
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 551 – 557 ISSN 1896-7094

Abstract—Aspect-oriented programming (AOP) was
proposed as a way of improving the separation of concerns at
the implementation level by introducing a new kind of
modularization unit - an aspect. Aspects allow programmers to
implement crosscutting concerns in a modular and well-
localized way. As a result, the well-known phenomena of code
tangling and scattering are avoided. After a decade of research,
AOP has gained acceptance within both academia and industry.
The current challenge is to incorporate aspect-oriented (AO)
concepts into the software design phase. Since AOP is built on
top of OOP, it seems natural to adapt UML to AO design. In
this context the author introduces an extension to the UML
metamodel to support aspect-oriented modelling.

I. INTRODUCTION

A. The evolution of the aspect-oriented paradigm

HE TERM “crosscutting concern” describes part of a
software system that should belong to a single module,

but cannot be modularized because of the limited
abstractions of the underlying programming language [20],
[27], [33]. When crosscutting concerns are implemented
using an object-oriented (OO) language, their code usually
spreads over several core concerns [20], [26], [27]. Aspect-
oriented programming (AOP) overcomes this problem by
introducing a new unit of modularity—an aspect. Aspects
allow programmers to avoid the well-known phenomena of
code tangling and scattering, which adversely affect the
readability, understandability, maintainability and reusability
of the software [6], [20], [27], [30].

T

Programming and modelling languages exist in a
relationship of mutual support. A software design co-
ordinates well with a programming language when the
abstraction mechanisms provided at both levels correspond
to each other [26]. Successful adoption of AOP in both
academia and industry has led to growing interest in aspect-
oriented (AO) techniques for the whole software
development lifecycle. Currently, one of the most active
topics of research is modelling languages in support of
aspect-orientation. Taking into account that (1) UML is
considered to be the industry standard for OO system
development and that (2) the AO paradigm complements the
OO paradigm, it is quite natural to investigate UML as a
possibility for the notation for aspect-oriented modelling
(AOM) [2]–[4], [7], [18], [25], [28], [32], [34], [37].

Although UML was not designed to provide constructs to
describe aspects, its flexible and extensible metamodel
enables it to be adapted for domain-specific modelling [4],
[23]. Thus in recent years a large number of proposals have
been put forward in this area, but none of them has gained
common acceptance. This paper is one more step towards
closing the gap between AO concepts and UML.

B. The UML extensibility mechanisms

There are two alternative methods of extending UML to
incorporate aspects: by elaborating a Meta Object Facility 1

(MOF) metamodel or by constructing a UML profile. A
UML profile is a predefined set of stereotypes, tagged
values, constraints, and graphical icons which enable a
specific domain to be modelled [1], [7], [9], [23], [30], [35].
It was defined to provide a light-weight extension
mechanism [23], termed light-weight because it does not
define new elements in the metamodel of UML. The
intention of profiles is to give a straightforward mechanism
for adapting the standard UML metamodel with constructs
that are specific to a particular domain [23]. The advantages
of choosing the light-weight extension mechanism are that
models can be defined by applying a well-known notation
and that generic UML tools can be used. On the other hand,
the drawbacks are that, since stereotypes are extensions to
the existing elements, certain principles of the original
elements must be observed, and consequently expressiveness
is constrained.

Elaborating an MOF metamodel is referred to as heavy-
weight extension and is harder than constructing a profile. It
also has far less tool support. However, the metamodel
constructed can be as expressive as required. Another
drawback of the heavy-weight mechanism is the introduction
of interdependency between specific versions of UML and
its extensions. If UML changes in any way, its extensions
may also have to change.

C. Motivation and goals

In the last few years, research in to AOM has concentrated
on providing UML profiles, while less attention has been
given to constructing heavy-weight extensions. The common

1 Meta Object Facility (MOF) is the Object Management Group (OMG)
standard, specifying how to define, interchange and extend metamodels.

