
Is Your Parallel Algorithm Correct?

Jakub Nalepa

Institute of Informatics

Silesian University of Technology

Akademicka 16

44-100 Gliwice, Poland

Email: jakub.nalepa@polsl.pl

Miroslaw Blocho

Institute of Informatics

Silesian University of Technology

Akademicka 16

44-100 Gliwice, Poland

Email: blochom@gmail.com

Abstract—Verifying the correctness of parallel algorithms is
not trivial, and it is usually omitted in the works from the
parallel computation field. In this paper, we discuss in detail
how to show that a certain parallel algorithm is correct. This
process involves proving its safety and liveness. We perform the
in-depth analysis of our parallel guided ejection search (P–GES)
for the pickup and delivery problem with time windows, which
serves as an excellent case study. P–GES was implemented as a
distributed algorithm using the Message Passing Interface library
with asynchronous communications, and was validated using the
well-known Li and Lim’s benchmark containing demanding test
instances. We already proved the efficacy of this algorithm and
showed that it can retrieve very high-quality (quite often better
than the world’s best at that time) routing schedules.

I. INTRODUCTION

D
ESIGNING and implementing parallel algorithms at-

tracted attention of researchers from various fields, in-

cluding the computational biology, genomics, text processing,

pattern recognition, machine learning, optimization, and many

others, due to the availability of various parallel architectures.

Such approaches allow for solving extremely complex tasks in

short time, assuming that: the parallel algorithms are correct

and scalable. Proving the correctness of parallel techniques

is not trivial (it is much more difficult compared with serial

algorithms), and it is omitted in a majority of works belonging

to the parallel computation field.

In this paper, we show how to investigate the correctness of

a given parallel algorithm. Our parallel guided ejection search

technique (P–GES) for minimizing the number of trucks in

the NP-hard pickup and delivery problem with time windows,

serves as the case study—we analyze its correctness, and

show how to accomplish that in a step-by-step manner. In

our previous works [1], [2], we experimentally evaluated the

Message Passing Interface implementation of P–GES. The

extensive experimental study revealed that this algorithm is

quite efficient, and it is able to extract very high-quality

feasible schedules (often better than the world’s best known

solutions at that time). The analysis of its correctness presented

in this paper therefore complements our previous efforts and

theoretically proves that P–GES is correct indeed.

This paper is structured as follows. Section II gives the

formulation of the pickup and delivery problem with time

windows (PDPTW). Section III reviews the state of the art

on solving the PDPTW, and on parallel heuristic algorithms,

in order to better contextualize our parallel guided ejection

search within the literature. In Section IV, we present the

background on verifying the correctness of parallel algorithms,

and the correctness of our parallel guided search is proven in

Section V. The paper is concluded in Section VI, which also

serves as the outlook to our future work.

II. PICKUP AND DELIVERY WITH TIME WINDOWS

The PDPTW is a problem of serving a number of trans-

portation requests, each being a pair of the pickup and delivery

requests. The PDPTW is therefore defined on a directed graph

G = (V,E), with a set V of C + 1 vertices. The vertices

vi, i ∈ {1, ..., C}, represent the travel points, whereas v0
denotes the depot (the start and the finish point of each route).

A set of edges E = {(vi, vi+1)|vi, vi+1 ∈ V, vi 6= vi+1}
are the travel connections between each pair of travel points.

The travel costs ci,j , i, j ∈ {0, 1, ..., C}, i 6= j, are equal

to the distances (in the Euclidean metric) between the travel

points. Each request hi, i ∈ {0, 1, ..., N}, where N = C/2,

is a coupled pair of pickup (P ) and delivery (D) customers—

these customers are given as ph and dh, respectively, where

P ∩D = ∅, and P ∪D = V \{v0} (a customer cannot request

both delivery and pickup operations). For each request hi, the

amount of delivered (qd(hi)) and picked up (qp(hi)) goods is

defined, where qd(hi) = −qp(hi). Hence, each customer vi
defines its own demand (this is either the delivery or the pick-

up demand), service time si (note that “serving” the depot

does not take time, and s0 = 0), and time window [ei, li]
within which the service of this customer should be started

(however, it can be finished after closing this time slot). Since

the fleet is homogenous (let K denote its size), the capacity of

each truck is equal (it is given as Q). Each route r, given as

r = 〈v0, v1, ..., vn+1〉 in the solution σ (being a set of routes),

starts and finishes at the depot, thus v0 = vn+1, and it is an

ordered list of visited travel points.

