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Abstract—In this paper we describe computer experiments
while testing a family of parallel and hybrid metaheuristics
against a small set of graph partitioning problems like clustering,
partitioning into cliques and coloring. In all cases the search
space is composed of vertex partitions satisfying specific problem
requirements. The solver application contains two sequential and
nine parallel/hybrid algorithms developed on the basis of SA
and TS metaheuristics. A number of tests are reported and
conclusions resulting from the testing experiments are derived.

Index Terms—simulated annealing, tabu search, parallel meta-
heuristic, hybrid metaheuristic, graph partitioning problem

I. INTRODUCTION

C
OMPUTATIONAL optimization attracts for years re-

searchers and practitioners interested in solving combi-

natorial problems by means of various computational methods

and tools. In particular, many NPO problems require new

versatile tools in order to find approximate solutions [1],

[8]. Parallel and hybrid metaheuristics are among the most

promisssing methods to be developed in the nearest time [2],

[16]. Many new algorithms have been already designed and

compared with existing methodologies [7], [11], but there is

still a room for significant progress in this area.

In this paper we focus on a class of partitioning problems

that appears in many application areas like data clustering

[3], column-oriented database partitioning optimization [15],

design of digital circuits, decomposition of large digital sys-

tems into a number of subsystems (moduls) for multi-chip

implementation, task scheduling, timetabling, assiggnment of

frequencies in telecommunication networks, etc. Partitionig

problems are in general simpler than permutation problems

but their search spaces are too huge for exhaustive search or

extensive search methods [6], [9], [10], [17], [18].

The rest of the paper is organized as follows. In the

next section the graph partitioning problems are defined and

characterized. Then, in section 3, SA and TS algorithms as

well as their parallelization and hybridization methods are

presented. The design assumptions and features of the devel-

oped solver are described in section 4. Testing methodology

and experimental results are shown in section 5. The final

conclusions point out the directions of future research in this

area.

II. GRAPH PARTITIONING PROBLEMS

In this section formulations of several partitioning problems

are given that are to be solved by a collection of algorithms

used in the experimental part of the paper.

We assume that G = (V,E) is a connected, undirected

graph. Let |V | = n, |E| = m.

A. Cluster partitioning problem (CPP)

A partition C = (C1, . . . , Ck) of V is called a clustering

of G and Ci clusters. C is called trivial if either k = 1,

or all clusters Ci contain only one element. We will identify

a cluster Ci with the induced subgraph of G, i.e. the graph

Gi = (Ci, E(Ci)), where E(Ci) = {{u, v} ∈ E : u, v ∈ Ci}.

Hence, E(C) =
∑k

i=1
E(Ci) is the set of intra-cluster edges

and E \ E(C) the set of inter-cluster edges. [3]

The number intra-cluster edges is denoted by m(C) and the

number of inter-cluster edges by M(C).
The coverage(C) of a graph clustering C is a frac-

tion of intra-cluster edges within the complete set of edges

E: coverage(C) = m(C)/m. The larger the value of

coverage(C) does not necessarily mean the better quality of

a clustering C.

Constructing a k-clustering with a fixed number of k, k ≥ 3
of clusters is NP-hard [1].

In this paper we will consider k-clustering problems for

weighted graphs, where the total weight of the set E \ E(C)
shall be minimized.

B. Clique partitioning problems (CPP)

A partition C = (C1, . . . , Ck) of V is called a partition of

G into cliques iff every subgraph Gi = (Ci, E(Ci)) induced

by a cluster Ci is a clique, i.e. all vertices in Ci are pairwise

connected. The goal is to find the minimal k, for which a

partition into at most k cliques exists.

The clique partitioning problem is NP-complete [14]. The

dual problem to CPP is graph partitioning into independent

sets (ISs). It is equivalent to the CPP for G(V,E′), where E′

is a complement of the set E.

C. Clique partitioning problems with minimum clique size

(CPP)

In the present paper a solution of clique partitioning problem

is also searched for given clique size at least s: is there a
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graph partition into k cliques satisfying a condition related to

the minimum clique size s? For given n and k the minimum

size of cliques in G is s = ⌊n/k⌋. Weighted version of the

problem are also known, with additional conditions related to

cliques’ weights [9].

