Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 933-937 ISSN 1896-7094

Solving IK problems for open chains using
optimization methods

Krzysztof Zmorzynski
Warsaw University of Technology
Faculty of Mathematics and Information Science
Email: zmorzynskik@student.mini.pw.edu.pl

Abstract—Algorithms solving inverse problems for simple method to validate chain construction and check if desired
(open) kinematic chains are presented in this paper. Due toery target position can be achieved.
high kinematics chains construction complexity, those algrithms
should be as universal as possible. That is why optimization Il. CHAIN REPRESENTATION
methods are used. They allow fast and accurate calculatiosr A Chain configuration space
arbitrary kinematics chains constructions, permitting them to be

used with success in robotics and similar domains. Open chains with each joint having single degree of freedom
are considered in this paper. Whole chain configuration @an b
I. INTRODUCTION written as:

HE problem of finding kinematic chain configuration for

given position of its effector is called inverse kinematics c=(q1,q2,--.,qn) €C 1)
(IK) problem. One of the major application of solving IK . .) . o -
problem is robotics: having destination translation and Olwhere Cls chqm conf|gurat!op spacey Is @ — th joint
entation of the end effector, robot joints configurationigtdo parameter ane is number of joints.
be found to achieve this translation and orientation. RobBt Joints
mechanical constraints (for arms and joints) should bertake Two types of joints are specified: prismatic joints and

into consideration. revolute joints. Parameter value of each joint has to be be-
For some special cases, analytical and geometric meth@gsen minimum and maximum valugg ™™ andq**. Joints
for solving IK problems effectively exists [7], [9]. Genéraare connected to each other along their loZabxes. It is
explicit solution does not always have to exist, howevesoAl also possible to set constant offset value along this axs (a
as presented in [4], obtaining analytical solution might bgresented in fig. 1). This is slightly simpler representatttan
very laborious and complex. These are the main drawbagkss].
of analytical methods. In the case ofprismatic joint, parameter is additional
Methods based on Jacobian matrix and its inverse are widgheside fixed offset mentioned above) length along locaitjoi
described in literature [6], [8], [10]. When Jacobian mais 7 axis.
not invertible, transposition or pseudoinverse Jacobiaitrim In the case ofevolute joint, parameter is the rotation angle
is used instead [6], [8]. Computational cost of Jacobiarrimat (in degrees) along specified local rotation axis. It is glear
operations might be very high, though, not to mention sitgbil that in order to model revolute joint with greater DOF, it is
problems in the neighborhoods of singularities. sufficient to create many revolute joints, with their fixetsets
In this paper optimization methods to solve IK problem arset to0, each allowing rotation about proper axis.
used. In contrast to methods mentioned above, they alldw ful Beside parameter, each joint is represented also by its
automatization and perform all computations on a machingosition, vectorg = (v,r), whereg is element from space
They are also very universal, so can be used to solve arpitrdr = R2 x S3. v is translation in world coordinatesjs rotation
IK problem for open chains. Badler [1] used these methodsiaternion also in world coordinates. Joints translatiand
to solve IK problem for more complicated chains containingrientations are calculated in forward kinematics manner,
many effectors, such as human skeleton. However, compustarting from first (or root) joint. Formally, position of ¢h
tion cost turned out to be to high to be used in real time, effector is the map:
even close to real time. Kim, Jang, Nam [2] used optimization
methods to solve IK problem for binary manipulators (that is E-C — I @)
each joint can take one of two possible positions).
More general manipulators are considered in this paper, ceC — BEl)el
with joints able to take any value from specified bound3he use of quaternions instead of rotation matrices allows
Supplied application allows user to modify chain consiargt faster computations.
set effector’s target translation and orientation and &tnes Effector’s target translation and orientation is also espr
visualisation of chain state during computations. It isbusi sented by element form spaceL.

933

934 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

orientation. Written in a formal way, it is a function:
d:LxL — R (©)]
(r,y) eLXL — d(z,y) €RT

wherex andy are two elements from spade
Following objective functions can be distinguished:
« translation only difference - Euclidean metric can be
used:

dpos (517; y) = \/(zv - yv) : (5171; - yv) (4)
where- is dot product ini3. Square root can be omitted
in calculations.

« orientation only difference:

drot (517; y) = \/(zr - yr) : (l'r - yr) (5)
where- is dot product of unit quaternions .