An exemplary PDPTW solution (σ) is rendered in

Fig. 1—22 customers (they are divided into the pickup

and delivery ones, hence there are 11 pickup-delivery

requests) are served in the following three routes: r1 =
〈v0, v6, v2, v1, v3, v5, v4, v0〉 (3 requests are handled),

r2 = 〈v0, v8, v10, v13, v11, v12, v17, v0〉 (3 requests),

r3 = 〈v0, v14, v15, v19, v22, v21, v20, v18, v16, v9, v7, v0〉
(5 requests). Assuming that (i) the vehicle capacity Q is not

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 87–93

DOI: 10.15439/2016F554

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 87



exceeded for any vehicle (capacity constraint is satisfied),

(ii) the service of every customer starts within its time window

(time window constraint), (iii) every customer is served in

exactly one route, (iv) every vehicle starts at and returns

to the depot within the time window of the depot ([e0, l0]),
and (v) each pickup is performed before the corresponding

delivery for each request (precedence constraint), then this

solution is feasible.

b

b

b

b
b

b

b

bb

b

bb

b

b

b

b
b

b

v
0

1

2

3

4

5

6

7

9

10
12

13

14

15

16

17

18

19

20

v
8

v

v

v

v

v

v

v

v

v

vv

v

v
v

v

v

v
v

b

11
v

b

21
v
b

b22
v

Fig. 1. Exemplary PDPTW solution: 22 clients (11 requests) served in 3

routes.

The PDPTW is a two-objective NP-hard discrete optimiza-

tion problem. Its primary objective is to minimize the fleet size

K, whereas the second objective is to minimize the distance

T =
∑K

i=1 Ti, where Ti is the distance traveled in the i-th
route. Let σA and σB denote two feasible PDPTW solutions.

σA is then of a higher quality compared with σB , if (K(σA) <
K(σB)) or (K(σA) = K(σB) and T (σA) < T (σB)). Hence,

the solution is of a higher quality if it consists of a lower

number of routes, or—if the number of trucks is equal for

both solutions—if the total travel distance is shorter.

III. RELATED LITERATURE

A. Solving the Pickup and Delivery with Time Windows

State-of-the-art algorithms for rich routing problems en-

compass exact and approximate methods [3]. The former

algorithms deliver the exact solutions [4], [5], [6], [7], however

they are very difficult to apply in practice, because of their

unacceptably large execution times (especially in the case of

massively large, real-life problem instances). Also, handling

the dynamic changes which are very common in many circum-

stances (e.g., updating the traffic networks to avoid congestion)

are not trivial to incorporate in such algorithms [8]. The exact

techniques were discussed in several works [9], [10].

Approximation algorithms include construction and im-

provement heuristics and metaheuristics [11], [12]. The con-

struction (insertion-based) techniques create solutions from

scratch by inserting consecutive requests iteratively into the

partial solution [13], [14]. The partial solution encompasses a

subset of all transportation requests, therefore is not acceptable

and should be expanded to serve other requests (feasibly) as

well. On the other hand, improvement heuristics modify an

initial solution (very often of a low quality) by applying local

search moves (thus, by exploring the neighborhood of this

solution) [15], [16]. A number of metaheuristics have been

adopted for solving rich VRPs throughout the years, including

various tabu searches [4], variable neighborhood searches [17],

greedy randomized adaptive search procedures, population-

based [18], [19], [20], and agent-based approaches [21],

guided ejection searches [22], simulated annealing [16], and

more [23].

B. Parallel Heuristic Algorithms

Parallel heuristic algorithms have been explored for solving

a bunch of different optimization problems [24], including

various VRPs [21], [25]. Co-operative strategies in such par-

allel heuristic techniques have been discussed and classified

in several taxonomies, with the one presented by Crainic et

al. being the best established [26], which encompasses three

dimensions. The first dimension specifies if the global solving

procedure is controlled by a single process (1-control—1C)

or by a group of processes (p-control—pC). These processes

may co-operate (in co-operative algorithms) or not (if the

processing is batched). The second dimension reflects the

quantity and quality of the information exchanged between

the parallel processes, along with the additional knowledge

derived from these exchanges. The four classes are defined

for this dimension: Rigid (RS), Knowledge Synchronization

(KS), Collegial (C) and Knowledge Collegial (KC). The third

dimension concerns the diversity of the initial solutions and

search strategies: Same Initial Point / Population, Same Search

Strategy (SPSS), Same Initial Point / Population, Different

Search Strategies (SPDS), Multiple Initial Points / Populations,

Same Search Strategies (MPSS), Multiple Initial Points /

Populations, Different Search Strategies (MPDS).