D. Graph coloring problem (GCP)

Classical vertex coloring problem in a graphs is another for-

mulation of graph partitioning into independent sets. Such ISs

can be assigned different colors, satisfying the property that

all pairs of adjacent vertices in G are assigned nonconflicting

colors. Formally:

For given graph G(V,E), the optimization problem GCP

is formulated as follows: find the minimum positive integer

k, k ≤ n, and a function c : V −→ {1, . . . , k}, such that

c(u) 6= c(v) whenever (u, v) ∈ E. The obtained value of k is

referred to as graph chromatic number χ(G).

GCP belongs to the class of NP-complete problems [8].

E. Restricted coloring problem (RCP)

In practical applications a conflict-free vertex/edge coloring

is searched, often satisfying additional requirements. There-

fore, a large number of particular coloring problems arised

and has been investigated [12].

One well known example is vertex coloring with some

restrictions set on available colors for the given graph vertex.

In RCP each vertex is assigned a list of forbidden colors

and a proper solution meeting such set of constraints is

searched [13].

III. SEQUENTIAL AND PARALLEL METAHEURISTICS

The reported research is based on two sequential and nine

parallel algorithms. The sequential metaheuristics include clas-

sical simulated annealing (SA) and tabu search (TS) that be-

long to the class of iterative methods [16]. Parallel algorithms

can be splitted into three categories: parallel metaheuristics

derived from SA, parallel metaheuristics derived from TS and

hybrid methods.

A. Simulated annealing (SA)

Classical simulated annealing [16] is a well known tech-

nique widely used in optimization and present in most of

the textbooks. It can be easily parallelized in various ways.

Parallel moves enable single Markov chain to be evaluated

by multiple processing units calculating possible moves from

one state to another. Multiple threads compute independent

chains of solutions and periodically exchange the obtained

results. The key question in parallel implementation remains

setting of algorithm’s parameters like initial temperature, and

a cooling schedule. For the problem at hand it is necessary

to define an appropriate solution representation, cost function

and a neighborhood generation scheme.

B. Tabu search (TS)

Tabu search [16] is an improvement of local search method

in which so called tabu list contains a number of recent

moves that must not be considered as candidates in the present

iteration. This feature helps the method to escape from local

minima what is impossible in local search. The question is to

define the solution representation, cost function, neighborhood

and a single move, the size of the neighborhood and the

number of candidate moves, aspiration level which decides

on the possibility to accept forbidden moves if it leads to a

solution improvement etc.

C. MIR model of parallelization

Multiple independent runs (MIR) model is a very popular

way of parallelization of iterative algorithms. A number of

algorithm instances with different input data are executed si-

multaneously. All computational processes run independently

and do not exchange data during computation. At the end, the

best solution from all processes is selected. This simple model

can be made more sophisticated by introducing an information

exchange scheme, exchange rate etc.

D. MS model of parallelization

In Master-Slave (MS) model the master executes the sequen-

tial part of an algorithm, distributes computational tasks among

slaves, collects results from slaves, process and aggregates this

results. In certain versions of MS model the master splits the

whole search space among slaves, synchronizes their work,

checks the termination condition and collects the best solution

from subspaces.

E. PA model of parallelization

Parallel asynchronous (PA) model provides maximum flex-

ibility: various algorithms with different initial data search the

whole search space in an asynchronous manner. Usually an

efficient update scheme for the best solution must be imple-

mented as well as occasional distribution of best solutions to

asynchronous computational processes. One possibility is to

employ a communication process. In some cases shared mem-

ory (SM) can be used for information updates and exchange.

The second solution helps to avoid generation of interrupts in

asynchronous processes. The processes communicate the SM

in predictable moments of time.

F. Hybrid models

Hybrids models include : 1. two-phase algorithms, when

each phase - restriction of the search space and solution

refinement - is performed by a different method; 2. combined

algorithms, when known elements of existing methods are

composed in a single algorithm; 3. combined algorithms con-

sisting original components like problem-oriented operations

or heuristics; and 4. concurrent algorithm which is parallel

execution of known methods with data exchange patterns.

In this paper three heuristic algorithms are used.