« translation and orientation difference at the same time:
d(z,y) = wpdpos + Wrdrot (6)

Fig. 1. Sample configuration. Dotted lines represent cffsdong local Z Wherewp and w, are We|ghts for translation and orien-
axes. tation functions, respectively.

B. Optimization methods and calculations

To minimise objective function, one can use gradient based
methods, such asonjugate gradient method It converges
faster than steepest descent method since it takes coajugat
(with respect to gradient) vector when choosing minimdgati
direction. Fletcher-Reeves formula for computing "difet
factor” 5 can be used (see [3]). Wheh equalsl it means
that conjugate direction is no longer valid and should be set
to 0 to make it steepest descent method.

Quasi-Newtonian methods, likRFGS, are even better than
conjugate gradient. Although they require Hessian matrix
computation, which may be expensive, it is also possible
to use an approximation based on a function gradient value
(described in [13]). The BFGS algorithm is presented in
[12]. Its implementation available at [11] was used in the
, application.

One of the above functions, namefi{4-6), is chosen to be

/ minimised. It takes current and target position of the affec
Recall that from eq. 2, its position is based on current chain
configuration:

Fig. 2. Prismatic joint

c € C @)
e=FE() € L
wherec is chain configuration.
It could also be written, that the following functiofi is
being minimised:
f:c — Rt (8)
Ill. OPTIMIZATION METHODS ceCyel — f(c)=d(E(c),y) e Rt

Fig. 3. Revolute joint. Dotted line is a rotation axis.

where ¢ is current chain configuratiory is the effector’s
target position. The functiorf is minimised with respect to

In the case of solving IK problem, objective functions arehain configuration and that means joints parameters.sloint
generally distance (potential) functions from effectatsrent parameters constraints should be taken into consideration
translation and orientation to effector’s target trarislfatand while performing calculations (see next section).

A. Obijective functions

KRZYSZTOF ZMORZYNSKI: SOLVING IK PROBLEMS FOR OPEN CHAINS SING OPTIMIZATION METHODS 935

C. Gradient computation given chain construction and end effector’s target pasjtiser
Gradient of the functiory for conjugate gradient method isCh0Se which data types should be used in computations (see
calculated using difference quotienwo point) method: below), which objective function to minimise (see IlI-A) &n
which optimization method to use (see IlI-B). When calcula-
vf(c) = (ﬁ (),..., ﬁ (c)) (9) tions are finished, it is possible to view objective functaiuie
I In dependence on computation time and on iteration number.
wherec = (qu,...,qn) € C and %: The application is written irC# 2. 0 language. Calcula-

tions are based ogener i cs objects, so every floating point
ﬁ(d Sl gt) = @ G G0) number type in this language: 32 kit oat , 64 bitdoubl e
0q; h and 128 bitdeci mal can be used in computations. This

whereh is appropriate small value (see IV on how this valugllows to easily tell how much each data type has impact on

could be chosen). While calculating partial derivativgs, the efficiency and precision of calculations. o
joints constraing/™" and ¢™** are taken into account itis When calculating function gradient as stated in IlI-C, it is
3 3 "

ensured that: crucial to chose right value fok. As it turns out, it is not
. always when the smallest value performs best. "Batch” mode

g™ < g+ h<qg"*® (10) is available which allows user to compute with differentes
for h, so it could be estimated best for given chain construction

When valuey; i f th nds, it is trun in
W q?mma ueg; + A is out of the bounds, it is truncated ¢¢" and chosen data type.

The use of BFGS method requires more precision in gradi-l.3y using the._ het 2.0 pl_an_‘orrr_], itis possible to add new
: ; .) objective functions and optimisation methods solvers aith
ent computationFour point method is used: : o .
need to recompile whole application. They are dynamically
read at application startup from externalet dynamic link

of (¢) = L(f(th, g —2h, g (1) libraries (DLL) and added to internal database.
9g; 12h User can chose betwedd r ect X or OpenGL graphics
- 8f(q1s-- ¢ — Dy qn) libraries used to render the scene. It is also possible to
+ 8f(q1y---yqi+hy ... qn) resign from rendering at all, increasing the same apptioati
= flqrs - qi 2k) performance.
Thanks to definition off like in eq. 8 it is possible to move V. EXAMPLES
from the original IK problem to the problem of multivariable Following examples were computed on a AMD Turion 64
objective function minimisation. X2 (two cores, each 1.6GHz) notebook, on Windows XP 32

bit with 1GB RAM and .net 2.0. Optimization algorithm was
running on a separate thread, which also means on the other

Created application allows user to interactively creaté agore than main application thread. Null renderer was setiect
modify chain construction, save it to a file and load it latefy 4y0id unnecessary rendering overhead.