978-83-60810-14-9/08/$25.00 © 2008 IEEE 551

Adam Przybyłek
Gdańsk University, Department of Business Informatics,

Piaskowa 9, 81-824 Sopot, Poland
Email: adam@univ.gda.pl

Separation of Crosscutting Concerns at the Design Level:
an Extension to the UML Metamodel.

552 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

practice [7], [9], [10] – [12], [22], [31], [32], [37] used to be
to stereotype the class element as <<aspect>> and the
method element as <<advice>>, although an aspect is not a
class, nor is an advice a method. While such stereotyping
was acceptable until UML 1.5, it can no longer be used; the
2.0 release requires semantic compatibility between a
stereotyped element and the corresponding base element. In
this context, using light-weight extensions is more an
intermediate step in supporting the transition from OO
modelling to AOM than a final solution.

The most valuable contributions to AOM have been made
by Hachani [13], [14] and Yan [36], who proposed
elaborately created and carefully specified metamodels for
AspectJ. The main drawback of these extensions is the lack
of graphical representation for new modelling elements.
Moreover, they contain too much implementation detail and
so seem to overwhelm the designer. Hachani's proposal is
specified more strictly and in a more formal fashion but now
needs updating, because it extends UML 1.4.

The motivation behind this research is to integrate the best
practices of the existing AO extensions (particularly [5], [7],
[13], [14], [16], [17], [19], [21], [29], [31], [32]) and to
define a MOF metamodel that supplements the UML with
means to AOM. The metamodel, which is presented in the
next section, is based on the AspectJ approach to the AO
paradigm. AspectJ has been chosen as the most
representative AO programming language because of its
mature implementation, industrial-strength tool support and
wide popularity. Efforts [1], [8], [13], [28] to create a
generic metamodel which could be fitted to each AO
implementation have been unsuccessful, because a
metamodel of this kind introduces an impedance mismatch
between the design constructs and the language constructs.

The conceptual differences between aspect implementations
such as AspectJ, JAsCo, Spring, AspectWerkz are significant
and cannot be captured effectively in a single metamodel.
Moreover, generalizing aspects at the design level would be
counter-productive at a time when AspectJ is squeezing out
other technology at the implementation level.

II. AN EXTENSION TO THE UML METAMODEL

The elaborated extension is described by using a similar
style to that of the UML metamodel. As such, the
specification uses a combination of notations:

• UML class diagram – to show what constructs exist
in the extension and how the constructs are built up
in terms of the standard UML constructs;

• OCL – to establish well-formedness rules;
• natural language – to describe the semantic of the

meta-classes introduced.
The proposed extension introduces a new package, named

AoUML, which contains elements to represent the
fundamental AO concepts of aspect, pointcut, advice,
introduction, parent declaration and crosscutting dependency
(Fig. 1).

 The proposal reuses elements from the UML 2.1.2
infrastructure and superstructure specifications by importing
the Kernel package. Fig. 2 shows the dependencies between
the UML Infrastructure [23], the UML Superstructure [24]
and the AoUML package.

A. Aspect meta-class

1) Semantic s
An Aspect is a classifier that encapsulates the behaviour

and structure of a crosscutting concern. It can, like a class,
realize interfaces, extend classes and declare attributes and

