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Abstract—The early identification of applications through the
observation and fast analysis of the associated packet flows
is a critical building block of intrusion detection and policy
enforcement systems. The simple techniques currently usedin
practice, such as looking at the transport port numbers or
at the application payload, are increasingly less effective for
new applications using random port numbers and/or encryption.
Therefore, there is increasing interest in machine learning tech-
niques capable of identifying applications by examining features
of the associated traffic process such as packet lengths and
interarrival times. However, these techniques require that the
classification algorithm is trained with examples of the traffic
generated by the applications to be identified, possibly on the link
where the the classifier will operate. In this paper we provide
two new contributions. First, we apply the C4.5 decision tree
algorithm to the problem of early application identification (i.e.
looking at the first packets of the flow) and show that it has better
performance than the algorithms proposed in the literature.
Moreover, we evaluate the performance of the classifier when
training is performed on a link different from the link where the
classifier operates. This is an important issue, as a pre-trained
portable classifier would greatly facilitate the deployment and
management of the classification infrastructure.

I. I NTRODUCTION

T HERE is a constant growth of new Internet applica-
tions using either random transport port numbers or re-

using well-known ports registered to other applications. For
example, peer-to-peer applications do not require the usage
of well-known ports and some peer-to-peer applications, such
as Skype, use port hopping. Moreover, recent applications fre-
quently tunnel traffic through HTTP connections to seamlessly
cross firewalls and NAT boxes. In these cases, the application
generating a traffic flow cannot be identified by simply looking
at the transport ports.

Therefore, there is a growing interest for alternative classi-
fication algorithms relying on features different from transport
ports. The most widespread approach relies on the inspection
of the packet payload and on the matching with signatures
characteristics of the applications to be identified. This so-
lution has the drawback of requiring computationally heavy
elaborations that must be made at wire-speed; further it is
not effective on cyphered traffic, such as that generated by
applications secured through SSL.
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Other approaches use the information available in the non-
cyphered IP packet header and complement these data with the
analysis of statistical properties of the packet flow, considered
as a random process. An example of this type of additional
metrics is the packet interarrival time. With this approach,
each traffic flow is associated with a set of features and, by
examining the measured values of these features, a classifier
yields the most likely application associated to the flow.

In [1] and [2] the authors use a Bayesian method to
classify a traffic flow by using metrics such as flow duration,
flow bandwidth, and statistics on packet sizes and interarrival
times. The main drawback of this approach is that it is
possible to classify only terminated flows. In [3] and [4], the
authors introduce the idea ofEarly Application Identification
and classify traffic flows by looking only at the lengths of
the first packets in a flow; classification is performed by
using clustering techniques such as K-means, Hidden Markov
Models (HMM) and Gaussian Mixture Models (GMM). The
authors of [5] further extend the idea by including packet
interarrival times in the feature set and by developing a new
classification algorithm based on the Bayesian method. Finally,
a preliminary comparison of general-purpose algorithms is
given in [6], and the C4.5 algorithm [7] is indicated as one
of the best performing. However, in [6] the authors study
the classification of terminated flows and early application
identification is not considered.

Using Machine Learning techniques for application identi-
fication still presents some challenges. In order to train the
classifier it is necessary to collect a representative set offlow
instances whose applications are known in advance. For ex-
ample, by using offline payload inspection techniques to label
the training data. The main issue with this approach is that the
statistical properties of the traffic flows vary from link to link,
therefore we expect that, if we train a classifier at a given link
and operate it at another link, performance will be worse.

Another problem is that the flow must be observed for some
time, in order to collect data enough to categorize it. In the
case of early identification a trade-off must be found between
speed and accuracy.

This paper presents several contributions along the line of
assessing the capability of state-of-the-art Machine Learning
techniques for fast traffic classification. The key contributions
of the paper are the following.
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First, we propose the C4.5 algorithm in the context of early
application identification and we compare its accuracy to the
results reported in [2], [4], and [5] and obtain superior results
in terms of both true and false positives.