The parallel algorithms were very intensively explored

for solving rich routing problems [25], [27], including the

PDPTW [1], [2]. The implementations of these algorithms

take advantage from the massively-parallel architectures (both

with the shared and distributed memory [28]) which are easily

accessible nowadays. These techniques deliver extremely high-

quality routing schedules in short time, even for enormously

large problem instances.

IV. VERIFICATION OF THE CORRECTNESS OF PARALLEL

ALGORITHMS

Verifying the correctness of a given sequential algorithm

encompasses showing that this algorithm: (i) will finish (thus,

the termination conditions will be finally met), and (ii) will

give a correct result for any correct set of input data. More

formally, the correctness may be stated as:

{p}A{q}, (1)

where A denotes the algorithm (a set of statements), p is

the pre-condition, and q represents the post-condition. Here,

the pre-condition specifies which conditions must hold for

the input data, and the post-condition reflects what should be

88 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



satisfied by the results retrieved using the algorithm A. The al-

gorithm is partially correct if for any input data satisfying the

pre-condition, it gives the correct output data (in accordance

with the post-condition) [29] (thus, the input-output relation

holds). On the other hand, the algorithm is totally correct,

if it is partially correct, and—for any input data—it reaches

the termination condition (this is not crucial in the case of

the partial correctness), and returns the correct output. It is

easy to note that proving the total correctness of a sequential

algorithm may consist of proving its partial correctness, along

with showing that every execution of this algorithm will result

in meeting the stopping condition [30].

In the case of parallel algorithms, proving their correctness

includes verifying their safety and liveness. The algorithm is

safe, if it can never end up in a forbidden state. To prove that,

we need to show that the algorithm is (i) partially correct,

(ii) there are no deadlocks (i.e., the processes do not wait

for the infinite amount of time for each other to continue the

execution), and that (iii) only the processes can safely access

the shared resource (mutual exclusion). The liveness property

of a parallel algorithm is satisfied, if it can be proven that

a certain desired condition will eventually happen during the

execution of this algorithm [31], [32]. In the case of message-

passing techniques—as shown in [30]—it is important to show

that the messages are properly sent and received (no matter if

the communication is synchronous or asynchronous).

If all of the above-mentioned properties of an analyzed

parallel algorithm are proven, then this algorithm is correct.

V. CORRECTNESS OF THE PARALLEL GUIDED EJECTION

SEARCH FOR THE PDPTW

The baseline (sequential) version of the GES was proposed

in [23], and later enhanced and parallelized in our very recent

works [1], [2], [22]. According to the taxonomy mentioned in

Section III-B, P–GES is of the pC/C/MPSS type (p-Control,

Collegial, Multiple Initial Points, Same Search Strategies).

A. Algorithm Outline

In P–GES, which is an improvement parallel heuristic

technique, p processes execute in parallel (Algorithm 1, line 1).

The initial feasible solution σ contains the number of routes

which is equal to the number of transportation requests, hence

each request is feasibly served by a separate truck (line 3).

Then, the number of serving vehicles in σ is consecutively

decreased until the total computation time exceeds the imposed

time limit τM (lines 5-36), or the desired number of routes has

been obtained.

A random route r is removed from σ, and the excluded

requests are put into the ejection pool (EP), which stores

those transportation requests that have been removed from the

schedule—this solution becomes partial (line 7). The penalty

counters (indicated as p’s), which reflect the difficulty of re-

inserting a given request back into the partial solution, for all

of the requests are reset (line 8).

If the EP contains unserved transportation requests (lines 9-

32), then a single request hin is popped from the EP at the

Algorithm 1 A parallel algorithm to minimize K (P–GES).

1: for Pi ← P1 to Pp do in parallel

2: τlast ← τcurr;

3: Create an initial solution σ;

4: finished ← false;

5: while not finished do

6: Save the current feasible solution;

7: Put requests from a random route r into EP;

8: Set penalty counters p[i]← 1(i = 1, 2, . . . , N);
9: while (EP 6= ∅) and (not finished) do

10: Select and remove request hin from EP;

11: if Sfe
in (hin, σ) 6= ∅ then

12: σ ← random σ′ ∈ Sfe
in (hin, σ);

13: else

14: σ ← Squeeze(hin, σ);

15: end if

16: if hin is not inserted into σ then

17: p[hin] ← p[hin] + 1;

18: for k ← 1 to km do

19: Get Sfe
ej (hin, σ) with min. Psum;

20: if Sfe
ej (hin, σ) 6= ∅ then

21: σ ← random σ′ ∈ Sfe
ej (hin, σ);