Aspect

instantiation: AspectKind
isPrivi leged: boolean
precedence: String

Adv ice

body: String
adviceType: AdviceKind

«enumeration»
Adv iceKind

«enum»
before
after
around
after returning
after throwing

Kernel::Type

Pointcut

pointcutExpression: String
isAbstract: boolean

Kernel::RedefinableElement

Kernel::Feature CrosscuttingFeature Kernel::Classifier

ParentDeclaration

declarationType: DeclarationKind

«enumeration»
DeclarationKind

«enum»
implements
extends

StaticCrosscuttingFeature

targetTypePattern: String

Kernel::Parameter

Introduction

memberType: MemberKind
body: String

«enumeration»
MemberKind

«enum»
concrete method
abstract method
constructor
attribute

Kernel::Property

Kernel::Operation

«enumeration»
AspectKind

«enum»
singleton
perThis
perTarget
perCFlow
perCFlowBelow

Kernel::Relationship Crosscut

ownedParameter

0..* 0..*

ownedParameter
0..*

0..1

ownedOperation 0..*

0..1

0..*

parent
1..*

introducedMember
1

0..1

crosscut0..*

base
Element

1

0..*

returnType0..1

advice
0..*

attachedPointcut
1

0..1

ownedAttribute
0..*

0..*
raisedException0..*

ownedCrosscuttingFeature

0..*
declarer

0..1

declarer 0..1ownedPointcut0..*

0..1
instantiationPointcut0..1

crosscutting0..*

aspect
1

Fig. 1 . The AoUML package

ADAM PRZYBYLEK: SEPARATION OF CROSSCUTTING CONCERNS AT THE DESIGN LEVEL 553

operations. In addition, it can extend other aspects and
declare advices, introductions and parent declarations.

2) Attributes
isPrivileged – if true, the aspect code is allowed to access

private members of target elements as a “friend”; the default
is false.

instantiation – specifies how the aspect is instantiated; the
default is a singleton.

precedence – declares a precedence relationship between
concrete aspects.

3) Associations
ownedPointcut – a set of pointcuts declared within the

aspect.
instantiationPointcut – the pointcut which is associated

with a per-clause instantiation model.
ownedCrosscuttingFeature – a set of crosscutting features

owned by the aspect.
ownedAttribute – a set of attributes owned by the aspect.
ownedOperation – a set of operations owned by the

aspect.
4) Notation
The aspect element looks similar to the class but has

additional sections for pointcuts and crosscutting features
declarations. Fig. 3 provides a graphical representation for
an aspect.

B. CrosscuttingFeature meta-class

1) Semantic s
A CrosscuttingFeature is an abstract meta-class, which

declares a dynamic (an advice) or static feature to be
combined to some target elements.

2) Associations
declarer – the aspect that owns this crosscutting feature.

aspect name
instantiation model

attributes

operations

 pointcuts

 advices

 introductions

targetType Interface

targetType Classifier

declare precedence

base element

Fig. 3 . Aspect representation

C. StaticCrosscuttingFeature meta-class

1) Semantic s
A StaticCrosscuttingFeature is a crosscutting feature that

can be woven with core concerns on the basis of information
available before runtime.

2) Attributes
targetTypePattern – a pattern that matches classes,

interfaces or aspects which are affected by the crosscutting
feature.

D. Introduction meta-class

1) Semantics
An Introduction allows designers to add new attributes or

methods to classes, interfaces or aspects.
2) Attributes
memberType – specifies the kind of the inter-type member

declaration.
3) Associations
introducedMember – the new member which has to be

added to the target type.

E. ParentDeclaration meta-class

1) Semantics
A ParentDeclaration allows designers to add super-types

to classes, interfaces or aspects.
2) Attributes
declarationType – specifies the kind of the declaration.

3) Associations
parent – the type implemented or extended by the target

type.

F. Advice meta-class

1) Semantic s
An Advice is a dynamic crosscutting feature that affects

the behaviour of base classifiers. Each advice has exactly
one associated pointcut and specifies the code that executes
at each join-point picked out by the pointcut. The advice is
able to access values in the execution context of the pointcut.

2) Attributes
adviceType – specifies when the advice code is executed

relative to the join-points picked out.
body – the code of the advice.

Fig. 2 . Dependencies between packages

554 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

3) Associations
ownedParameter – an ordered list of parameters to expose

the execution context.
attachedPointcut – refers to the pointcut that defines a set

of join-points at which the advice code is to be executed.
raisedException – a set of checked exceptions that may be

raised during execution of the advice.
returnType – specifies the return result of the operation, if

present (the “before” and “after” advice cannot return
anything).