Second, we observe that the classification performance
obtained by observing as few as 5 packets per direction is
very similar to the performance obtained by observing all the
packets in a flow, provided that suitable features, such as the
actual packet lengths, are chosen for classification.

Third, we evaluate the performance of a classifier trained in
a WAN link different than the one where it is operated. The
performance is worse than using the classifier in the same
link, but not to a large extent. Further, there are significant
performance differences among protocols; in particular, the
classification of HTTP protocol is very robust, whereas the
Telnet and FTP traffic flows are more difficult to identify.

The paper is organized as follows. Section II explores the
state-of-the-art of traffic classification using Machine Learning
techniques. Section III discusses the data and the tools we use
in the paper and explains the experimental setup. Section IV
reports and discusses the results of our investigation. Finally,
the last Section yields our concluding remarks.

II. BASIC CONCEPTS ANDRELATED WORK

We identify two main application areas of Internet traffic
classification: the separation of malicious traffic from good
traffic and the identification of the application that generates
the packets. Today, deep packet inspection boxes are used for
both objectives. For example SNORT [8] for identification of
malicious traffic and l7filter [9] for application identification.
Both packages perform per-flow classification by comparing
the payload of the first packets in the flow with a set of pre-
configured signatures, which are generally human-made.

Deep packet inspection is not adequate when traffic is
cyphered or when high-speed links are considered, therefore
there is a growing research interest for traffic classification
considering only packet lengths, interarrival times and any
other information available in the protocol headers. One of
the first proposals of application identification through the
examination of the traffic process is made in [10], where the
authors point out that RealAudio traffic exhibits a behavior
significantly different from that of telnet, HTTP or FTP traffic,
in particular in terms of flow duration and regularity of packet
lengths and interarrival times. The authors, however, do not
propose a specific classification algorithm.

A more recent work proposes to use clustering techniques
for mapping a traffic flow to a QoS class [11]. The authors find
that the most significant metrics are the average packet size
and the flow duration. The main problem with these metrics
is that classification can be performed only when the flow is
already finished, limiting the practical utility of this technique.

The authors of [12] apply unsupervised Bayesian techniques
to the problem of application identification and use a feature
selection technique to to find the optimal set of attributes.
The authors find that the most influential attributes are the
mean and the variance of the packet lengths, the total amount

of traffic in the flow, and the flow duration. Also the mean
interarrival time has some influence. As for [11], not all these
metrics are suitable for early application identification.

In [1], the authors propose a supervised Bayesian classifier
and also use some TCP-specific metrics such as the count of all
the packets with the PUSH bit set. However, only semantically
complete TCP connections are considered.

Paper [13] proposes how to use behavior analysis to aug-
ment the efficacy of automatic classification techniques. Their
BLINC framework considers attributes such as the social and
functional role of the hosts, which require long observation
times to elaborate and, therefore, making BLINC a valuable
solution for off-line classification.

In [6], the authors compare the performance of five general
purpose supervised Machine Learning algorithms, showing
that the C4.5 tree based algorithm provides a good trade-
off between classification accuracy and speed. The authors
also consider two feature reduction schemes and identify two
feature sets that show similar performance. In one feature set
packet length statistics are predominant, while in the second
feature set there is a balance of packet lengths and interarrival
times. The authors of [6] have also developed a set of tools
[14] which automates the process of collecting packet traffic,
reconstructing the flows, computing metrics and invoking the
Machine Learning algorithms.

The authors of [3] study the problem of Early Application
Identification and show that it is enough to know the length of
the first four or five packets to achieve promising classification
results. The authors also compare three supervised clustering
techniques.

Finally, the authors of [5] further refine the idea, by con-
sidering also packet interarrival times and developing a novel
classification algorithm, but do not compare it to other state-
of-the-art classification algorithms.

