International

Conference on, Jul 1998, pp. 385–386. [Online]. Available: http:
//dx.doi.org/10.1109/ICMAS.1998.699225

[12] G. Wickler and A. Tate, “Capability representations for brokering:
A survey,” in Available from: www.aiai.ed.ac.uk/ âĹij oplan/cdl/cdl-

ker.ps, 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.367.9865

[13] Q. He, J. Yan, R. Kowalczyk, H. Jin, and Y. Yang, “Lifetime service
level agreement management with autonomous agents for services
provision,” Inf. Sci., vol. 179, no. 15, pp. 2591–2605, Jul. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2009.01.037

[14] S. J. Russell and P. Norvig, Artificial Intelligence a modern approach,
2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2003.

[15] P. Napieracz, “Porównanie agentowych algorytmów kooperacji w
wykonywaniu złożonych zadań,” Master’s thesis, Politechnika Gdańska,
Wydział Elektroniki, Telekomunikacji i Informatyki, 2014.

[16] M. Wójcik, “Raport techniczny nr 2/2015: Projekt platformy apis (agent
platform for integration of services),” Gdańsk University of Technology,
Faculty of Electronics, Telecommunications and Informatics, Tech. Rep.,
2015.

[17] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent

Systems with JADE. Wiley, 2007.

254 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

