IM/(-:/S::-:IQ Proceedings of the International Multiconference on ISSN 1896-7094
C.:_k/-l'T Computer Science and Information Technology, pp. 1037 — 1039 © 2007 PIPS
Machine Code Can Be
Representation of Source Code
With Optimization

Samir Ribié, Adnan Salihbegovi¢

Elektrotehnicki fakultet, Zmaja od Bosne bb,

71000 Sarajevo, Bosnia and Herzegovina
{samir.ribic, adnan. sal i hbegovi c} @t f. unsa. ba

Abstract. In the recent times the authors of this paper have been doing research
on possibility of developing programming language, which would be neither
compiler, nor interpreter. The concept is based on holding complete program in
native machine code, while the specialized editor can decompile machine code
and display it in high level language. The displayed code can be reedited and
saved again as pure machine code. This paper investigates the possibility of
optimizing generated code, while still retaining decompilability features.

Rather then traditional approach for converting programs from high level languages to
machine code using compilers and interpreters, the authors of this paper presented
one more approach, in [1] and [2], where the source code does not exist as separate
entity from executable (similarly to interpreted languages), while the program is
executed in native machine code without aid of additional interpreter (similarity with
compiled languages). The role of editor, compiler and decompiler is given to only one
program, which displays the high level program representation from native code
program. ASCII representation exists only during editing process.

Bidirectional transformation between high level language code and machine code is
established by generating the code in such a way that it can always be decompiled. For
example, to access the integer variable, in the native code the instruction LEA
EBX,[EBP-nnnn] is executed, followed by MOV EAX,[EBX]. Each subroutine has
special header, (this header does not slow down program execution), that provides
information to editor about positions and data types of the variables on the stack.
Hence, during decompilation for the purpose of listing or editing the program from
the sequence mentioned, it is possible to restore that it is accessing the variable. From
the offset nnnn it is possible to restore the variable name. Bidirectionally recognizable
sequences are simple, but they are far from optimal when combined with larger
language sentences. For example, the statement vb=va+2; in high level notation is
represented in machine code as

1037



1038 Samir Ribi¢, Adnan Salihbegovic¢

538D1DNNNNNNNN8B03538D1DMMMMMMMM
8B0350B8020000005B03C35B890390

where NNNNNNNN and MMMMMMMM represent memory addresses of the global
variables vb and va. In assembly code these instructions are

lea ebx, [vb]/ mov eax, [ebx] /push ebx/ lea ebx, [va] / mov eax, [ebx] /
push eax/ mov eax,2/ pop ebx /add eax,ebx/ pop ebx / mov [ebx],eax.

Such a long sequence results from translation symbol by symbol. When access to
the variable is recognized, for addition it is enough to know value of the variable, for
the assignment only the address is required, while pointer operator (*) needs both.
Until we reach next symbol, the worst case sequence is generated. Another reason for
longer code than necessary, is in requirement that functionally the same, but logically
different sequences (like testing expression value in if and while statements) need to
be represented differently in machine code, to make decompilation easier, even if this
means a longer sequence than necessary.

One solution to this can be with the table which would contain sequences in
shorter and expanded form, with the modification of the compiler part. In our
example, the shorter sequence is ALNNNNNNNNO5020000008905MMVVIVIVIVV
meani Ng mov eax,[val / add eax,2 / mov [vb],eax. Before the code is
generated, it is first required to look into the table to find a shorter sequence
equivalent to the originally planned generated sequence. If such a sequence exists, the
compiler part of the editor produces shorter sequence. On the other hand, during code
recognition, the decompiler part will first check if the sequence exists in the table, and
if it does, it will repeat the recognition over larger version and therefore find the de-
compiled version. The most important sequences to be optimized are: assigning
constant or variable to variable, arithmetic operations between two variable or
variable and constant, negative constants, unary operations over variables, accessing
to the array element, comparison of variable and constant (or two variables) in a
condition part of if, while, for and do/while statements, comparison and assignments
of two array elements etc.

Another problem is need for changing the editor itself if new optimization
sequences are added. This problem can be solved by holding optimization sequences
in a separate file (for example Windows.DLL, or Linux.so) which keeps track not only
on optimized and non-optimized sequences, but also about versions of each
translation. The version of the optimizer is saved somewhere inside user executable.
For embedded systems which contain the compiling/decompiling editor in ROM, this
table is an integral part of the editor.



Machine Code Can Be Representation of Source Code With Optimization 1039

References

1. Samir Ribi¢: Concept and implementation of the programming language and translator, for
embedded systems, based on machine code decompilation and equivalence between source
and executable code,. Proceedings 13th Working Conference on Reverse Engineering
(WCRE 2006), 23-27 October 2006, Benevento, Italy. pp. 307-308

2. Samir Ribié, Adnan Salihbegovi¢: High Level Language Translator With Machine Code As
Representation Of The Source Code, Proceedings 29th International Conference on Infor-
mation Technology Interfaces (ITI 2006), 25-28 June 2007, Cavtat, Croatia. pp. 777-782

3. Eldad Eilam, Reversing: Secret of reverse engineering, Wiley, 2005.