III. E XPERIMENTAL SETUP

In our research work we have set up a laboratory to
experiment in practice the classification algorithms. We have
used publicly available software and data. Packet traces rep-
resentative of WAN traffic have been retrieved from the
NLANR traffic archive [15]. In particular we have used the
auckland-vi-20010611, auckland-vi-20010612,
andnzix-ii-20000706. The twoauckland traces were
collected at the same network link; in the paper, we will use
the first trace to train the Machine Learning classifier, whereas
the second trace will be used to assess the classification
performance. We will refer to the first trace asSamplepoint
A (training) and to the second trace asSamplepoint A (test).
The third trace was collected at a different link, and it willbe
referred to asSamplepoint B (test).

In order to group packets in flows and to elaborate per-flow
metrics, we have used theNetMate[16] software, extended
with the NetAI[14] patch. This way, we obtain the features
reported in Table I, which we will refer to as the twoStandard
sets. We have isolated theStandard 2features because they
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TABLE I
THE StandardFEATURES

Standard 1 features
Min, max, mean and std. deviation of the packet lengths in theforward
direction.
Min, max, mean and std. deviation of the packet lengths in thebackward
direction.
Min, max, mean and std. deviation of the packet interarrivaltimes in the
forward direction.
Min, max, mean and std. deviation of the packet interarrivaltimes in the
backward direction.
Transport protocol number.
Total number of TCP URG and PUSH flags in the forward direction.
Total number of TCP URG and PUSH flags in the backward direction.
Standard 2 features
Flow duration.
Total number of bytes and of packets in the forward direction.
Total number of bytes and of packets in the backward direction.

TABLE II
THE ExtendedFEATURES

Extended 1 features
Lengths of the first 3 packets in the forward direction
Lengths of the first 3 packets in the backward direction
Interarrival times of the first 3 packets in the forward direction
Interarrival times of the first 3 packets in the backward direction
Extended 2 features
Lengths of the first 5 packets in the forward direction
Lengths of the first 5 packets in the backward direction
Interarrival times of the first 5 packets in the forward direction
Interarrival times of the first 5 packets in the backward direction

are not meaningful when only the first packets of the flow are
considered.

We have also implemented a new patch forNetMate to
collect the feature sets proposed in [3] and [5], referred toas
the Extendedfeature sets (Table II). These extended sets are
the actual packet lengths and the interarrival times of the first
packets of the flows. We have grouped the features in two
sets of increasing size. TheExtended 1feature set includes
the packet lengths of the first three packets of a flow in each
direction and the two interarrival times between them in each
direction, for a total of 10 features. TheExtended 2feature set
includes all the packet lengths and interarrival times involving
the first 5 packets in a flow.

As a concluding remark, we note that theNetMate soft-
ware defines a flow as the packets belonging to a single TCP
connection, in case TCP is the transport protocol. In case UDP
is used, the flow is defined as all the packets with the same
IP addresses and UDP port numbers and considered finished
when no packets have arrived for 600 s. From all the flows
available in the data sets, we have randomly chosen 4000
flows for each of the five application protocols considered in
this paper. For some protocols there were fewer flows than
required, so we used all the available ones. The total number
of flows chosen in each data set is reported in Table III.

Then, we have processed the selected flows and flow
features by using theWeka [17] machine learning suite to
train the classifier and perform the validation tests. We have
preliminarly evaluated the same algorithms as in [6] and
concluded that the C4.5 algorithm [7] gives the best results,

TABLE III
SIZE OF THE DATA SETS

Data Set Number of Flows Flows with at least 5
packets per direction

Samplepoint A (training) 15606 15300
Samplepoint A (test) 15803 15545
Samplepoint B (test) 13335 12788

so we will show only the results obtained with that algorithm.
In fact, the C4.5 algorithm well suits problems in which
several attributes assume discrete values and when training
data is noisy, which is common in large data sets. To ease a
comparison, we performed our assessment by using the same 5
applications as in [6], i.e. FTP-data, Telnet, SMTP, DNS, and
HTTP. For the training and for the validation we assumed that
the flow category label is the server well-known port number.

