
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 517 – 524 ISSN 1896-7094

 

Abstract — Model driven approach for program development
can assist in quick generation of complex and highly reliable
applications. Framework for eXecutable UML (FXU) trans-
forms UML models into C# source code and supports execution
of the application reflecting the behavioral model. The
framework consists of two parts code generator and run time
library. The generated and executed code corresponds to
structural model specified in class diagrams and behavioral
model described by state machines of these classes. All single
concepts of state machines included in the UML 2.0
specification (and further) are taken into account, including all
kinds of events, states, pseudostates, submachines etc. The
paper discusses the correctness issues of classes and state
machine models that have to be decided in the framework in
order to run a model-related and high quality C# application.
The solution was tested on set of UML models.

I. INTRODUCTION

ODEL Driven Engineering (MDE) represents soft-
ware development approaches in which creation and

manipulation of models should result in building of an exe-
cutable system [1].

M
Industrial product development puts a lot of attention on

fast implementation of the needed functionalities. Model-
driven approach to program development offers a promising
solution to these problems. The complex behavioral models
can be designed and verified at the early stages of the whole
product creation cycle and automatically transformed into
the code preserving the desired behavior.

State machines, also in the form of statecharts incorpo-
rated in the UML notation [2], are a widely used concept for
specification of concurrent reactive systems. Proposal for ex-
ecution of behavioral UML models suffers from the problem
that no generally accepted formal semantics of UML models
is available. Therefore, validation of UML transformation
and model behavior depicted in the resulting code is diffi-
cult. Rather than completely formalizing UML models, we
try to deal with selected aspects of the models.

Checking of models is important in Model Driven Archi-
tecture (MDA) approaches [3], [4] where new diagrams and
code are automatically synthesized from the initial UML

This work was supported by the Dean of the Department of Electronics
and Information Technology, Warsaw University of Technology under
grant no 503/G/1032/4300/008

model: all the constructed artifacts would inherit the initial
inconsistency [5].

Inconsistency and incompleteness allowed by UML can be
a source of problems in software development. A basic type
of design faults is concerned with the well-formedness of di-
agrams [2]. Typically, completeness of a design requires that
introduced model elements are specified with their features
and usage of one element can imply a usage of another, di-
rectly related model element. In the current modeling CASE
tools some completeness conditions can be assured automati-
cally (e.g., default names of roles in associations, attributes,
operations etc.). Incompleteness of models can be to be
strongly related to their inconsistency, because it is often im-
possible to conclude whether diagrams are inconsistent or in-
complete [6]. Therefore, within this paper we will refer to
model defects as to correctness issues.

The Framework for eXecutable UML (FXU) offers a
foundation for applying MDA ideas in automation of soft-
ware design and verification. The FXU framework was the
first solution that supported generation and execution of all
elements of state machine UML 2.0 using C# language [7].
In order to build an application reflecting the modeled
classes and their behaviors specified by state machines, we
resolved necessary semantic variation points [8]. Semantic
variation points are aspects that were intentionally not deter-
mined in the specification [2] and its interpretation is left for
a user.

It was also necessary to provide some correctness check-
ing of a model. This paper is devoted to these issues. To
present potential problems we selected one target application
environment, i.e., creation of application in C# language.
The verification of an input UML model is based on a set of
hard coded rules. Some of the rules are general and can be
applied for any object-oriented language, as they originate
directly from the UML specification [2]. Other rules are
more environmental specific because they take also into ac-
count the features of the target language - C#. The verifica-
tion is performed during transformation of class and state
machine models into the corresponding code; it is so-called
static verification. Other set of rules is used during execution
of the code corresponding to given state machines; so-called
dynamic verification. For all correctness rules the appropri-
ate reaction on the detected flaws were specified.

978-83-60810-14-9/08/$25.00 © 2008 IEEE 517

Correctness issues of UML Class and State Machine Models
in the C# Code Generation and Execution Framework

Anna Derezińska
Institute of Computer Science Warsaw University of

Technology, ul. Nowowiejska 15/19 00-665
Warszawa, Poland

Email: A.Derezinska@ii.pw.edu.pl

Romuald Pilitowski
Institute of Computer Science Warsaw University of

Technology, ul. Nowowiejska 15/19 00-665
Warszawa, Poland

518 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

In the next section we discuss the related works. Next, the
FXU framework, especially solutions used for state machines
realization, will be presented. In Sec. IV we introduce cor-
rectness issues identified in the transformation process and
during execution of state machines. Remarks about experi-
ments performed and the conclusions finish the paper.

II. RELATED WORK

A huge amount of research efforts is devoted to formaliza-
tion of UML models, specification of their semantics and
verification methods [9]-[13]. However they are usually not
resolving the practical problems which are faced while build-
ing an executable code, because of many variation semantic
points of the UML specification.

