
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 933–937

ISBN 978-83-60810-14-9
ISSN 1896-7094

Solving IK problems for open chains using
optimization methods

Krzysztof Zmorzynski
Warsaw University of Technology

Faculty of Mathematics and Information Science
Email: zmorzynskik@student.mini.pw.edu.pl

Abstract—Algorithms solving inverse problems for simple
(open) kinematic chains are presented in this paper. Due to very
high kinematics chains construction complexity, those algorithms
should be as universal as possible. That is why optimization
methods are used. They allow fast and accurate calculationsfor
arbitrary kinematics chains constructions, permitting them to be
used with success in robotics and similar domains.

I. I NTRODUCTION

T HE problem of finding kinematic chain configuration for
given position of its effector is called inverse kinematics

(IK) problem. One of the major application of solving IK
problem is robotics: having destination translation and ori-
entation of the end effector, robot joints configuration should
be found to achieve this translation and orientation. Robot
mechanical constraints (for arms and joints) should be taken
into consideration.

For some special cases, analytical and geometric methods
for solving IK problems effectively exists [7], [9]. General
explicit solution does not always have to exist, however. Also,
as presented in [4], obtaining analytical solution might be
very laborious and complex. These are the main drawbacks
of analytical methods.

Methods based on Jacobian matrix and its inverse are widely
described in literature [6], [8], [10]. When Jacobian matrix is
not invertible, transposition or pseudoinverse Jacobian matrix
is used instead [6], [8]. Computational cost of Jacobian matrix
operations might be very high, though, not to mention stability
problems in the neighborhoods of singularities.

In this paper optimization methods to solve IK problem are
used. In contrast to methods mentioned above, they allow full
automatization and perform all computations on a machine.
They are also very universal, so can be used to solve arbitrary
IK problem for open chains. Badler [1] used these methods
to solve IK problem for more complicated chains containing
many effectors, such as human skeleton. However, computa-
tion cost turned out to be to high to be used in real time, or
even close to real time. Kim, Jang, Nam [2] used optimization
methods to solve IK problem for binary manipulators (that is,
each joint can take one of two possible positions).

More general manipulators are considered in this paper,
with joints able to take any value from specified bounds.
Supplied application allows user to modify chain construction,
set effector’s target translation and orientation and a real time
visualisation of chain state during computations. It is a robust

method to validate chain construction and check if desired
target position can be achieved.

II. CHAIN REPRESENTATION

A. Chain configuration space

Open chains with each joint having single degree of freedom
are considered in this paper. Whole chain configuration can be
written as:

c = (q1, q2, . . . , qn) ∈ C (1)

where C is chain configuration space,qi is i − th joint
parameter andn is number of joints.

B. Joints

Two types of joints are specified: prismatic joints and
revolute joints. Parameter value of each joint has to be be-
tween minimum and maximum valuesqmin

i andqmax
i . Joints

are connected to each other along their localZ axes. It is
also possible to set constant offset value along this axis (as
presented in fig. 1). This is slightly simpler representation than
in [5].

In the case ofprismatic joint, parameter is additional
(beside fixed offset mentioned above) length along local joint
Z axis.

In the case ofrevolute joint, parameter is the rotation angle
(in degrees) along specified local rotation axis. It is clear,
that in order to model revolute joint with greater DOF, it is
sufficient to create many revolute joints, with their fixed offsets
set to0, each allowing rotation about proper axis.

Beside parameter, each joint is represented also by its
position, vectorg = (v, r), whereg is element from space
L = ℜ3×S3. v is translation in world coordinates,r is rotation
quaternion also in world coordinates. Joints translationsand
orientations are calculated in forward kinematics manner,
starting from first (or root) joint. Formally, position of the
effector is the map:

E : C → L (2)

c ∈ C → E(c) ∈ L

The use of quaternions instead of rotation matrices allows
faster computations.

Effector’s target translation and orientation is also repre-
sented by elemente form spaceL.

933



934 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 1. Sample configuration. Dotted lines represent offsets along local Z
axes.

Fig. 2. Prismatic joint

Fig. 3. Revolute joint. Dotted line is a rotation axis.