Modification of joints parameters result in real time change || calculations starts with all joints parameters set(to

in chain visualisation. This applies to not only when USefig. 5). Objective function 6 was used, with, set t00.5 and
manipulates the parameters, but also while solving IK bl w, to 1.

so it could be seen how the solution is being found. Forroqay's widely used robots have mechanical arms precision
set at about0~* and 10~3 [m]. IK problems solvers should
be able to find chain configuration to achieve one of those
precision. In this paper both values were researched.

IV. APPLICATION

A. Example 1—relatively close to initial configuration

Chain with 6 joints was used, listed in order from the
first (root) joint: first three revolute joints with rotaticexes
around X, Y, Z, respectively, then prismatic joint and then
two additional revolute joints with rotation axe¥ and Z.
All revolute joints has parameters constraints sef-60, 90)
degrees, where prismatic joint h& 2).

Effector’s target position was set relatively close to ofsi
initial configuration. Figure 6 presents final calculatedfoyp
uration.

All three data types were investigated, withvalue (see
[1I-C) set in batch mode. Tables I, Il presents best times and
Fig. 4. Application screenshot. values for each data type fd®—* objective function precision,

Joint properties

Coor BN OlangeE 7 v

LinkLengtt 0
LinkCffset | 0.5
Parameter | -18.79572
Parameterl ~180

€ =

Parameter: -18,79572

o

936 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

[(EF K problom solver TABLE Ili
He Edt Toos Help EXAMPLE 1 RESULTS FOR1075 AND CONJUGATE GRADIENT METHOD
Joirts Sﬂﬁ
ki data type h iterations | time (ms)
float 10—4 105 48
double | 10710 105 80
deci mal 10—12 90 320
TABLE IV
EXAMPLE 1 RESULTS FORL0—5 AND BFGSMETHOD
s Bl data type h iterations | time (ms)
bl) float 10~2 50 30
e doubl e | 10-10 40 45
deci mal 10—2 45 250
Parameter: 21,175186101682¢
Y
types are similardeci mal type has significant calculation
Fig. 5. Starting configuration. |mpact—nearly 10 times sI(_)wer thdn oat , mainly because
of its software. net emulation.
= — Clearly, BFGS method is faster by about 50% than conju-
He fat Tods Heb gate gradient method. It also needs half of the iterations to
1 Joints | Solve: . .
e find the solution.

Figure 7 presents rough overview of how convergence was

achieved in the matter of iterations (left plot) and timegti
plot).

Calculations performance
Joint properties
Parameter.
Fig. 6. Example 1 solution.
005 \\ 005
N \\
for conjugate gradient method and BFGS, respectively. Besu | = —
for 10~° are presented in tables Il and IV.
TABLE | Fig. 7. Example 1 convergence overview.
EXAMPLE 1 RESULTS FOR1074 AND CONJUGATE GRADIENT METHOD
data type h iterations | time (ms) B. Example 2
fl oat 107° 80 35 L , . .
doubl e | 10-10 75 65 This time effector’s target position was farther than in
deci mal | 10712 80 300 previous example (as in fig. 8), so computation time was
expected to be longer. Also, to ensure that effector reaches
target position, additional revolute joint was added atehd
TABLE Il

of the chain, and each revolute joint has constraints set to

—4
EXAMPLE 1 RESULTS FORIO™ AND BFGSMETHOD (—180,180) degrees. All revolute joints, except the first and

data type | h iterations | time (ms) the last one, have fixed offset set(@o

float 1072 45 25 Results are presented in tables V and VII.

double | 107 45 45

deci mal | 1072 40 230 TABLE V

EXAMPLE 2 RESULTS FORIO_4 AND CONJUGATE GRADIENT METHOD
It can be seen from the tables I, II, lll and IV, th‘dt oat Tt ype 7 frerations | e (ms)

and doubl e types performs best, due to their hardware fToat 103 105 50
supportf | oat is fastest, probably because of smaller loading doubl e 10-6 90 65
. . . i -5 —12 ~ ~
times from memory thadoubl e. Number of iterations for all decimal | 107" to 10 110 400

KRZYSZTOF ZMORZYNSKI: SOLVING IK PROBLEMS FOR OPEN CHAINS SING OPTIMIZATION METHODS

Calculations performance

OHETET] [E=

o]

015

ol |

Function value

Function val
—

010 \

\\ \.
S ™~
0,00 = 0,00
Iteration Time (s)
Fig. 9. Example 2 convergence overview.
'id i or
Ele Edit Toos Help
doits | Soive |
Jairts: ‘

Joint properies

Parameter.