22: Add (h
(1)
out, h

(2)
out, . . . , h

(k)
out) to EP;

23: break;

24: end if

25: end for

26: end if

27: σ ← Perturb(σ);

28: if τcurr ≥ τlast + τcoop then

29: finished← Cooperate(σ);

30: τlast ← τcurr;

31: end if

32: end while

33: if EP 6= ∅ then

34: Backtrack to previous feasible solution;

35: end if

36: end while

37: Get the best solution σbest;

38: end for

time (line 10), and it is being re-inserted into the partial

solution. If there exist any feasible insertion positions for this

request (the set of such positions Sfe
in (hin, σ) is not empty),

then a random position is drawn (line 12). If it is not the

case, then the request is inserted into σ infeasibly (so that it

violates the constraints), and the feasibility of the (possibly

partial) solution is being restored in the squeezing procedure

(line 14). Here, the solution penalty is quantified using the

penalty function given as:

Fp(σ) = Fc(σ) + Ftw(σ), (2)

where Fc(σ) and Ftw(σ) are the sum of capacity exceeds in

σ, and the sum of the time windows violations, respectively.

The squeeze function (presented in Algorithm 2) aims at

JAKUB NALEPA, MIROSLAW BLOCHO: IS YOUR PARALLEL ALGORITHM CORRECT? 89



decreasing the value of this function until it reaches zero

(thus, the solution is feasible). This is a steepest-descent local

search procedure, in which the set Sinf (hin, r, σt) of infeasible

solutions is created (considering the insertion of the analyzed

transportation request), and the solution with the minimum

value of the penalty function is picked up. This process

continues until the feasibility is restored, or it is impossible

to retrieve a feasible solution (in this case, the solution is

backtracked to the initial state).

Algorithm 2 Squeezing an infeasible (possibly partial) solu-

tion σ.

1: function SQUEEZE(hin, σ)

2: σt ← σ′ ∈ Sinf (hin, σ) such that Fp(σ
′) is minimum;

3: while (Fp(σt) 6= 0) do

4: Randomly choose an infeasible route r in σt;

5: Find σ′′ ∈ Sinf (hin, r, σt) with min. Fp(σ
′′);

6: if Fp(σ
′′) < Fp(σt) then

7: σt ← σ′′;

8: else

9: break;

10: end if

11: end while

12: if Fp(σt) = 0 then

13: return σt;

14: else

15: return σ;

16: end if

17: end function

If the squeeze fails (thus the solution has been backtracked

to the previous partial schedule), the penalty counter of the

appropriate request (p[hin]) is increased (Algorithm 1, line 17),

and other requests are ejected from the solution (up to km
requests; lines 18-25) to insert hin (this request is of a “high

priority”). The set Sfe
ej (hin, σ) is formed, and it encompasses

the solutions with various combinations of ejected requests

(the hin request is inserted to this solution on various po-

sitions). Finally, the solution σ′—with the minimum sum of

the penalty counters is selected from Sfe
ej (hin, σ) (line 21).

Clearly, the ejected requests are pushed to the EP, and should

be re-inserted into σ later (line 22). The solution σ is finally

perturbed by the local search procedures, in which I feasible

(i.e., not violating the constraints) local moves (out-relocate

and out-exchange) are executed for the search diversification

(line 27). This procedure is visualized in Algorithm 3.

The parallel processes in P–GES co-operate periodically

every τcoop seconds (Algorithm 1, line 29) using the asyn-

chronous co-operation scheme. In our previous works [25],

[2], we investigated a number of co-operation schemes (they

define the co-operation topology, frequency, and the strategies

for handling emigrants/immigrants) and showed, that a proper

selection of such scheme has a tremendous impact on the

algorithm capabilities and behavior.

In P–GES, it is the master process (P1) which controls

the execution time of the algorithm—the signals from P1

Algorithm 3 Perturbing a feasible (possibly partial) solution

σ for the search diversification.

1: function PERTURB(σ)

2: σt ← σ;

3: for i← 1 do I
4: Find σ′ through local search moves on σt;

5: if σ′ is feasible then

6: σt ← σ′;

7: end if

8: end for

9: return σt;

10: end function

to either continue or stop the execution are transferred in

each co-operation phase. Eventually, all solutions from all

processes are gathered in the master, and the best solution

σbest is retrieved—this is the final solution delivered by P–

GES (line 37).