Parallel hybrid asynchronous (H-PA) algorithm splits com-

putational processes into ”even” performing SA and ”odd”
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performing TS. Best solutions are updated via shared memory

SM, where are immediately made available for all processes.

Hybrid serial-parallel algorithm (H-SP) process in parallel

p threads in which SA and TS sections are performed alterna-

tively starting from SA section. SA section modifies tabu list

while TS section modifies current temperature for the next

section, respectively. Swiching conditions are related to the

progress achieved in improving best solution.

Parallel hybrid algorithm (H-P) is developed on the basis

MIR method. Single step combines properties of both SA

and TS: if new solution satisfies aspiration criterion (AC)

it is always accepted, otherwise, it is accepted according to

SA rules. This means that probability of acceptance of worst

solution decreases in time.

IV. THE SOLVER

For all tests it is used the ”Partitioning problems solver”

application. It is written in C++ (Visual Studio), while .NET

Framework 3.5 provides necessary libraries and runtime envi-

ronment.

The main program window contains three tabs: Program,

Generator and Help. In appropriate fields of Program tab it

is possible to select one of five basic problems (GPP, CPP,

CPP-MIN, GCP, RGCP) and one of eleven algorithms. After

that one can select the input file format and read input data.

A numerous algorithm parameters and problem constrains

must be filled in the forms including multiple runs, enabling

statistics and write options. The cost of best solution and the

total computation time are also displayed in this tab.

The Generator tab opens possibilities to generate input

graphs or weighted input graphs after setting its parameters

and lists of forbidden colors. The unweighted graphs are kept

in .col format, weighted graphs are in .ecl format, which is

extention of .col by adding edge weights as well as edge

weight range (in the header). The type .rcp contains lists of

forbidden colors for all vertices, if any. File formats .xpp and

.xcp are used for preserving input graph and the partition being

the best solution for the given problem together with its cost,

respectively. Output data in CSV format are written to the .txt

file and enable easy import of data into a spreadsheet.

V. COMPUTATIONAL EXPERIMENTS

For experiments the Intel Pentium T2300 machine was used

with two 1,66 GHz cores and 4GB RAM, running under

Windows XP Pro SP2 and .NET Framework 3.5 platform.

All five problems were tested agaist all eleven algorithms

with eight basic settings (stop criterion, no of iterations in a

single step, initial temperature for SA, size of the tabu list).

The specific setting that were selected in the initial phase of

the experiment are shown in Table I.

Other parameters are: coefficient of cost function = 1, no

of parallel processes (if any) = 20, communication parameter

= 20, no of algorithm repetitions = 20, no of clique extention

trials = 5, no of repetitions for H-SP algorithm = 5.

In Tables II-XI computational data are presented. All exper-

iments were conducted for random graph instances generated

TABLE I
BASIC SETTINGS OF ALGORITHMS

stop number of SA - initial TS - size of
no. criterion iterations/ temperature tabu list

(it) step

1 20 5 3 10
2 20 5 10 40
3 20 10 3 10
4 20 10 10 40
5 50 5 3 10
6 50 5 10 40
7 50 5 3 10
8 50 5 10 40

for each class of the graph partitioning problems in .ecl

format. Relatively small graph instances were used with 20,

50 and 100 vertices and graph densities 10%, 20% and 30%.

Cost functions from 20 trials are collected in Tables II-VI

while the corresponding computation times in Tables VII-XI,

respectively.

Average (Avg.) values for settings 1-8 in Tables II-XI are

computed for parallel and hybrid methods only, serial methods

SA i TS are excluded. Analysis of the results obtained for the

five partitioning problems justifies several conclusions.

The shortest processing times are obtained by pure TS and

SA methods. However, their solutions are not satisfactory.

Parallelization and hybridization require additional computa-

tional work, and their aim is to improve search for a better

suboptimal solution rather then providing significant speedup.

For GPP the fastest parallel algorithms are PTS metaheuris-

tics. PSA and hybrid methods are less timeefficient. The

slowest algorithm is H-SP, which is very time consuming.