4) Constraints 2

Advice parameters should have a unique name:
self.ownedParameter->forAll (p1, p2 | p1.name = p2.name
implies p1=p2).

The before and after advice cannot return anything:
(self.adviceType = #before or self.adviceType = #after)
implies (self.ownedParameter->forAll (p | p.kind = #in)).

An advice can have at most one return parameter:
self.ownedParameter->
select (par | par.direction = #return)->size() <= 1.

G. Pointcut meta-class

1) Semantics
A Pointcut is designed to specify a set of join-points and

obtain the context surrounding the join-points as well. Join-
points are well-defined places in the program flow where the
associated advice must be executed. The purpose of
declaring a pointcut is to share its pointcut expression in
many advices or other pointcuts. A pointcut cannot be
overloaded.

2) Attributes
isAbstract—if true, the Pointcut does not provide a

complete declaration; the default value is false.
pointcutExpression—if a pointcut is not abstract, it

specifies a set of join-points picked out by this pointcut; it
has the same form as in AspectJ.

3) Associations
ownedParameter—an ordered list of parameters

specifying what data is passed from runtime context to the
associated advice.

advice—an advice that executes when the program
reaches the join points.

4) Notation
The pointcut signature is as follows:
[visibility-modifier] pointcut name([parameters]):

PointcutExpression

H. Crosscut meta-class

1) Semantics
A Crosscut is a directed relationship, from an aspect to

one or more base elements, where the additional structure
and/or behaviour will be combined.

2) Associations
aspect – the aspect specifying the crosscutting concern

affecting the base element.
baseElement – refers to the classifier that is crosscut .

2 Due to limitations on space, OCL constraints are not included for other
elements.

III. AN EXAMPLE

This section illustrates how the presented extension works
in practice by modelling the Observer pattern adopted from
Hannemann and Kiczales [15]. The participants in the
Observer pattern are subjects and observers. The subject is a
data structure which changes over time (such as a figure),
and the observer (a screen) is an object whose own invariants
depend on the state of the subject (Fig. 4).

Screen

- name: String

+ Screen(String)
+ display(String) : void

Figure

- color: Color

Figure(Color)
+ getColor() : Color
+ setColor(Color) : void

Line

p1: Point
p2: Point

+ Line(Point, Point, Color)
+ getP1() : Point
+ getP2() : Point
+ setP1(Point) : void
+ setP2(Point) : void
+ toString() : String

Point

- x: int
- y: int

+ Point(int, int, Color)
+ getX() : int
+ getY() : int
+ setX(int) : void
+ setY(int) : void
+ toString() : String

Fig. 4 . A typical scenario for the Observer pattern

The intent ion of the Observer pattern is to define a one-
to-many dependency between a subject and multiple
observers, so that when the subject changes state, all its
observers are notified and updated automatically [15], [26].
The main problem with the OO implementation of this
pattern is that it requires modification either to the structure
of the classes that play the roles of Subjects and Observers or
to the structure of the class hierarchy. It is therefore hard to
apply the pattern to an existing design. Hanneman and
Kiczales showed how the Observer pattern could effectively
be implemented using AOP (Listing 1) [15].
To keep a figure display updated, the ColorObserver and
PositionObserver aspects are introduced (Listing 2). Their
after advices are triggered whenever a figure should be
updated (the subjectChange pointcut is reached).

 This paper shows how the Observer pattern could be
specified using the AoUML extension. Fig. 5 gives a visual
representation of Listing 1 and Listing 2.

IV. CONCLUSION

The evolution of the AO paradigm is progressing from
programming towards the design stage. Modularization of
crosscutting concerns at the design phase should provide
benefits in two areas: (1) the system model will be consistent
with system implementation; (2) the artefacts developed will
be more reusable and maintainable.