An attempt for incorporation of different variation points
into one solution is presented in [14]. The authors intend to
build models that specify different variants and combine
them with the statechart metamodel. Different policies
should be implemented for these variants.

Our work relates also to the field of consistency of UML
models. The consistency problems in UML designs were ex-
tensively studied in many papers. It could be mentioned
workshops co-located to the Models (former UML) series of
conferences, and other works [5], [6], [15]-[17].

An interesting investigation about defects in industrial
projects can be found in [18]. However the study takes into
account only class diagrams, sequence diagrams and use case
diagrams, mostly the relations among elements from differ-
ent diagram types. The state machines were not considered.

Solutions to consistency problems in class diagrams were
presented in [19]. The problem refers to constrains specify-
ing generalization sets in class diagram, which is still not
commonly used in most of UML designs.

Current UML case tools allow constructing incorrect mod-
els. They provide partial checking of selected model fea-
tures, but it is not sufficient if we would like to create auto-
matically a reliable application. More comprehensive check-
ing can be found in the tools aimed at model analysis. For
example, the OO design measurement tool SDMetrics [20]
gives the rules according to which the models are checked.
We used the experiences of the tool (Sec. IV), but it does not
deal with state machine execution nor with C# language.

Many modeling tools have a facility of transforming the
models into code in different programming languages. How-
ever, the most of them consider only class models. We com-
pared functionality of twelve tools that could also generate
code from state machines. Only few of them took into ac-
count more complex features of state machines, like choice
pseudostates, deep and shallow history pseudostates, de-
ferred events or internal transitions. The most complete sup-
port for state machines UML 2.0 is implemented in the
Rhapsody tool [21] of IBM Telelogic (formerly I-Logix).
However it does not consider C# language.

Different approaches to generation of the code from be-
havioral UML models can be used. The semantics of a state
machine can be directly implemented in the generated code
[22]. Another solution is usage of a kind of a run-time envi-
ronment, for example a run-time library as applied in the
FXU framework.

The consistency problems remain also using tools for
building executable UML models [23], [24]. Different sub-
sets of UML being used and we cannot assure that two inter-
changed models will behave in the same way. Specification
of a common subset of UML specialized for execution is still
an open idea.

III. CODE GENERATION AND EXECUTION IN FXU

Transformation of UML models into executable applica-
tion can be realized in the following steps.

1.A model, created using a CASE modeling tool, is ex-
ported and saved as an XML Metadata Interchange
(XMI) file.

2.The model (or its parts) is transformed by a generator
that creates a corresponding code in the target pro-
gramming language.

3.The generated code is modified (if necessary), com-
piled and linked against a Runtime Library. The Run-
time Library contains realization of different UML
meta-model elements, especially referring to behav-
ioral UML models.

4.The final application, reflecting the model behavior,
can be executed.

It should be noted, that steps 1) and 2) can be merged, if
the considered code generator is associated with the
modelling tool.

The process presented above is realized in the FXU
framework [7]. The target implementation language is C#.
The part of UML model taken into account comprises
classes and state machines. The input models are accepted in
UML2 format, an XMI variant supported by Eclipse.
Therefore it is not directly associated with any modelling
tool. However, all experiments mentioned in Sec. V were
performed with UML models created using IBM Rational
Software Architect [25].

The FXU framework consists of two components - FXU
Generator and FXU Runtime Library. The Generator is
responsible for realization of step 2. The FXU Runtime Li-
brary includes over forty classes that correspond to different
elements of UML state machines. It implements the general
rules of state machine behavior, independent of a considered
model, e.g., processing of events, execution of transitions,
entering and exiting states, realization of different pseu-
dostates. It is also responsible for the runtime verification of
certain features of an executed model.

Transforming class models into C# code, all model ele-
ments are implemented by appropriate C# elements. The
template of a resulting programming class can be found in
[7]. Principles of code generation from the class models are
similar to other object-oriented languages and analogues to
solutions used in other tools.

A distinctive feature of FXU is dealing with all UML state
machine elements and their realization in C# application.
Therefore we present selected concepts of state machines
with their implementation in C#. We point out different C#
specific mechanisms used in the generated application.
Using selected solutions we would like to obtain an efficient
and reliable application.

ANNA DEREZINSKA ET. AL.: CORRECTNESS ISSUES OF UML CLASS AND STATE MACHINE MODELS 519

State machines can be used at different levels of
abstraction. They can model behavior of an interface, a com-
ponent, an operation. Protocol state machines are intended to
model protocols. The primary application of behavioral state
machine in an object-oriented model is description of a class.
A class can have attributes keeping information about a cur-
rent state of an object. Classes have operations that can trig-
ger transitions, send and receive events. Therefore, we as-
sumed that the code will be generated and further executed
only for behavioral state machines that are defined for cer-
tain classes that are present in the structural model.