More details on P–GES can be found in our previous

works [1], [2]. These papers include the in-depth analysis of

the Message Passing Interface implementation of this algo-

rithm, and discuss the experimental results retrieved for very

demanding Li and Lim’s benchmark sets (encompassing tests

of various sizes and characteristics, e.g., positions of the travel

points, and tightness of time windows).

B. Proving the Correctness of P–GES

The input data passed to P–GES include:

• p (p ≥ 1)—the number of parallel processes. If p =
1, then P–GES becomes a sequential algorithm, and its

certain components are disabled (e.g., the co-operation

between the processes).

• Kd ≥ 0—the desired number of trucks serving the

requests. If Kd = 0, then the best feasible solution

found using P–GES is returned (i.e., there is no “desired”

number of routes, however K should be as minimum as

possible).

• τMAX—the maximum execution time (in seconds) of P–

GES.

• τcoop—the co-operation frequency (in seconds).

• km (km ≥ 1)—the maximum number of requests that

can be ejected from a (possibly partial) solution while

inserting a request popped from the EP.

• I (I ≥ 0)—the number of local search moves applied to

perturb a solution.

• Test instance—the definition of the test instance at hand.

It specifies the number of transportation requests, the

positions of the travel points, their time windows, service

times, and demands (either pickup or delivery), and the

maximum capacity of trucks. It is worth noting that real-

life problems may encompass travel points which are

clustered, randomly scattered around the map, or combine

both (i.e., there are some customer clusters, but lots of

them are random). The problem instances belonging to

the Li and Lim’s benchmark set perfectly reflect these

90 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



scenarios—the exemplary instance structures (with 100
travel points) are visualized in Table I.

The desired solution retrieved using P–GES must satisfy all

the constraints discussed in Section II. Therefore, this solution

must be feasible (otherwise, the routing schedule is incorrect).

As mentioned in Section V-A, P–GES starts with an initial

feasible solution (therefore, the constraints are not violated),

in which every transportation request is served in a separate

route. Then, the attempts to reduce the fleet size are under-

taken, until the execution reaches the termination condition

(Algorithm 1, line 5)—one random route is analyzed at any

time. The current (best) solution is saved (line 6). If removing

this route fails, then the partial solution is backtracked to this

state (line 34), hence the schedule remains feasible.

Once the ejected customers are pushed into the EP, the

solution becomes a partial feasible schedule (no constraints are

violated). Then, these transportation requests are put back into

the partial solution—first, using the feasible insertion positions

(if any). In this case, the feasibility is not violated, and the

next request from the EP is popped for insertion. On the

other hand, the infeasible solution (in which the request has

been re-inserted back infeasibly) is processed with the squeeze

procedure. This squeezing retrieves either the feasible solution

(if it is possible to restore the correctness of σ using local

search moves), or backtracks to the state before this squeezing

has been called. In the latter case, other transportation requests

are ejected to restore the feasibility of the partial solution, thus

it finally becomes feasible. Perturbing a feasible (potentially

partial) schedule can deteriorate its quality, however it cannot

cause violating the constraints—after calling this procedure,

the solution remains feasible. If the EP is empty, then the

feasible solution—with the decreased fleet size—becomes the

next solution, which is to be processed in the next algorithm

iteration. Therefore, the PDPTW solution obtained using P–

GES is eventually always feasible.

The co-operation of parallel processes cannot affect the

feasibility of the solutions—depending on the co-operation

scheme, the receiving process may e.g., replace its own

solution with the immigrant (if the immigrant is of a higher

quality). Clearly, this operation cannot affect the feasibility

of the considered routing schedule. This analysis shows that

P–GES is partially correct—assuming that the input data are

correct, it always retrieves feasible PDPTW solutions.

P–GES may be terminated if either a solution of a desired

quality (i.e., with the desired number of routes, Kd) is found,

or if the maximum execution time elapsed. In the former case,

this solution may be retrieved by the master process (which

also controls the execution of other processes in the team, and

may send the termination request), or any other process. If the

master got this solution, then it sends the termination requests

to others (thus, one co-operation phase is enough to stop

the parallel algorithm execution). However, if another process

ended up with the desired solution, then two co-operation

phases would be necessary—first, it sends its best solution to

the master, and then the master sends the termination request

to other processes. In either case, P–GES finally reaches its

stopping condition.