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of Machine
Learning techniques for traffic classification and substantiate
the following findings:

• the C4.5 algorithm is superior to the algorithms proposed
in [2], [4], and [5];

• the classification accuracy obtained with five packets per
direction is similar to the accuracy obtained observing
all the packets in the flow even if the trained classifier is
used on a different link, but only if the Extended Features
are used;

• the performance loss measured when the trained classifier
is used on a different link is mainly due to a few
protocols, whereas other protocols, in particular HTTP,
show minimal performance differences.

A. C4.5 Algorithm for Early Application Identification

As a first result, we show that the the state-of-the art C4.5
algorithm [7] improves the classification performance overthe
algorithm proposed in the literature. As performance metrics
we use the True Positive Rate and the False Positive Rate,
defined as:

TPR(i) =
ei

Ei

FPR(i) =
ēi

ei + ēi

where Ei is the number of instances of protocoli in the
evaluation set,ei is the number of instances of protocoli

correctly classified asi, andei is the number of instances of
other protocols incorrectly classified asi.

In Table IV, we compare the True Positive Rates as reported
in [2], [4], [5], as well as the test results obtained using
the C4.5 classifier trained on theSamplepoint A (training)
data and tested on theSamplepoint A (test)data. In our
experiment we used theStandard-1plus Extended-2feature
sets. In Table V, we make a similar comparison considering
the False Positive Rates. In reporting results from other papers,
we have considered only the classes considered in at least two
papers.
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TABLE IV
COMPARISON OF THETRUE POSITIVE RATES

Protocol [2] [4] [5] Our solution
HTTP 89.2% 96.2% 91.8% 99.7%
SMTP *97.2% 90.1% 94.5% 98.6%
POP3 *97.2% 93.4% 94.6% N/A
FTP 97.9% 92.4% N/A 94.8%

*In [2] STMP and POP3 form a single class

TABLE V
COMPARISON OF THEFALSE POSITIVE RATES

Protocol [2] [4] [5] Our solution
HTTP 10.4% 1.3% 6.4% 0.1%
SMTP *2.3% 0.1% 3.1% 1.4%
POP3 *2.3% 0.7% 3.1% N/A
FTP 1.8% 0.4% N/A 0.5%

*In [2] STMP and POP3 form a single class

Our solution shows higher true positive rates than the other
solutions for HTTP and SMTP and is inferior to [2] only for
the FTP class, where, however, our solution shows a much
lower FPR. Our proposal shows false positive rates superiorto
[2] and [5]. Compared to [4], our solution performs similarly
for the FTP class and worse only for the SMTP class, where
our solution scores a much higher TPR.

Finding a good trade-off between TPR and FPR is a com-
mon challenge when using Machine Learning techniques. In
the context of internet traffic classifications for monitoring and
security purposes, it is important to achieve a low FPR. From
Tables IV and V, we conclude that the C4.5 classifier shows an
FPR performance comparable to the best other solution ([4]),
but with a higher TPR. Therefore, in the rest of the paper we
will consider only the C4.5 algorithm.

B. Effect of the Observation Horizon and of the Feature Sets

Table VI reports the percentage of incorrectly classified
traffic flows for different observation horizons and different
feature sets. Results are given for three data sets. The column
labeled Samplepoint A(training)contains the percentage of
flows in the training set equivocated by the classifier, which
gives us a lower bound on the classification error that we
expect at run time. In all the cases, when we consider at least
the first 5 packets per direction, the residual error is lower
than 0.3%, and is about 0.5% if we consider only the first 3
packets per direction.

In Table VI the column labeledSamplepoint A (test)gives
the observed percentage of incorrectly classified packets when
the trained classifier is used on a different data set collected
on the same WAN network link. Again, when we consider
the first 5 or more packets per direction, the error does not
change and settles at about 1.5%. On the other hand, if we
consider only the first 3 packets, the error is more than 3.5%.
This trend is in line with [3] and [5], which indicate in 4 or
5 packets the ideal observation horizon.