An exemplary UML model is shown in Fig. 1. A given
class has an attribute, four operations and its behavior speci-
fied by a state machine. The state machine consists of simple
state S1 and complex state S2 including two orthogonal re-
gions. In guard conditions and triggers the operations and at-
tribute of the class are used. Extracts of the C# code corre-
sponding to the example and created by the FXU generator
are given in the Appendix.

For any state machine of a class, a new attribute of
StateMachine type is created. Each class having a state ma-
chine has also two additional methods InitFXU and Start-
FXU. Method InitFXU is responsible for creation and initial-
ization of all objects corresponding to all elements of state
machine(s) associated with the class, such as regions, states,
pseudostates, transitions, activities, events, triggers, guards,
actions, etc. Method StartFXU is used for launching a behav-
ior of state machine(s).

Any state can have up to three types of internal activities
do, entry, exit. The activities of a state are realized using a
delegate mechanism of C#. Three methods DoBody, Entry-
Body and ExitBody with empty bodies are created for any
state by default. If an activity exists a corresponding method
with its body is created, using information taken from the
model. Applying delegate mechanism allows defining the
methods for states without using of inheritance or overloaded
methods. Therefore the generated code can be simple, and
generation of a class for any single state can be avoided. A
state machine is not generated as a state design pattern [26],
because we would like to prevent an explosion of number of
classes.

Three transition kinds can be specified for a transition, ex-
ternal, internal and local transitions. Triggering an internal

transition implies no change of a state, exit and entry activi-
ties are not invoked. If an external transition is triggered it
will exit its source state (a composite one), i.e. its exit activ-
ity will be executed. A local transition is a transition within a
composite state. No exit for the composite (source) state will
be invoked, but the appropriate exits and entries of the sub-
states included in the state will be executed.

A kind of a transition can be specified in a model, but in
praxis this information is rarely updated and often inaccu-
rate. Therefore we assumed that in case of composite states a
kind of generated transition is determined using a following
heuristics:
• If the target state is different than the source state of a

transition and the source state is a composite state, the
transition is external.

• Else, the transition is defined in a model as internal it is
treated as an internal transition.

• Otherwise, the transition is local.
A transition can have its guard condition and actions.

They are created similarly to activities in states, using dele-
gate mechanism of C#. If a body of an appropriate guard
condition or action is nonempty in a model, it is put in the
generated code. It should be noted that verification of logical
conditions written in C# is postponed to the compilation
time.

States, pseudostates, transitions and events are created as
local variables. Signals are treated in different way. They are
created as classes, because they can be generalized and spe-
cialized building a signals hierarchy. If a certain signal can
trigger an event also all signals that are its descendants in the
signal hierarchy can trigger the same event. This feature of
signals was implemented using the reflection mechanism of
C# [27].

Events should have some identifiers in order to be man-
aged. Change events and call events are identified by unique
natural numbers assigned to the events. A time event is iden-
tified by a transition which can be triggered by this event. A
completion event is identified by a state in which the event
was generated. Finally, for a signal event the class of the sig-
nal, i.e., its type, is used as its identifier.

There are some elements of a UML model that include a
description in a form not precisely specified in the standard,
but dependent on a selected notation, usually a programming

Fig. 1 Example - a class and its state machine

520 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

language. There are, for example, guard conditions,
implementation of actions in transitions or in states, body of
operations in classes. They can be written directly in a target
implementation language (e.g., C#). During code generation
these fragments are inserted into the final code. Verification
of the syntax and semantics of such code extracts is per-
formed during the code compilation and execution according
to a selected programming language.

Interpreting different concepts of state machines we can
use parallel execution. In the FXU RunTime Library it is im-
plemented by multithreading. Multithreading is used for pro-
cessing of many state machines which are active in the same
time, e.g., state machines of different classes. It is used also
for handling submachine states and orthogonal regions work-
ing within states, and for other processing of events. In the
Appendix, parts of an output trace generated during execu-
tion of the exemplary state machine (Fig. 1) are shown. We
can observe different threads, identified by number in brack-
ets, that were created to deal with encountering events. For
example, realization of transition from the pseudostate fork
to substate S3_in S2 launched thread ”[11]”. Thread “[12]”
was created to implement transition from the fork pseu-
dostate to substate S1_inS2. In other execution run of the ap-
plication the numbers and ordering of threads can be differ-
ent.