III. O PTIMIZATION METHODS

A. Objective functions

In the case of solving IK problem, objective functions are
generally distance (potential) functions from effector’scurrent
translation and orientation to effector’s target translation and

orientation. Written in a formal way, it is a function:

d : L × L → ℜ+ (3)

(x, y) ∈ L × L → d(x, y) ∈ ℜ+

wherex andy are two elements from spaceL.
Following objective functions can be distinguished:
• translation only difference - Euclidean metric can be

used:

dpos(x, y) =
√

(xv − yv) · (xv − yv) (4)

where· is dot product inℜ3. Square root can be omitted
in calculations.

• orientation only difference:

drot(x, y) =
√

(xr − yr) · (xr − yr) (5)

where· is dot product of unit quaternions inS3.
• translation and orientation difference at the same time:

d(x, y) = wpdpos + wrdrot (6)

wherewp andwr are weights for translation and orien-
tation functions, respectively.

B. Optimization methods and calculations

To minimise objective function, one can use gradient based
methods, such asconjugate gradient method. It converges
faster than steepest descent method since it takes conjugate
(with respect to gradient) vector when choosing minimisation
direction. Fletcher-Reeves formula for computing ”direction
factor” β can be used (see [3]). Whenβ equals1 it means
that conjugate direction is no longer valid and should be set
to 0 to make it steepest descent method.

Quasi-Newtonian methods, likeBFGS, are even better than
conjugate gradient. Although they require Hessian matrix
computation, which may be expensive, it is also possible
to use an approximation based on a function gradient value
(described in [13]). The BFGS algorithm is presented in
[12]. Its implementation available at [11] was used in the
application.

One of the above functions, name itd (4-6), is chosen to be
minimised. It takes current and target position of the effector.
Recall that from eq. 2, its position is based on current chain
configuration:

c ∈ C (7)

e = E(c) ∈ L

wherec is chain configuration.
It could also be written, that the following functionf is

being minimised:

f : C → ℜ+ (8)

c ∈ C, y ∈ L → f(c) = d(E(c), y) ∈ ℜ+

where c is current chain configuration,y is the effector’s
target position. The functionf is minimised with respect to
chain configuration and that means joints parameters. Joints
parameters constraints should be taken into consideration
while performing calculations (see next section).



KRZYSZTOF ZMORZYNSKI: SOLVING IK PROBLEMS FOR OPEN CHAINS USING OPTIMIZATION METHODS 935

C. Gradient computation

Gradient of the functionf for conjugate gradient method is
calculated using difference quotient (two point) method:

▽f(c) = (
∂f

∂q1

(c), . . . ,
∂f

∂qn

(c)) (9)

wherec = (q1, . . . , qn) ∈ C and ∂f
∂qi

:

∂f

∂qi

(c) =
f(q1, . . . , qi + h, . . . , qn) − f(q1, . . . , qi, . . . , qn)

h

whereh is appropriate small value (see IV on how this value
could be chosen). While calculating partial derivatives∂f

∂qi

,
joints constrainsqmin

i and qmax
i are taken into account. It is

ensured that:

qmin
i ≤ qi + h ≤ qmax

i (10)

When valueqi +h is out of the bounds, it is truncated toqmin
i

or qmax
i .

The use of BFGS method requires more precision in gradi-
ent computation.Four point method is used:

∂f

∂qi

(c) =
1

12h
(f(q1, . . . , qi − 2h, . . . , qn) (11)

− 8f(q1, . . . , qi − h, . . . , qn)

+ 8f(q1, . . . , qi + h, . . . , qn)

− f(q1, . . . , qi + 2h, . . . , qn))

Thanks to definition off like in eq. 8 it is possible to move
from the original IK problem to the problem of multivariable
objective function minimisation.

IV. A PPLICATION

Created application allows user to interactively create and
modify chain construction, save it to a file and load it later.
Modification of joints parameters result in real time changes
in chain visualisation. This applies to not only when user
manipulates the parameters, but also while solving IK problem
so it could be seen how the solution is being found. For

Fig. 4. Application screenshot.

given chain construction and end effector’s target position, user
chose which data types should be used in computations (see
below), which objective function to minimise (see III-A) and
which optimization method to use (see III-B). When calcula-
tions are finished, it is possible to view objective functionvalue
dependence on computation time and on iteration number.