The contribution of this research is a MOF metamodel that
enriches UML with constructs for modelling crosscutting

ADAM PRZYBYLEK: SEPARATION OF CROSSCUTTING CONCERNS AT THE DESIGN LEVEL 555

concerns. Although many existing works on AOM either do
not fit the UML standard or are not complete, there is some
valuable research [7], [13], [14], [21], [36] which has in-
spired this work. Nevertheless, the presented research offers

some advantages over these previous proposals. Firstly, the
extension put forward is easier to comprehend for UML
users than [14] and [21], while at the same time being pow-
erful enough to express crosscutting concerns precisely.

public abstract aspect ObserverProtocol {
 protected interface Subject {};
 protected interface Observer {};
 private WeakHashMap perSubjectObservers;
 protected List getObservers(Subject s) {
 if (perSubjectObservers == null) perSubjectObservers = new WeakHashMap();
 List observers = (List)perSubjectObservers.get(s);
 if (observers == null) {
 observers = new LinkedList();
 perSubjectObservers.put(s, observers);
 }
 return observers;
 }
 public void addObserver(Subject s, Observer o) {
 getObservers(s).add(o);
 }
 public void removeObserver(Subject s, Observer o) {
 getObservers(s).remove(o);
 }
 protected abstract void updateObserver(Subject s, Observer o);

 protected abstract pointcut subjectChange(Subject s);
 after(Subject s): subjectChange(s) {
 Iterator iter = getObservers(s).iterator();
 while (iter.hasNext()) updateObserver(s, ((Observer)iter.next()));
 }
}

Listing 1. The AO implementation of the Observer pattern

public aspect ColorObserver extends ObserverProtocol {
 protected void updateObserver(Subject s, Observer o) {
 ((Screen)o).display(s + " has changed the color");
 }

 protected pointcut subjectChange(Subject s):
 call(void Figure.setColor(Color)) && target(s);
 declare parents: Point implements Subject;
 declare parents: Line implements Subject;
 declare parents: Screen implements Observer;
}

public aspect PositionObserver extends ObserverProtocol {
 protected void updateObserver(Subject s, Observer o) {
 ((Screen)o).display(s + " has changed the position");
 }

 protected pointcut subjectChange(Subject s): target(s) &&
 !call(void Figure.setColor(Color)) && call(void Figure+.set*(..));
 declare parents: Point implements Subject;
 declare parents: Line implements Subject;
 declare parents: Screen implements Observer;
}

Listing 2. Definitions of two concrete observers

556 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Moreover, in contrast to [7], [13], [14], [36] the presented
metamodel provides dedicated icons for the aspect concepts.
Graphical representation improves the understanding of
models. Secondly, the proposal allows all aspect-related con-
cepts to be specified in metamodel terms, so that no textual
specification or notes are necessary. This means that auto-
matic verification of the created models are simplified. Fur-
thermore, the proposed metamodel does not modify the
UML metamodel in any way; it merely adds some meta-
classes. This contrasts with proposals that either are based on

light-weight extensions [7] or modify the UML metamodel
[13]. Thirdly, the extension put forward is adjusted to the
newest UML specification (version 2.1.2). The main draw-
back of the proposal is that it has no support from the avail-
able modelling tools.

REFERENCES

[1] Aldawud, O., Elrad, T., Bader, A.: UML Profile for Aspect-Oriented
Software Development. In: 3rd Workshop on Aspect-Oriented
Modeling with UML at AOSD’03, Boston (2003)

[2] Barra, E., Genova, G., Llorens, J.: An Approach to Aspect Modelling
with UML 2.0. In: 5th Aspect-Oriented Modeling Workshop at
UML’04, Lisbon (2004)

[3] Basch, M., Sanchez, A.: Incorporating Aspects into the UML. In: 3rd
Workshop on Aspect-Oriented Modeling with UML at AOSD’03,
Boston (2003)

[4] Chavez, C., Lucena, C.: A Metamodel for Aspect-Oriented Modeling.
In: Proceedings of the AOM with UML workshop at AOSD’02,
Enschede (2002)