J,

Fig. 8.

TABLE VI

Example 2 solution.

EXAMPLE 2 RESULTS FORL0—* AND BFGSMETHOD

data type h iterations | time (ms)
fl oat 10~2 40 25
doubl e 101 35 45
decimal | 10! to 10=12 | "35 — 40 ~250
TABLE VII
EXAMPLE 2 RESULTS FORIO75 AND CONJUGATE GRADIENT METHOD
data type h iterations | time (ms)
f1 oat 10-3 120 58
doubl e 10-6 100 76
decimal | 10~° to 1012 ~120 ~500
TABLE VIII

EXAMPLE 2 RESULTS FORL0—5 AND BFGSMETHOD

data type h iterations | time (ms)
fl oat 1073 45 30
doubl e 101 40 50

decimal | 107! to 1072 | "35 — 40 ~300

937

This time, calculation times excludeieci mal type from
any practical usage. For conjugate gradient method, tweroth
types performs slightly worst than in the previous example,
but still in the almost real-time. For BFGS method, there are
almost no differences between both examples. For all data
types, iteration count is quite similar to each other.

Figure 9 shows how convergence was achieved.

VI. CONCLUSIONS AND FUTURE WORK

It is clear from above examples, that optimization methods
can be widely used to solve IK problems in the real time, even
on commonly available customers computers. This leaves no
need of use dedicated and expensive workstations, as it has
been before.

Applying commonly used and available methods (such as
conjugate gradient and BFGS) seems to work well in most
cases. Their adaptation to multithreaded or multiproaesso
environments may perform even better.

REFERENCES

[1] J. Zhao and N. |. Badlerinverse kinematics positioning using nonlin-
ear programming for highly articulated figure\CM Transactions on
Graphics, Vol. 113, No. 4, October 1994, pages 313-336.

[2] Y. Y. Kim, G. W. Jang and S. J. Narmverse kinematics of binary ma-
nipulators by the optimization method in continous varabpace IEEE
International Conference on Intelligent Robots and Syste&eptember
28 — October 2, 2004, Sendai, Japan.

[3] J. R. ShewchukAn Introduction to the Conjugate Gradient Method
Without the Agonizing PajnSchool of Computer Science, Carnegie
Mellon University, August 4, 1994.

[4] J. AngelesFundamentals of Robotic Mechanical Systems: Theory, Meth-
ods and AlgorithmsSpringer, 2nd edition, 2003.

[5] L. T. Wang and B. RavanRecursive Computations of Kinematic and
Dynamic Equations For Mechanical ManipulatordEEE Journal of
Robotics and Automation, VOL. RA-1, NO. 3, September 1985.

[6] S. R. Buss/ntroduction to Inverse Kinematics with Jacobian Transpos
Pseudoinverse and Dumped Least Squares methduaisersity of Cali-
fornia, San Diego, April 2004.

[7] Kang Teresa GeSolving Inverse Kinematics Constraint Problems for
Highly Articulated Models Masters of Science thesis, University of
Waterloo, 2000

[8] D. Parkinverse KinematicsComputer Graphics, Department of Computer
Science, University of Buenos Aires, Argentina.

[9] X. Wu et al. A 12-DOF Analytic Inverse Kinematics Solver for Human
Motion Contro| Journal of Information and Computational Science 1: 1
2004, pages 137-141.

[10] W. Stadler, P. Eberhardacobian motion and its derivativeslechatron-
ics 11, 2001, pages 563-593.

[11] S. Bochkanov, V. BystritskyAlgLib - BFGS-B - http://www.alglib.net/
optimization/Ibfgsb.php1999-2008.

[12] R. H. Byrd, P. Lu and J. NocedaA Limited Memory Algorithm
for Bound Constrained OptimizatiprSIAM Journal on Scientific and
Statistical Computing, 1995, 16, 5, pp. 1190-1208.

[13] J. Nocedal, S. J. Wrightumerical OptimizationSpringer-Verlag, 1999.