Event processing during state machine execution is per-
formed according to the rules given in UML specification
[2]. Basic algorithms of FXU realization, like execution of a
state machine, entry to a state, exit from a state, were pre-
sented in [7]. For every state a queue was implemented that
pools incoming events. Events can be broadcasted or sent di-
rectly to the selected state machines. Events trigger transi-
tions that have an active source state and their guard condi-
tions evaluate to true. If many transitions can be fired, transi-
tion priorities are used for their selection. We had proposed
and implemented an extended definition of transitions prior-

ity, in order to resolve all conflicts in case many transitions
can be fired. This could not be achieved based only on the
priority definition given in [2]. The detailed algorithm of se-
lecting non-conflicting transitions can be found in [8]. Also
resolving of other variation points, especially dealing with
entering and exiting orthogonal states, is shown in [8].

IV. VERIFICATION OF MODEL CORRECTNESS

While generating valid C# code from UML class and state
machine diagrams the certain conditions should be satisfied.
There are many possible shortcomings present in the models
that are not excluded by the modeling tools, or should be not
prohibited due to possible model incompleteness at different
evolution stages. They were analyzed taking into account the
practical weaknesses of model developers.

The prepared correctness rules were based on three main
sources: the specification of UML [2], the rules discussed in
related works and other comparable tools, in particular in
[20], and finally the own study, especially taking into ac-
count the features of C# language - the target of the model
transformation [27].

Various shortcomings can be detected during different
steps of application realization (Sec. 3). Many of them can
be identified directly in the model, and therefore detected
during model to code transformation step (step 2). Verifica-
tion of such problems will be called static, as it corresponds
to an automated inspection of a model. Other flaws are de-
tected only during execution of the resulting application
(step 4). Such dynamic verification will be completed by the
appropriate classes of the FXU Runtime Library.

In tables I-III defects identified in classes and state ma-
chines are presented. The last column shows severity associ-
ated to the shortcomings. Three classes of severity are distin-
guished. If a defect detected in a model is called as critical
the model is treated as invalid and the code generation is in-
terrupted without producing the output. Later cases are clas-

TABLE I.
DEFECTS DETECTED IN UML CLASS DIAGRAMS (STATIC)

No Detected defects Reaction Severity

1 A generalization of an interface from a class was detected Stop code generation critical

2 A name of an element to be generated (e.g. a class, an interface, an operation,
an attribute) is a keyword of C# language

Stop code generation critical

3 A class relates via generalization to more than one general class Stop code generation critical

4 A cycle in class generalization was detected Stop code generation critical

5 A name of an element to be generated is missing Generate the element pattern without its
name. The element name has to be
supplemented in the generated code.

medium

6 A name of an element to be generated is not a valid C# name. It is assumed
that white characters are so common shortcoming that they should be
automatically substituted by an underline character.

As above medium

7 An interface visibility is private or protected . Use package visibility . low

8 A class visibility is private or protected . Use package visibility . low

9 An interface is abstract. Treat the interface as no abstract. low

10 An interface has some attributes. Ignore attributes of the interface. low

11 An interface has nested classes Ignore classes nested in the interface. low

12 A class that is no abstract has abstract operations. Treat the class as abstract. low

ANNA DEREZINSKA ET. AL.: CORRECTNESS ISSUES OF UML CLASS AND STATE MACHINE MODELS 521

sified as medium and low. In both cases the code generation
is proceeded, although for medium severity it can require
corrections before compilation. In all cases information
about all detected shortcomings is delivered to a user. A de-
tailed reaction to the found defect is described in the third
column. While assigning severity levels and reactions to
given defects we took into account general model correct-
ness features but also requirements specific for C# applica-
tions.

A.Verification of Class Models

Class diagrams describe a static structure of a system,
therefore many their features can be verified statically before
code generation. Table I summaries defects that are checked
during static analysis of UML class models. It was assumed
that some improvements can be added more conveniently in
the generated code than in a model. The class models can be
incomplete to some extend and we can still generate the
code. Admission of certain model incompleteness can be
practically justifiable because of model evolution.

It should be noted that not all requirements of generated
code are checked by the generator. Some elements are veri-
fied later by the compiler. It concerns especially elements
that are not directly defined by the UML specification, like
the bodies of operations.

B.Verification of State Machines

Similarly to class diagrams, different defects of state ma-
chines can be detected statically in the models. They are
listed in Tab. II. Static detection of shortcomings in state ma-
chines is realized twice. First, it is made before model to
source transformation (step 2). Second correctness checking
is fulfilled before state machine execution. It is a part of step
4, during the initialization of the structure of a state machine.