[5] Clarke, S., Banaissad, E.: Aspect-Oriented Analysis and Design: The
Theme Approach. Addison-Wesley, Upper Saddle River (2005)

[6] Elrad, T., Aldawud, O., and Bader, A.: Aspect-Oriented Modeling:
Bridging the Gap between Implementation and Design. In: 1st ACM
SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE'02), Pittsburgh (2002)

[7] Evermann, J.: A meta-level specification and profile for AspectJ in
UML. In: Journal of Object Technology, vol. 6(7), Special Issue:
Aspect-Oriented Modeling, 27-49 (2007)

[8] France, R., Georg, G., Ray, I.: Supporting Multi-Dimensional
Separation of Design Concerns. In: 3rd Workshop on Aspect-Oriented
Modeling with UML at AOSD’03, Boston (2003)

[9] Fuentes, L., Sanchez, P.: Towards Executable Aspect-Oriented UML
Models. In: 10th International Workshop on Aspect-Oriented
Modeling at AOSD’07, Vancouver (2007)

[10] Gao, S., Deng, Y., Yu, H., He, X., Beznosov, K., Cooper, K.:
Applying Aspect-Orientation in Designing Security Systems: a Case
Study. In: 16th International Conference on Software Engineering
(SEKE'04), Banff (2004)

[11] Groher, I., Baumgarth, T.: Aspect-Orientation from Design to Code.
In: Workshop on Early Aspects at AOSD’03, Lancaster (2004)

[12] Groher, I., Schulze, S.: Generating Aspect Code from UML Models.
In: 3rd Workshop on Aspect-Oriented Modeling with UML at
AOSD’03, Boston (2003)

[13] Hachani, O.: Aspect/UML: extending UML metamodel for Aspect.
Research report, France (2003)

[14] Hachani, O.: AspectJ/UML: extending UML metamodel for AspectJ.
Research report, France (2003)

[15] Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java
and AspectJ. In 17th Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’02), Seattle (2002)

[16] Jacobson, I., Ng, P.: Aspect-Oriented Software Development with Use
Cases. Addison-Wesley, Upper Saddle River (2005)

[17] Kande, M.M.: A Concern-Oriented Approach to Software
Architecture. PhD. Swiss Federal Institute of Technology, Lausanne
(2003)

[18] Kande, M.M., Kienzle, J., Strohmeier, A.: From AOP to UML - A
Bottom-Up Approach. In: Proceedings of the AOM with UML
workshop at AOSD’02, Enschede (2002)

[19] Kande, M.M., Kienzle, J., Strohmeier, A.: From AOP to UML:
Towards an Aspect-Oriented Architectural Modeling Approach.
Technical Report, Swiss Federal Institute of Technology Lausanne
(2002)

[20] Kiczales, G. et.al.: Aspect-Oriented Programming. In: 11th European
Conference on Object-Oriented Programming (ECOOP’97). LNCS,
vol. 1241, pp. 220–242. Springer, New York (1997)

[21] Lions, J.M., Simoneau, D., Pilette, G., Moussa, I.: Extending Open-
Tool/UML Using Metamodeling: an Aspect Oriented Programming
Case Study. In: 2nd Workshop on Aspect-Oriented Modeling with
UML at UML’02, Dresden (2002)

[22] Mosconi, M., Charfi, A., Svacina, J.: Applying and Evaluating AOM
for Platform Independent Behavioral UML Models. In: 7th
International Conference on Aspect-Oriented Software Development
(AOSD’08), Brussels (2008)

«interfejs»
Interfejs4
«interface»
Subject

«interfejs»
Interfejs4

«interface»
Observer

#subjectChange(Subject s)