P–GES is a distributed algorithm (there are no shared

resources). The co-operation is asynchronous (independently

from the selected scheme), and the execution (i.e., optimization

of the solution run by a given process) interleaves with the

send/receive operations. The order of send/receive operations

matter in this case, thus they are executed in an appropriate

order depending on the process type (either the master on

non-master). Additionally, receiving data is acknowledged by

the receiving process during the co-operation (the status of

this acknowledgement is periodically checked by the sending

process). Since there are no deadlocks and shared resources

in P–GES, its safety is proven. The same reasoning may be

used to prove the liveness of the algorithm. Since only the

master process can force other processes to stop, the situation

in which a given process sends to or waits for a message from

the process that has already been terminated is not possible.

This shows the liveness property of P–GES.

The above investigation revealed that all of the conditions

imposed on the parallel algorithms which ensured that the

corresponding algorithm is correct are fulfilled by P–GES, for

the correct input data (e.g., assuming that the test instance

at hand is solvable). Therefore, P–GES is a correct parallel

algorithm.

�

VI. CONCLUSIONS AND OUTLOOK

In this paper, we analyzed the correctness of our parallel

guided ejection search algorithm for solving the PDPTW. We

proved that the algorithm is correct—this involved showing its

liveness and safety. This investigation served as an extensive

case study for showing how to prove the correctness of parallel

algorithms. This approach may be easily tailored for proving

the correctness of other parallel algorithms, especially those

tackling complex (however not only transportation) discrete

optimization problems.

Our current research is focused on implementing a parallel

memetic algorithm (a hybrid of a genetic algorithm and some

local refinement procedures) for minimizing the travel distance

in the PDPTW. Memetic algorithms were proven extremely

efficient in solving a wide range of optimization and pattern

recognition problems [33], [34], [35], [36], [37], [38]. Then,

we will work on a parallel version of this algorithm (we

already proved that our parallel memetic approach for the VRP

with time windows is correct [30]). Combining the parallel

guided ejection search discussed in this paper with the parallel

memetic algorithm will enable us to create a full optimization

framework for solving rich routing problems [39], especially

the PDPTW.

ACKNOWLEDGMENT

This research was supported by the National Science Cen-

tre under research Grant No. DEC-2013/09/N/ST6/03461,

and performed using the infrastructure supported by the

POIG.02.03.01-24-099/13 grant: “GeCONiI—Upper Silesian

JAKUB NALEPA, MIROSLAW BLOCHO: IS YOUR PARALLEL ALGORITHM CORRECT? 91



TABLE I
EXEMPLARY LI AND LIM’S INSTANCE STRUCTURES COMPOSED OF CLUSTERED, RANDOMIZED, AND MIXED CUSTOMERS (FOR 100 TRAVEL POINTS,

BEING EITHER THE PICKUP OR DELIVERY CUSTOMERS).

Clustered Random Mixed (both clustered and random)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

20

40

60

80

0 25 50 75
x

y

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

0 20 40 60
x

y

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

0 25 50 75
x

y

Center for Computational Science and Engineering”, and the

Intel CPU and Xeon Phi platforms provided by the MICLAB

project No. POIG.02.03.00.24-093/13.

REFERENCES

[1] M. Blocho and J. Nalepa, “A parallel algorithm for minimizing the
fleet size in the pickup and delivery problem with time windows,” in
Proc. of 22nd European MPI Users’ Group Meeting, ser. EuroMPI
’15. New York, USA: ACM, 2015, pp. 15:1–15:2. [Online]. Available:
http://doi.acm.org/10.1145/2802658.2802673

[2] J. Nalepa and M. Blocho, “A parallel algorithm with the search
space partition for the pickup and delivery with time windows,” in
10th International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing, 3PGCIC 2015, Krakow, Poland, November 4-6,

2015, 2015, pp. 92–99. [Online]. Available: http://dx.doi.org/10.1109/
3PGCIC.2015.12

[3] L. Grandinetti, F. Guerriero, F. Pezzella, and O. Pisacane, “The multi-
objective multi-vehicle pickup and delivery problem with time win-
dows,” Social and Beh. Sc., vol. 111, pp. 203 – 212, 2014.

[4] W. P. Nanry and J. W. Barnes, “Solving the pickup and delivery problem
with time windows using reactive tabu search,” Transportation Research,
vol. 34, no. 2, pp. 107 – 121, 2000.