The application is written inC# 2.0 language. Calcula-
tions are based ongenerics objects, so every floating point
number type in this language: 32 bitfloat, 64 bit double
and 128 bitdecimal can be used in computations. This
allows to easily tell how much each data type has impact on
the efficiency and precision of calculations.

When calculating function gradient as stated in III-C, it is
crucial to chose right value forh. As it turns out, it is not
always when the smallest value performs best. ”Batch” mode
is available which allows user to compute with different values
for h, so it could be estimated best for given chain construction
and chosen data type.

By using the.net 2.0 platform, it is possible to add new
objective functions and optimisation methods solvers without
need to recompile whole application. They are dynamically
read at application startup from external.net dynamic link
libraries (DLL) and added to internal database.

User can chose betweenDirectX or OpenGL graphics
libraries used to render the scene. It is also possible to
resign from rendering at all, increasing the same application
performance.

V. EXAMPLES

Following examples were computed on a AMD Turion 64
X2 (two cores, each 1.6GHz) notebook, on Windows XP 32
bit with 1GB RAM and .net 2.0. Optimization algorithm was
running on a separate thread, which also means on the other
core than main application thread. Null renderer was selected
to avoid unnecessary rendering overhead.

All calculations starts with all joints parameters set to0
(fig. 5). Objective function 6 was used, withwp set to0.5 and
wr to 1.

Today’s widely used robots have mechanical arms precision
set at about10−4 and10−5 [m]. IK problems solvers should
be able to find chain configuration to achieve one of those
precision. In this paper both values were researched.

A. Example 1—relatively close to initial configuration

Chain with 6 joints was used, listed in order from the
first (root) joint: first three revolute joints with rotationaxes
aroundX , Y , Z, respectively, then prismatic joint and then
two additional revolute joints with rotation axesX and Z.
All revolute joints has parameters constraints set to(−90, 90)
degrees, where prismatic joint has(0, 2).

Effector’s target position was set relatively close to chain’s
initial configuration. Figure 6 presents final calculated config-
uration.

All three data types were investigated, withh value (see
III-C) set in batch mode. Tables I, II presents best times and
values for each data type for10−4 objective function precision,



936 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 5. Starting configuration.

Fig. 6. Example 1 solution.

for conjugate gradient method and BFGS, respectively. Results
for 10−5 are presented in tables III and IV.

TABLE I
EXAMPLE 1 RESULTS FOR10−4 AND CONJUGATE GRADIENT METHOD

data type h iterations time (ms)
float 10

−5
80 35

double 10
−10

75 65

decimal 10
−12

80 300

TABLE II
EXAMPLE 1 RESULTS FOR10−4 AND BFGSMETHOD

data type h iterations time (ms)
float 10−2 45 25

double 10−6 45 45

decimal 10−2 40 230

It can be seen from the tables I, II, III and IV, thatfloat
and double types performs best, due to their hardware
support.float is fastest, probably because of smaller loading
times from memory thatdouble. Number of iterations for all

TABLE III
EXAMPLE 1 RESULTS FOR10−5 AND CONJUGATE GRADIENT METHOD

data type h iterations time (ms)
float 10−4 105 48

double 10−10 105 80

decimal 10−12 90 320

TABLE IV
EXAMPLE 1 RESULTS FOR10−5 AND BFGSMETHOD

data type h iterations time (ms)
float 10

−2
50 30

double 10
−10

40 45

decimal 10−2 45 250

types are similar.decimal type has significant calculation
impact—nearly 10 times slower thanfloat, mainly because
of its software.net emulation.

Clearly, BFGS method is faster by about 50% than conju-
gate gradient method. It also needs half of the iterations to
find the solution.

Figure 7 presents rough overview of how convergence was
achieved in the matter of iterations (left plot) and time (right
plot).

Fig. 7. Example 1 convergence overview.

B. Example 2

This time effector’s target position was farther than in
previous example (as in fig. 8), so computation time was
expected to be longer. Also, to ensure that effector reaches
target position, additional revolute joint was added at theend
of the chain, and each revolute joint has constraints set to
(−180, 180) degrees. All revolute joints, except the first and
the last one, have fixed offset set to0.

Results are presented in tables V and VII.