For example, a static verification can be illustrated using a
state machine from Fig. 1. Transition outgoing state S3_inS2
has an event trigger - calling of an operation finish_operA().
However, this transition targets the join pseudostate. There-
fore neither a trigger nor a guard condition can be associated
with the transition. It violates the correctness rule 18 (Tab.
II). This model flaw is quite often and is not critical. The

TABLE II.
DEFECTS DETECTED IN UML STATE MACHINES (STATIC)

No Detected defects Reaction Severity

1 A cycle in signal generalization was detected Stop code generation critical

2 A signal inherits after an element that is not another signal Stop code generation critical

3 A signal relates via generalization to more than one general signal Stop code generation critical

4 A region has more than one initial pseudostate Stop code generation critical

5 A state has more than one deep history pseudostate or shallow history
pseudostate

Stop code generation critical

6 There are transitions from pseudostates to the same pseudostates (different
than a choice pseudostate)

Stop code generation critical

7 There are improper transitions between orthogonal regions Stop code generation critical

8 A transition trigger refers to an nonexistent signal Stop code generation critical

9 An entry point, join or initial pseudostate has no incoming transition or more
than one incoming transition

Stop code generation critical

10 A deep or shallow history pseudostate has more than one outgoing transition Stop code generation critical

11 A transition from an entry/exit point to an entry/exit point Stop code generation critical

12 An exit point has no any incoming transition Stop code generation critical

13 Transitions outgoing a fork pseudostate do not target states in different regions
of an orthogonal states

Stop code generation critical

14 Transitions incoming to a join pseudostate do not originate in different regions
of an orthogonal state

Stop code generation critical

15 There is a transition originating in an initial pseudostate or a deep/shallow
history pseudostate and outgoing a nested orthogonal state

Stop code generation critical

16 The region at the topmost level (region of a state machine) has no initial
pseudostate

Warn a user medium

17 A transition outgoing a pseudostate has a trigger Ignore the trigger medium

18 A tgransition outgoing a pseudostate (different from a choice or junction
vertex) has a nonempty guard condition

Ignore the guard condition medium

19 A transition targeting a join pseudostate has a trigger or nonempty guard
condition

Ignore the trigger and/or condition medium

20 A trigger refers to a non-existing operation The transition will be generated but it
cannot be triggered by this event

medium

21 A trigger refer to an abstract operation or to an operation of an interface as above medium

22 A time event is deferred Treat the event as not being deferred medium

23 A final state has an outgoing transition Warn a user medium

24 A terminate pseudostate has an outgoing transition Warn a user low

522 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

trigger will be omitted in the generated code and the designer
will be warned about this exclusion.

State machines model system behavior; therefore not all
their elements can be statically verified. A part of defects is
detected dynamically, i.e., during execution of state ma-
chines. For example, a situation that two enabled transitions
are outgoing the same choice pseudostate can be detected af-
ter evaluation of appropriate guard conditions, namely dur-
ing program execution. Defects detected dynamically in state
machines are presented in Tab. III.

V. EXPERIMENTS

The presented approach for building the C# code and exe-
cuting the automatically created applications was tested on
over fifty models. The first group of ten models was aimed at
classes. In experiments the correct and incorrect construc-
tions encountering in class diagrams were checked, concern-
ing especially association and generalization. Moreover, two
bigger projects were tested. The first one was a part of MDA
project called Acceleo [28]. The model described a design of
a web page. The second one presented a metamodel of an
object-oriented modeling language [29].

Models from the next group (above forty models) com-
prised different diagrams, including both classes and state
machines. All possible constructs of UML 2.x state machines
were used in different situations in the models. The biggest
design included five state machines with about 80 states and
110 transitions, using complex and orthogonal states, differ-
ent kinds of pseudostates and submachine states.

The programs realizing state machines were run taking
into account different sequences of triggering events. The
behavior modeled by state machines was observed and veri-
fied using detailed traces generated during program runs.
They helped to test whether the obtained program behavior
conforms to desired state machine semantics. For complex
models, filtered traces that included selected information
were also used.

The performed experiments have showed that an applica-
tion realizing a behavior specified in state machine models
can be developed in an effective and reliable way.

CONCLUSION

In this paper we discussed the problems of creation of
valid C# applications realizing ideas modeled by classes and

their state machines. Different C# mechanisms were effec-
tively used for implementation of the full state machine
model defined in the UML 2.x specification. We showed
which correctness issues of models have to be checked dur-
ing model transformation (static verification) and during ap-
plication execution (dynamic verification). The detailed cor-
rectness rules help a developer to cope with possible flaws
present in UML models. In the difference to other tools, us-
ing FXU the state machines including any complex features
can be effectively transformed into corresponding C# appli-
cation. The tool support speeds up building of reliable appli-
cations including complex behavioral specifications. It can
be especially useful for developing programs in which non-
trivial state machines are intensely used, e.g., dependable
systems, embedded reactive systems.

APPENDIX

The appendix includes extracts of C# code generated for
an exemplary class and its state machine shown in Fig. 1.
Code of class operations are omitted (line 3). Method Init-
Fxu() creates appropriate structure of the state machine.
Method StartFxu() initializes behavior of the state machine.