#getObservers(Subject s): List

+addObserver(Subject s, Observer o): void

+remoweObserver(Subject s, Observer o): void

#updateObserver(Subject s, Observer o): void

ObserverProtocol

-perSubjectObservers: WeakHashMap

after(Subject s): subjectChange(s) {
 Iterator iter = getObservers(s).iterator();
 while (iter.hasNext()) updateObserver(s, ((Observer)iter.next()));
}

Point Subject

Line Subject

#subjectChange(Subject s): !call(void Figure.setColor(Color))

&& call(void Figure+.set*(..)) && target(s);

Screen Observer

#updateObserver(Subject s, Observer o): void

PositionObserver

Point Subject

Line Subject

#subjectChange(Subject s): target(s)

 && call(void Figure.setColor(Color))

Screen Observer

#updateObserver(Subject s, Observer o): void

ColorObserver

Fig. 5 . The class diagram using the AoUML extension

ADAM PRZYBYLEK: SEPARATION OF CROSSCUTTING CONCERNS AT THE DESIGN LEVEL 557

[23] Object Management Group: OMG UML, Infrastructure, V2.1.2.
Document Number: formal/2007-11-04, http://www.omg.org/spec/
UML (2007)

[24] Object Management Group: OMG UML, Superstructure, V2.1.2.
Document Number: formal/2007-11-02, http://www.omg.org/spec/
UML (2007)

[25] Pawlak, R. et.al.: A UML Notation for Aspect-Oriented Software
Design. In: Proceedings of the AOM with UML workshop at
AOSD’02, Enschede (2002)

[26] Piveta, E.K., Zancanella, L.C.: Observer Pattern using Aspect-
Oriented Programming. In: 3rd Latin American Conference on Pattern
Languages of Programming, Porto de Galinhas (2003)

[27] Przybylek, A.: Post Object-Oriented Paradigms in Software
Development: a Comparative Analysis. In: 1st Workshop on
Advances in Programming Languages at IMCSI'07, Wisła (2007)

[28] Reina, A. M., Torres, J., Toro, M.: Towards Developing Generic
Solutions with Aspects. In: 5th Aspect-Oriented Modeling Workshop
at UML’04, Lisbon (2004)

[29] Sapir, N., Tyszberowicz, S., Yehudai, A.: Extending UML with
Aspect Usage Constraints in the Analysis and Design Phases. In: 2nd
Workshop on Aspect-Oriented Modeling with UML at UML’02,
Dresden (2002)

[30] Schauerhuber, A. et.al.: A Survey on Web Modeling Approaches for
Ubiquitous Web Applications. Technical Report, Vienna University
of Technology, 2007

[31] Stein, D., Hanenberg, S., Unland, R.: An UML-based Aspect-
Oriented Design Notation. In: Proceedings of the AOM with UML
Workshop at AOSD’02, Enschede (2002)

[32] Stein, D., Hanenberg, S., Unland, R.: Designing Aspect-Oriented
Crosscutting in UML. In: Proceedings of the AOM with UML
Workshop at AOSD’02, Enschede (2002)

[33] Störzer, M., Hanneberg, S.: A Classification of Pointcut Language
Constructs. In: SPLAT’05 Workshop, Chicago (2005)

[34] Suzuki, J., Yamamotto, Y.: Extending UML with Aspects: Aspect
Support in the Design Phase. In: 3rd Aspect-Oriented Programming
Workshop at ECOOP’99, Lisbon (1999)

[35] Wrycza, S., Marcinkowski, B., Wyrzykowski, K.: UML 2.0 in Infor-
mation Systems Modeling. Helion, Warsaw (2005)

[36] Yan, H., Kniesel, G., Cremers, A.: A Meta Model and Modeling
Notation for AspectJ. In: 5th Workshop on Aspect-Oriented Modeling
at UML’04, Lisbon (2004)

[37] Zakaria, A. A., Hosny, H., Zeid, A.: A UML Extension for Modeling
Aspect-Oriented Systems. In: 2nd Workshop on Aspect-Oriented
Modeling with UML at UML’02, Dresden (2002)