The last column gives the classification error when the
trained classifier is used with a data set collected on a
completely different WAN network link. There are no data

TABLE VI
INCORRECTLYCLASSIFIED INSTANCES USING THEStandardAND Extended

FEATURES

Samplepoint
Packets per direction Feature set A (training) A (test) B (test)
3 std1 0.48% 3.52% 13.54%
3 std1 + ext1 0.44% 3.22% 13.06%
5 std1 0.27% 1.55% 6.01%
5 std1 + ext2 0.22% 1.80% 4.10%
10 std1 0.21% 1.66% 6.01%
all std1 + std2 0.21% 1.45% 4.45%

TABLE VII
ACCURACY BY CLASS WHEN USING THEStandard 1AND Extended 2

FEATURES

Samplepoint A Samplepoint B
Class TPR FPR TPR FPR
DNS 100% 0.4% 99% 0.1%
FTP (data) 95% 0.5% 77% 1.4%
Telnet 92% 0.1% 84% 0.4%
SMTP 98% 1.4% 95% 3.0%
HTTP 99% 0.1% 99% 0.2%

in the literature about this problem, but we expect that the
different statistics of the collected features hamper the work
of the classifier. Results show that the error grows more than
3.5 times, if we consider only the standard set and 3, 5, or 10
packets. Slightly better results are obtained if all the packets
of the flow are considered, with an error about 4.5%, which is
only 3 times larger than in theSamplepoint A(test)case. On the
other hand, the Extended Set greatly improves the robustness
of the classifier, bringing the error from about 6% down to
about 4%, which is about 2.5 times the result obtained in the
Samplepoint A(test)case and is better than the result obtained
with the standard set and observing all the packets in the
flow. Further, these apparently non promising results should
not make us abandon the idea of using this kind of classifiers
because, as we show later, the vast majority of the incorrectly
classified packets come from a limited amount of protocols.

C. Per-protocol Classification Accuracy

Finally, Table VII shows the classification performance ob-
tained on test data, broke down by protocol. All the results are
obtained considering 5 packets per direction and theStandard
plus the Extended 2metrics. As in the experiment above,
the classifier was trained with theSamplepoint A (training)
dataset and operated with theSamplepoint A (test)andB (test)
datasets.

As already observed in [3] and [5], there are significant per-
formance differences among protocols. Our results, however,
shed light on what protocols fingerprints are most likely to be
preserved from link to link.

In Samplepoint A, the true positives are always reasonably
good, with only FTP and Telnet equal to or below 95%. Port-
ing the classifier toSamplepoint Bworsens the performance of
these two protocols, whose TPR drops below 85%, while the
other protocols maintain their good performance. Regarding
the false positives, the only class with FPR larger than 1% is
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SMTP in theSamplepoint A, whereas, in theSamplepoint B
case, both SMTP and FTP have a large FPR.

At the light of these results, we remark that, when porting
a trained classifier, those protocols that had a lower TPR tend
to decrease their TPR and those protocols that had a higher
FPR tend to increase it. However, there can be anomalies, for
example in our experiment DNS and FTP had similar FPR in
the first link and very different FPR in the second.

V. CONCLUSIONS

In our research work we have experimented, with a thorough
laboratory activity, the behavior of machine learning algo-
rithms for the classification of applications by examining the
traffic flow process. We have concentrated our attention to the
early application identification, therefore, we have examined
extended feature sets including lengths and interarrival times
of the first few packets of flows and we have matched their
performance against that of standard feature sets requiring the
examination of the entire traffic flow.

We have examined the behavior of the C4.5 decision tree
algorithm with extended feature sets and we have determined,
as a novel result, that this algorithm performs very well for
early application identification.

We have proceeded by studying a problem so far left open
in the related research, that is, the portability of a trained
Machine Learning classifier on a link different from that used
for training. The possibility of porting pre-trained classifier
would be very appealing for practical implementations. We
have determined that the performance of a trained classifier
moved to another link worsens, but the degradation seems to
be concentrated on specific protocols such as FTP and Telnet,
while other protocols such as HTTP and DNS are recognized
effectively even by a moved classifier.

Our current work concentrates on devising feature sets
capable of improving the portability of trained classifiersto
different links.
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