1 public class A_class {
2 private int x_attrA;
3 // operations of A_class (omitted)
4 StateMachine sm1 = new

 StateMachine("OwnedStateMachine1");
5 public void InitFxu(){
6 Region r1 = new Region("Region1");
7 sm1.AddRegion(r1);
8 InitialPseudostate v2 = new

InitialPseudostate("");
9 r1.AddVertex(v2);
10 FinalState v3 = new FinalState("");
11 r1.AddVertex(v3);
12 State v4 = new State("S1");
13 v4.EntryBody = delegate(){ init_x(); };
14 r1.AddVertex(v4);
15 State v5 = new State("S2");
16 v5.DoBody = delegate(){ work_operA(); };
17 r1.AddVertex(v5);
18 Region r2 = new Region("Region1");
19 v5.AddRegion(r2);
20 Region r3 = new Region("Region2");
21 v5.AddRegion(r3);
22 State v6 = new State("S2_inS2");
23 v6.EntryBody = delegate()

{System.Threading.Thread.Sleep(10000); };
24 r2.AddVertex(v6);

TABLE III.
DEFECTS DETECTED IN UML STATE MACHINES (DYNAMIC)

No Detected defects Reaction Severity

1 There is no enabled and no "else" transition outgoing a choice or junction
pseudostate

Suspend execution - terminate critical

2 A deep or shallow history pseudostate was entered that has no outgoing
transitions and is "empty", i.e. either a final state was a last active substate or
the state was not visited before

Suspend execution - terminate critical

3 More than one transition outgoing a choice or junction pseudostate is enabled Select one enabled transition and ignore
the others

medium

4 There is no enabled transition outgoing a choice or junction pseudostate and
there is one or more "else" transition outgoing this pseudostate

Select onr "else" transition and ignore
other transitions

medium

5 More than one transition outgoing the same state is enabled Select one transition and ignore the
others

medium

ANNA DEREZINSKA ET. AL.: CORRECTNESS ISSUES OF UML CLASS AND STATE MACHINE MODELS 523

25 State v7 = new State("S1_inS2");
26 r2.AddVertex(v7);
27 State v8 = new State("S3_inS2");
28 r3.AddVertex(v8);
29 Fork v9 = new Fork("");
30 r1.AddVertex(v9);
31 FinalState v10 = new FinalState("");
32 r1.AddVertex(v10);
33 Join v11 = new Join("");
34 r1.AddVertex(v11);
35 Transition t1 = new Transition(v2, v4);
36 Transition t2 = new Transition(v4, v9);
37 t2.GuardBody = delegate(){return x_attrA>=0;};
38 Transition t3 = new Transition(v4, v10);
39 t3.GuardBody = delegate(){return x_attrA<0;};
40 Transition t4 = new Transition(v6, v11);
41 Transition t5 = new Transition(v7, v6);
42 t5.AddTrigger(new CallEvent("suspend_operA",

 1));
43 Transition t6 = new Transition(v8, v11);
44 t6.AddTrigger(new CallEvent("finish_operA",

 2));
45 t6.ActionBody = delegate(){finish_operA(); };
46 Transition t7 = new Transition(v9, v8);
47 Transition t8 = new Transition(v9, v7);
48 Transition t9 = new Transition(v11,v3);
49} //End of InitFXU
50 public void StartFxu()
51 { sm1.Enter(); }
52 }

Fragments of a detailed execution trace of the exemplary
state machine (Fig. 1) are shown below. Time stamps of all
log items are omitted for the brevity reasons. The trace was
created under condition of two call events occurrences, sus-
pend_operA() and finish_operA(). A number in brackets de-
notes a number of a thread that realizes a considered part of
machine execution.
[1] WARN - State diagram <OwnedStateMachine1>: Entered.
[1] INFO - State diagram <OwnedStateMachine1>: Execution of
entry-activity started. State is now active.
[1] DEBUG - State diagram <OwnedStateMachine1>: Execution of
entry-activity finished.
[7] INFO - Initial pseudostate <OwnedStateMachine1::
Region1{::UnNamedVertex}>: Entered.
[7] DEBUG - Transition from Initial pseudostate <OwnedStateMa-
chine1::Region1{::UnNamedVertex}> to State <OwnedStateMa-
chine1::Region1::S1>: Traversing started.
[7] INFO - State <OwnedStateMachine1::Region1::S1>: Execu-
tion of entry-activity started. State is now active.