TABLE V
EXAMPLE 2 RESULTS FOR10−4 AND CONJUGATE GRADIENT METHOD

data type h iterations time (ms)
float 10−3 105 50

double 10−6 90 65

decimal 10−5 to 10−12 ˜110 ˜400



KRZYSZTOF ZMORZYNSKI: SOLVING IK PROBLEMS FOR OPEN CHAINS USING OPTIMIZATION METHODS 937

Fig. 9. Example 2 convergence overview.

Fig. 8. Example 2 solution.

TABLE VI
EXAMPLE 2 RESULTS FOR10−4 AND BFGSMETHOD

data type h iterations time (ms)
float 10−2 40 25

double 10−1 35 45

decimal 10
−1 to 10

−12 ˜35 − 40 ˜250

TABLE VII
EXAMPLE 2 RESULTS FOR10−5 AND CONJUGATE GRADIENT METHOD

data type h iterations time (ms)
float 10

−3
120 58

double 10
−6

100 76

decimal 10
−5 to 10

−12 ˜120 ˜500

TABLE VIII
EXAMPLE 2 RESULTS FOR10−5 AND BFGSMETHOD

data type h iterations time (ms)
float 10

−3
45 30

double 10
−1

40 50

decimal 10
−1 to 10

−12 ˜35 − 40 ˜300

This time, calculation times excludesdecimal type from
any practical usage. For conjugate gradient method, two other
types performs slightly worst than in the previous example,
but still in the almost real-time. For BFGS method, there are
almost no differences between both examples. For all data
types, iteration count is quite similar to each other.

Figure 9 shows how convergence was achieved.

VI. CONCLUSIONS AND FUTURE WORK

It is clear from above examples, that optimization methods
can be widely used to solve IK problems in the real time, even
on commonly available customers computers. This leaves no
need of use dedicated and expensive workstations, as it has
been before.

Applying commonly used and available methods (such as
conjugate gradient and BFGS) seems to work well in most
cases. Their adaptation to multithreaded or multiprocessor
environments may perform even better.

REFERENCES

[1] J. Zhao and N. I. Badler,Inverse kinematics positioning using nonlin-
ear programming for highly articulated figures, ACM Transactions on
Graphics, Vol. 113, No. 4, October 1994, pages 313–336.

[2] Y. Y. Kim, G. W. Jang and S. J. NamInverse kinematics of binary ma-
nipulators by the optimization method in continous variable space, IEEE
International Conference on Intelligent Robots and Systems, September
28 – October 2, 2004, Sendai, Japan.

[3] J. R. ShewchukAn Introduction to the Conjugate Gradient Method
Without the Agonizing Pain, School of Computer Science, Carnegie
Mellon University, August 4, 1994.

[4] J. AngelesFundamentals of Robotic Mechanical Systems: Theory, Meth-
ods and Algorithms, Springer, 2nd edition, 2003.

[5] L. T. Wang and B. RavaniRecursive Computations of Kinematic and
Dynamic Equations For Mechanical Manipulators, IEEE Journal of
Robotics and Automation, VOL. RA-1, NO. 3, September 1985.

[6] S. R. Buss,Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Dumped Least Squares methods, University of Cali-
fornia, San Diego, April 2004.

[7] Kang Teresa GeSolving Inverse Kinematics Constraint Problems for
Highly Articulated Models, Masters of Science thesis, University of
Waterloo, 2000

[8] D. ParkInverse Kinematics, Computer Graphics, Department of Computer
Science, University of Buenos Aires, Argentina.

[9] X. Wu et al. A 12-DOF Analytic Inverse Kinematics Solver for Human
Motion Control, Journal of Information and Computational Science 1: 1
2004, pages 137–141.

[10] W. Stadler, P. EberhardJacobian motion and its derivatives, Mechatron-
ics 11, 2001, pages 563–593.

[11] S. Bochkanov, V. BystritskyAlgLib - BFGS-B - http://www.alglib.net/
optimization/ lbfgsb.php, 1999–2008.

[12] R. H. Byrd, P. Lu and J. Nocedal.A Limited Memory Algorithm
for Bound Constrained Optimization, SIAM Journal on Scientific and
Statistical Computing, 1995, 16, 5, pp. 1190–1208.

[13] J. Nocedal, S. J. WrightNumerical Optimization, Springer-Verlag, 1999.