On the other hand H-SP finds the best solutions for all

eight available settings. Average results of PSA-MIR and H-P

algorithms are also outstanding and obtained approximately

five times faster than by H-SP. The best setting in average is

no 6 (minimum cost for six methods), but the best result for

GPP is obtained with setting no 5. In terms of the computation

time settings no 2 and 1 obviously win, and the fastest method

is the PTS-A algorithm with moderate success in optimization.

For CPP the fastest parallel algorithms are PSA metaheuris-

tics. Five other methods, except H-PS are also timeefficient.

Among the parallel algorithm PSA-A is the fastest one with

minimum time obtained for four settings. The slowest algo-

rithm is again H-SP, which finds the best solutions for all

eight parameter settings. The second result provides PTS-MIR

which is eight times faster than H-SP. Setting no 8 provides

the best solution quality for 7 parallel algorithms. In terms of

the computation time settings no 2 and 1 win.

For CPP-MIN the fastest parallel algorithms is one hybrid

and all PSA metaheuristics. The winner is PTS-MS algorithm

with setting no 1. The slowest algorithm is H-SP, which wins

the quality competition for all eight parameter settings. PSA-

MIR and H-P have been the most prospective challengers.

Setting no 8 provides the best solution quality for eight

algorithms. In terms of the computation time settings no 2

and 1 are the winners.
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For GCP the fastest parallel methods are H-PA and all

PSAs which provide also best approximate solutions (PSA-

MIR wins for six out of eight settings). The fastest parallel

algorithm is H-PA, the best setting for six algorithms is no

2. The slowest algorithm is H-SP, which is 5th in terms of

solution quality. The best setting for cost-optimality is no 4 in

average.

The final problem - RCP - brings also interesting results.

The fastest parallel algorithms are H-P six winning settings

and PSAs. The best settings for all methods are 1 and 2. The

best solution in average is found by PSA-MIR (the winner for

seven out of eight settings), the runner-up is H-SP which was

about eight time s lower, the next positions are occupied by

PSA-MS and PSA-A. Most good results (8) were obtained for

the setting no 8.

VI. CONCLUSIONS

In this paper some research results related to parallel meta-

heuristics and their applications were reported. The conducted

experiments gave certain limited insight to computational

behaviour of parallel metaheuristics developed on the basis

of SA and TS, and applied to a class of popular partitioning

problems in graphs. Some algorithms were better then others

for solving particular problems. We were focused mostly on

solution quality, but computation time was the second factor

in comparison. Many results were not obvious and difficult

to predict without verification. We believe that the presented

initial results justify further experiments with our solver for

more elaborated input instances. For this purpose to chose and

modify DIMACS graph coloring instances, which were used

for generation of instances of such partitioning problems like

sum coloring, robust coloring etc. In time we will improve the

algorithms to obtain more accurate solutions.
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TABLE II
GRAPH PARTITIONING PROBLEM (GPP). COST FUNCTIONS (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 295 238 255 251 338 284 285 287 286 230 240 262
2 296 237 254 253 330 286 285 282 246 228 234 256
3 293 243 257 259 338 283 285 288 254 234 238 260
4 293 238 257 257 331 282 285 283 252 232 235 260
5 292 234 249 247 341 276 286 288 245 226 237 254
6 286 235 245 244 338 274 284 281 238 227 235 251
7 289 242 252 256 332 280 286 286 249 238 242 259
8 289 240 252 252 329 271 280 283 252 235 239 256

Avg. 292 238 253 252 335 280 285 285 253 231 238

TABLE III
CLIQUE PARTITIONING PROBLEM (CPP). COST FUNCTIONS (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 26 24 24 24 25 23 24 24 24 21 24 23,6
2 26 24 24 24 25 23 24 24 24 21 24 23,6
3 23 22 22 22 24 22 23 23 23 21 22 22,2
4 24 22 22 22 24 22 23 23 23 21 22 22,2
5 25 24 24 24 24 22 23 23 23 21 24 23,1
6 26 24 24 24 24 22 23 23 23 21 24 23,1
7 23 22 22 22 23 22 22 22 22 21 22 21,9
8 24 22 22 22 23 22 22 22 22 21 22 21,9