(...) //part omitted
[3] DEBUG - State diagram <OwnedStateMachine1>: Completion
event <> generated by State <OwnedStateMachine1::Region1::S1>
has been dispatched.
[9] DEBUG - State <OwnedStateMachine1::Region1::S1>: Execu-
tion of exit-activity started.
[9] INFO - State <OwnedStateMachine1::Region1::S1>: Execu-
tion of exit-activity finished. State is now inactive.
[10] DEBUG - Transition from State <OwnedStateMachine1 ::Re-
gion1::S1> to Fork <OwnedStateMachine1::Region1 {::UnNamed-
Vertex}>: Traversing started.
[10] INFO - Fork <OwnedStateMachine1::Region1 {::UnNamed-
Vertex}>: Entered.
[11] DEBUG - Transition from Fork <OwnedStateMachine1 ::Re-
gion1{::UnNamedVertex}> to State <OwnedStateMachine1:: Re-
gion1::S2::Region2:: S3_inS2>: Traversing started.
[11] INFO - State <OwnedStateMachine1::Region1::S2>: Execu-
tion of entry-activity started. State is now active.
[11] DEBUG - State <OwnedStateMachine1::Region1 ::S2>: Exe-
cution of entry-activity finished.

[13] INFO - State <OwnedStateMachine1::Region1::S2>: Execu-
tion of do-activity started.
[13] DEBUG - State <OwnedStateMachine1::Region1 ::S2>: Exe-
cution of do-activity finished.
[11] INFO - State <OwnedStateMachine1::Region1::S2::
Region2::S3_inS2>: Execution of entry-activity started. State is
now active.
[11] DEBUG - State <OwnedStateMachine1::Region1:: S2::Re-
gion2::S3_inS2>: Execution of entry-activity finished.
[12] DEBUG - Transition from Fork <OwnedStateMachine1 ::Re-
gion1{::UnNamedVertex}> to State <OwnedStateMachine1:: Re-
gion1::S2::Region1::S1_inS2>: Traversing started.
[12] INFO - State <OwnedStateMachine1::Region1::S2::
Region1::S1_inS2>: Execution of entry-activity started. State is
now active.

(...) //part omitted
[3] DEBUG - State diagram <OwnedStateMachine1>: Completion
event <> generated by State <OwnedStateMachine1
::Region1::S2::Region2::S3_inS2> has been dispatched.
[3] DEBUG - State diagram <OwnedStateMachine1>: Completion
event <> generated by State <OwnedStateMachine1
::Region1::S2::Region1::S1_inS2> has been dispatched.
[3] DEBUG - State diagram <OwnedStateMachine1>: Call-event
<suspend_operA [ID=1]>. has been dispatched.
[16] DEBUG - State <OwnedStateMachine1::Region1:: S2::Re-
gion1::S1_inS2>: Execution of exit-activity started.
[16] INFO - State <OwnedStateMachine1::Region1::
S2::Region1::S1_inS2>: Execution of exit-activity finished. State
is now inactive.
[17] DEBUG - Transition from State <OwnedStateMachine1 ::Re-
gion1::S2::Region1::S1_inS2> to State <OwnedStateMachine1
::Region1::S2::Region1:: S2_inS2>: Traversing started.
[17] INFO - State <OwnedStateMachine1::Region1::S2::
Region1::S2_inS2>: Execution of entry-activity started. State is
now active.
[17] DEBUG - State <OwnedStateMachine1::Region1 ::S2::Re-
gion1::S2_inS2>: Execution of entry-activity finished.
[18] INFO - State <OwnedStateMachine1::Region1::S2
::Region1::S2_inS2>: Execution of do-activity started.
[3] DEBUG - State diagram <OwnedStateMachine1>: Call-event
<finish_operA [ID=2]>. has been dispatched.

(...) //part omitted
[22] INFO - Join <OwnedStateMachine1::Region1 {::UnNamed-
Vertex}> : Entered.
[22] DEBUG - Transition from Join <OwnedStateMachine1:: Re-
gion1{::UnNamedVertex}> to Final state
<OwnedStateMachine1::Region1{::UnNamedVertex}>: Traversing
started.
[22] INFO - Final state <OwnedStateMachine1::Region1 {::Un-
NamedVertex}>: Entered.
[22] WARN - State diagram <OwnedStateMachine1>: Exiting.

REFERENCES

[1] R. France, B. Rumpe, "Model-driven Development of Complex Soft-
ware: A Research Roadmap" in Future of Software Engineering at
ICSE'07, IEEE Soc., 2007, pp. 37-54.

[2] OMG Unified Modeling Language Superstructure v. 2.1.2, OMG
Document formal/2007-11-02, 2007, http://www.uml.org

[3] MDA Guide, Ver. 1.0.1, Object Management Group Document omg/
2003-06-01, 2003.

[4] S. Frankel, Model Driven Architecture: Appling MDA to enterprise
computing. Wiley Press, Hoboken, NJ, 2003.

[5] A. Baruzzo, M. Comini, "Static verification of UML model consis-
tency", Proc. of the 3rd Workshop on Model DEvelopment, Valida-
tion and Verification, co-located. at MoDELS'06, Genoa, Italy, 2006,
pp. 111-126.