[5] J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,”
Oper. Res., vol. 54, no. 3, pp. 573–586, 2006. [Online]. Available:
http://dx.doi.org/10.1287/opre.1060.0283

[6] R. Baldacci, E. Bartolini, and A. Mingozzi, “An exact algorithm for
the pickup and delivery problem with time windows,” Operations

Research, vol. 59, no. 2, pp. 414–426, 2011. [Online]. Available:
http://dx.doi.org/10.1287/opre.1100.0881

[7] A. Bettinelli, A. Ceselli, and G. Righini, “A branch-and-price
algorithm for the multi-depot heterogeneous-fleet pickup and delivery
problem with soft time windows,” Mathematical Programming

Computation, vol. 6, no. 2, pp. 171–197, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s12532-014-0064-0

[8] B. Bernay, S. Deleplanque, and A. Quilliot, “Routing on dynamic
networks: GRASP versus genetic,” in Proceedings of the 2014

Federated Conference on Computer Science and Information Systems,

Warsaw, Poland, September 7-10, 2014., 2014, pp. 487–492. [Online].
Available: http://dx.doi.org/10.15439/2014F52

[9] J.-F. Cordeau, G. Laporte, and S. Ropke, The Vehicle Routing

Problem: Latest Advances and New Challenges. Boston, MA:
Springer, 2008, ch. Recent Models and Algorithms for One-to-One
Pickup and Delivery Problems, pp. 327–357. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-77778-8_15

[10] R. Baldacci, A. Mingozzi, and R. Roberti, “Recent exact algorithms for
solving the vehicle routing problem under capacity and time window
constraints,” European Journal of Operational Research, vol. 218, no. 1,
pp. 1 – 6, 2012.

[11] H. Akeb, A. Bouchakhchoukha, and M. Hifi, “A beam search
based algorithm for the capacitated vehicle routing problem with
time windows,” in Proceedings of the 2013 Federated Conference

on Computer Science and Information Systems, Kraków, Poland,

September 8-11, 2013., 2013, pp. 329–336. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6644021

[12] ——, Recent Advances in Computational Optimization: Results

of the Workshop on Computational Optimization WCO 2013,

FedCSIS 2013. Cham: Springer International Publishing, 2015,
ch. A Three-Stage Heuristic for the Capacitated Vehicle Routing
Problem with Time Windows, pp. 1–19. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-12631-9_1

[13] Q. Lu and M. M. Dessouky, “A new insertion-based construction heuris-
tic for solving the pickup and delivery problem with time windows,”
European Journal of Operational Research, vol. 175, no. 2, pp. 672 –
687, 2006.

[14] C. Zhou, Y. Tan, L. Liao, and Y. Liu, “Solving the multi-vehicle
pick-up and delivery problem with time widows by new construction
heuristic,” in Proc. IEEE CISDA, vol. 2, 2006, pp. 1035–1042. [Online].
Available: http://dx.doi.org/10.1109/ISDA.2006.253754

[15] H. Li and A. Lim, “A metaheuristic for the pickup and delivery
problem with time windows,” in Proc. IEEE ICTAI, 2001, pp. 160–167.
[Online]. Available: http://dx.doi.org/10.1109/ICTAI.2001.974461

[16] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “A survey on
pickup and delivery problems,” Journal fur Betriebswirtschaft, vol. 58,
no. 1, pp. 21–51, 2008. [Online]. Available: http://dx.doi.org/10.1007/
s11301-008-0033-7

[17] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation Science, vol. 40, no. 4, pp. 455–472, 2006. [Online].
Available: http://dx.doi.org/10.1287/trsc.1050.0135

[18] G. Pankratz, “A grouping genetic algorithm for the pickup and delivery
problem with time windows,” OR Spectrum, vol. 27, no. 1, pp. 21–41,
2005. [Online]. Available: http://dx.doi.org/10.1007/s00291-004-0173-7

[19] Y. Nagata and S. Kobayashi, Proc. PPSN XI. Heidelberg: Springer,
2010, ch. A Memetic Algorithm for the Pickup and Delivery
Problem with Time Windows Using Selective Route Exchange
Crossover, pp. 536–545. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-15844-5_54

[20] M. Cherkesly, G. Desaulniers, and G. Laporte, “A population-based
metaheuristic for the pickup and delivery problem with time windows
and LIFO loading,” Computers & Operations Research, vol. 62, pp. 23
– 35, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0305054815000829

92 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



[21] P. Kalina and J. Vokrínek, “Parallel solver for vehicle routing and
pickup and delivery problems with time windows based on agent
negotiation,” in 2012 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), Oct 2012, pp. 1558–1563. [Online]. Available:
http://dx.doi.org/10.1109/ICSMC.2012.6377958

[22] J. Nalepa and M. Blocho, Intelligent Information and Database

Systems: Proc. 8th Asian Conference, ACIIDS 2016. Heidelberg:
Springer, 2016, ch. Enhanced Guided Ejection Search for the Pickup
and Delivery Problem with Time Windows, pp. 388–398. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-49381-6_37