Avg. 24,6 23 23 23 24 22,3 23 23 23 21 23

TABLE IV
CPP WITH MIN. CLIQUE SIZE (CPP-MIN). COST FUNCTIONS X103 (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 114 107 109 108 147 127 136 134 134 102 106 118
2 115 108 109 109 145 127 136 134 111 102 107 116
3 112 105 106 105 138 123 129 130 108 100 105 112
4 113 106 106 106 137 124 129 129 108 101 106 113
5 113 106 106 106 140 114 131 130 109 102 106 112
6 114 106 106 107 140 114 130 130 109 102 106 112
7 113 105 105 105 134 114 127 127 108 99,3 105 111
8 112 106 105 105 133 113 126 126 107 99,3 105 110

Avg. 113 106 107 106 139 119 131 130 112 101 106

TABLE V
GRAPH COLORING PROBLEM (GCP). COST FUNCTIONS (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 86 51 52 53 84 55 55 55 55 55 54 53,9
2 80 52 52 52 85 55 54 55 53 53 53 53,2
3 85 52 51 52 83 54 55 54 54 54 53 53,2
4 86 51 52 51 78 53 53 53 53 53 53 52,4
5 82 52 52 52 86 54 56 55 54 54 53 53,6
6 87 52 52 52 86 53 54 55 54 53 53 53,1
7 84 50 51 52 83 53 54 55 54 53 53 52,8
8 86 52 51 52 85 53 54 53 52 53 53 52,6

Avg. 84,5 51,5 51,6 52 83,8 53,8 54,4 54,4 53,6 53,5 53,1
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TABLE VI
RESTRICTED GCP (RGCP). COST FUNCTIONS (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 36 26 26 27 39 29 30 29 30 27 29 28,1
2 37 26 26 26 37 28 29 29 27 26 28 27,2
3 36 26 26 27 39 28 29 28 28 26 28 27,3
4 36 27 27 27 36 28 28 28 27 26 28 27,3
5 37 26 26 26 38 28 29 29 27 26 28 27,2
6 36 26 27 26 38 27 28 29 27 27 28 27,2
7 36 26 27 27 37 28 28 28 27 26 28 27,2
8 36 26 27 27 36 27 28 28 27 26 27 27,0

Avg. 36,3 26,1 26,5 26,6 37,5 27,9 28,6 28,5 27,5 26,3 28

TABLE VII
GRAPH PARTITIONING PROBLEM (GPP). COMPUTATION TIMES (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 1,70 19,4 14,6 15,3 0,57 6,83 5,23 5,13 5,49 70,0 34,2 19,6
2 1,76 18,3 13,4 14,2 0,60 6,75 5,40 5,51 14,1 67,5 18,4 18,2
3 6,28 64,2 48,4 49,8 2,48 26,5 21,9 21,3 40,1 27,0 64,9 67,5
4 5,71 58,3 42,8 41,5 2,85 29,8 26,9 25,6 40,1 258 58,7 64,7
5 3,77 35,0 32,2 30,4 1,52 25,3 13,1 13,5 27,8 149 35,4 40,1
6 3,33 34,4 31,3 32,4 1,76 33,4 15,1 15,0 28,2 149 34,9 41,5
7 10,7 106 97,7 98,1 6,59 114 55,4 54,8 85,9 626 109 150
8 10,2 101 91,7 92,5 6,98 128 67,1 65,6 86,5 605 104 149

Avg. 5,44 54,8 46,5 46,8 2,92 46,3 26,3 25,8 41,0 274 57,5

TABLE VIII
CLIQUE PARTITIONING PROBLEM (CPP). COMPUTATION TIMES (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 1,03 9,86 10,0 9,82 1,05 10,8 10,0 10,5 10,5 76,4 10,0 17,5
2 0,95 9,46 9,59 9,40 1,06 11,0 10,5 10,4 10,2 76,6 9,62 17,4
3 3,45 33,9 33,3 32,7 3,30 34,0 31,8 31,5 32,7 280 33,7 60,4
4 3,09 30,9 30,5 30,8 3,33 33,3 31,6 31,9 32,6 282 31,1 59,4
5 1,89 18,2 18,3 18,4 2,14 23,5 21,5 21,7 22,1 168 18,2 36,7
6 1,78 17,6 17,9 17,9 2,27 23,5 22,0 21,6 21,2 158 17,4 35,2
7 6,50 63,8 63,8 63,5 7,25 77,9 70,2 71,4 73,5 653 64,8 134
8 6,10 61,8 60,9 60,9 7,30 76,3 72,5 70,2 72,4 645 61,2 131