[6] C. Lange, M. R. V. Chaudron, J. Muskens, L. J. Somers and
H. M. Dortmans, “An empirical investigation in quantifying inconsis-

http://www.uml.org/

524 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

tency and incompleteness of UML designs”, in Proc. of 2nd Workshop
on Consistency Problems in UML-based Software Development co-
located atUML’03 Conf. , San Francisko, USA, Oct 2003, pp. 26-34.

[7] R. Pilitowski, A. Derezinska, "Code Generation and Execution
Framework for UML 2.0 Classes and State Machines", in: T. Sobh
(eds.) Innovations and Advanced Techniques in Computer and
Information Sciences and Engineering, Springer, 2007, pp. 421-427.

[8] Derezinska, R. Pilitowski, "Event Processing in Code Generation and
Execution Framework of UML State Machines", in L. Madeyski, M.
Ochodek, D. Weiss, J. Zendulka (eds.) Software Engineering in
progress, Nakom, Poznań, 2007, pp.80-92.

[9] Harel, H. Kugler, "The Rhapsody Semantics of Statecharts (or On the
Executable Core of the UML)" (preliminary version), in SoftSpez
Final Report, LNCS, vol. 3147, Springer, Heidelberg, 2004, pp.
325-354.

[10] STL: UML 2 Semantics Project, References, Queen's University
http://www.cs.queensu.ca/home/stl/internal/uml2/refs.htm

[11] M. Crane, J. Dingel, "UML vs. Classical vs. Rhapsody Statecharts:
Not All Models are Created Equal", in: MoDELS/UML 2005, LNCS,
vol. 3713, Springer, Heidelberg, 2005, pp. 97-112.

[12] Y. Jin, R. Esser and J. W. Janneck, "A Method for Describing the
Syntax and Semantics of UML Statecharts", Software and System
Modeling, vol. 3 no 2, Springer, 2004, pp. 150-163.

[13] H. Fecher, J. Schönborn, "UML 2.0 state machines: Complete formal
semantics via core state machines", in FMICS and PDMC 2006,
LNCS vol. 4346, Springer, Hildelberg, 2007, pp. 244-260.

[14] Chauvel, J-M. Jezequel, "Code Generation from UML Models with
Semantic Variation Points", in MoDELS/UML 2005, LNCS, vol.
3713, Springer, Heidelberg 2005, pp. 97-112.

[15] A. Egyed, "Fixing inconsistencies in UML designs", in Proc. of 29th
Intern. Conf. on Software Engineering, ICSE'07, IEEE Comp. Soc.,
2007.

[16] S. Prochanow, R. von Hanxleden, "Statecharts development beyond
WYSIWIG", in G. Engels et al. (Eds.) MODELS 2007, LNCS 4735,
Springer, Berlin Heidelberg, 2007, pp. 635-649.

[17] Ha L-K., Kang B-W., Meta-Validation of UML Structural Diagrams
and Behavioral Diagrams with Consistency Rules, Proc. of IEEE
Pacific Rim Conf on Communications, Computers and Signal
Processing, PACRIM,Vol. 2., 28-30 Aug. (2003) 679-683.

[18] F. J. Lange, M. R. V. Chaudron, "Defects in industrial UML models -
a multiple case study", Proc. of the 2nd Workshop on Quality in
Modeling, co-located. at MoDELS'07, Nashville, TN, USA, 2007, pp.
50-64.

[19] Maraee, M. Balaban, "Efficient decision of consistency in UML
diagrams with constrained generalization sets", in ", Proc. of the 1st
Workshop on Quality in Modeling, co-located. at MoDELS'06,
Genoa, Italy, 2006, pp. 1-14.

[20] J. Wuest, SDMetrics - the UML design measurement tool,
http://www.sdmetrics.com/manual?LORules.html

[21] Rhapsody, http://www.telelogic.com/ (2008)
[22] A. Niaz, J. Tanaka, "Mapping UML Statecharts into Java code", in

Proc. of the IASTED Int. Conf. Software Engineering, 2004 , pp.
111-116.

[23] S. J. Mellor, M. J. Balcer, Executable UML a Foundation for Model-
Driven Architecture, Addison-Wesley, 2002.

[24] K. Carter, iUMLite - xUML modeling tool, http://www.kc.com
[25] IBM Rational Software Architect, http://www-306.ibm.com/software/

rational
[26] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: ele-

ments of reusable object-oriented software, Boston Addison-Wesley,
1995.

[27] J. Liberty, Programming C#, O'Reilly Media, 2005.
[28] Acceleo project http://www.acceleo.org
[29] Booch, Metamodel of object-oriented modeling language,

http://www.booch.com.architecture

http://www.kc.com/
http://www.telelogic.com/
http://www.cs.queensu.ca/home/stl/internal/uml2/refs.htm