[23] Y. Nagata and S. Kobayashi, “Guided ejection search for the pickup
and delivery problem with time windows,” in Proc. EvoCOP, ser.
LNCS. Springer, 2010, vol. 6022, pp. 202–213. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12139-5_18

[24] T. G. Crainic and M. Toulouse, “Parallel meta-heuristics,” in
Handbook of Metaheuristics, ser. International Series in Operations
Research & Management Science, M. Gendreau and J.-Y. Potvin,
Eds. Springer US, 2010, vol. 146, pp. 497–541. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4419-1665-5_17

[25] J. Nalepa and M. Blocho, “Co-operation in the parallel memetic
algorithm,” International Journal of Parallel Programming, vol. 43,
no. 5, pp. 812–839, 2014. [Online]. Available: http://dx.doi.org/10.
1007/s10766-014-0343-4

[26] T. G. Crainic and H. Nourredine, “Parallel meta-heuristics applications,”
in Parallel Metaheuristics: A New Class of Algorithms, M. Gendreau
and J.-Y. Potvin, Eds. Wiley, 2005, pp. 447–494. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4419-1665-5_17

[27] G. Senarclens de Grancy and M. Reimann, “Evaluating two new
heuristics for constructing customer clusters in a vrptw with
multiple service workers,” Central European Journal of Operations

Research, vol. 23, no. 2, pp. 479–500, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10100-014-0373-4

[28] R. Banos, J. Ortega, C. Gil, F. de Toro, and M. G. Montoya, “Analysis
of OpenMP and MPI implementations of meta-heuristics for vehicle
routing problems,” Applied Soft Computing, vol. 43, pp. 262 – 275,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1568494616300862

[29] Z. Manna, “Mathematical theory of partial correctness,” Journal of

Computer and System Sciences, vol. 5, no. 3, pp. 239 – 253,
1971. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0022000071800351
[30] M. Blocho, “A parallel memetic algorithm for the vehicle routing

problem with time windows,” Ph.D. dissertation, Silesian University of
Technology, 2013, (in Polish).

[31] S. Owicki and L. Lamport, “Proving liveness properties of concurrent
programs,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 455–495,
1982. [Online]. Available: http://doi.acm.org/10.1145/357172.357178

[32] Z. Czech, Introduction to Parallel Computing. PWN, 2013.
[33] S. Wrona and M. Pawelczyk, “Controllability-oriented placement of

actuators for active noise-vibration control of rectangular plates using a
memetic algorithm,” Archives of Acoustics, vol. 38, no. 4, pp. 529–536,
2013. [Online]. Available: http://dx.doi.org/10.2478/aoa-2013-0062

[34] J. Nalepa and M. Kawulok, “A memetic algorithm to select training
data for support vector machines,” in Proc. of the 2014 Annual

Conference on Genetic and Evolutionary Computation, ser. GECCO
’14. New York, USA: ACM, 2014, pp. 573–580. [Online]. Available:
http://doi.acm.org/10.1145/2576768.2598370

[35] K. Siminski, Man–Machine Interactions 4: 4th International Conference

on Man–Machine Interactions, ICMMI 2015 Kocierz Pass, Poland,

October 6–9, 2015. Cham: Springer International Publishing,
2016, ch. Memetic Neuro-Fuzzy System with Big-Bang-Big-Crunch
Optimisation, pp. 583–592. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-23437-3_50

[36] J. Nalepa, M. Cwiek, and M. Kawulok, “Adaptive memetic algorithm
for the job shop scheduling problem,” in 2015 International Joint

Conference on Neural Networks (IJCNN), July 2015, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/IJCNN.2015.7280409

[37] J. Nalepa and M. Blocho, “Adaptive memetic algorithm for minimizing
distance in the vehicle routing problem with time windows,” Soft

Computing, vol. 20, no. 6, pp. 2309–2327, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s00500-015-1642-4

[38] J. Nalepa and M. Kawulok, “Adaptive memetic algorithm enhanced
with data geometry analysis to select training data for SVMs,”
Neurocomputing, vol. 185, pp. 113 – 132, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231215019839

[39] M. Cwiek, J. Nalepa, and M. Dublanski, Intelligent Information

and Database Systems: Proc. 8th Asian Conference, ACIIDS 2016.
Heidelberg: Springer, 2016, ch. How to Generate Benchmarks
for Rich Routing Problems?, pp. 399–409. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-49381-6_38

JAKUB NALEPA, MIROSLAW BLOCHO: IS YOUR PARALLEL ALGORITHM CORRECT? 93