Avg. 3,10 30,7 30,5 30,4 3,46 36,3 33,8 33,7 34,4 292 30,8

TABLE IX
CPP WITH MIN. CLIQUE SIZE (CPP-MIN). COMPUTATION TIMES (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 1,74 17,6 16,3 17,2 1,25 18,1 13,0 13,6 13,3 91,2 18,0 24,3
2 1,76 17,0 16,7 17,3 1,28 17,5 13,4 13,6 16,6 89,4 16,6 24,2
3 3,89 39,9 39,6 39,4 3,82 53,3 40,5 39,3 40,0 337 39,7 74,4
4 3,90 38,4 38,2 39,2 3,90 52,1 39,4 39,5 40,1 332 38,4 73,1
5 2,93 27,6 29,6 29,3 2,60 50,5 26,7 26,4 30,0 193 26,9 48,9
6 2,85 27,4 29,9 29,3 2,58 49,6 27,1 27,3 29,7 185 27,4 48,1
7 7,24 72,3 72,1 73,4 8,60 169 89,1 83,0 77,6 795 71,9 167
8 7,33 71,9 73,1 71,8 9,04 167 90,4 86,6 76,6 840 71,9 172

Avg. 3,96 39,0 39,4 39,6 41,4 72,2 42,4 41,2 40,5 358 38,9
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TABLE X
GRAPH COLORING PROBLEM (GCP). COMPUTATION TIMES (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 0,62 7,09 7,14 6,97 0,64 7,06 7,01 6,88 6,84 49,3 8,13 11,8
2 0,60 6,56 6,57 6,63 0,68 8,05 7,68 7,35 6,36 48,9 8,08 11,8
3 2,36 26,9 26,2 26,2 2,38 27,2 24,6 25,2 23,3 201 27,9 45,4
4 2,24 25,1 24,6 24,9 2,31 27,1 26,0 26,1 22,4 201 27,5 44,9
5 1,37 14,4 14,4 14,3 1,51 17,9 15,9 15,6 15,6 121 18,3 27,5
6 1,31 13,9 14,0 14,0 1,45 19,2 17,6 18,0 20,4 122 18,9 28,7
7 5,35 56,9 56,4 56,1 5,73 65,1 61,3 60,0 55,8 498 68,3 109
8 5,24 54,5 55,3 54,7 5,37 61,3 56,3 56,8 52,8 499 59,6 106

Avg. 2,39 25,7 25,6 25,5 2,51 29,1 27,1 27,0 25,4 218 29,6

TABLE XI
RESTRICTED GCP (RGCP). COMPUTATION TIMES (11 ALGORITHMS, 8 SETTINGS, 20 RUNS)

SA PSA TS PTS Hybrid Avg.
MIR MS A MIR MS A H-PA H-SP H-P

1 0,77 7,73 7,58 7,92 0,66 7,58 6,56 6,61 6,59 49,0 7,35 11,9
2 0,72 7,15 7,25 7,07 0,71 7,80 7,35 7,24 6,20 49,1 8,01 11,9
3 2,78 28,7 28,9 29,4 2,51 27,1 25,7 25,2 23,1 199 28,1 46,2
4 2,64 26,9 26,7 26,7 2,57 28,7 26,9 26,2 22,9 199 28,9 45,9
5 1,51 14,9 15,2 15,3 1,58 18,3 15,6 16,1 14,1 121 18,4 27,7
6 1,45 14,3 14,5 14,6 1,68 19,2 17,5 16,5 14,6 121 19,2 28,0
7 5,84 57,9 58,6 58,7 6,26 72,3 63,6 62,7 55,0 497 72,4 111
8 5,61 56,4 56,1 56,7 5,79 66,0 63,6 61,9 55,3 496 66,6 109

Avg. 2,66 26,8 26,9 27,1 2,72 30,9 28,3 27,8 24,7 217 31,1
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