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Abstract—We introduce our “holistic” platform for building The goal of our platform is to enable the rapid creation

wireless ad hoc sensor networks and focus on its most represe of wireless ad hoc sensor networks using the smallest and
tative and essential virtualization component: VUE (the Virtual cheapest devices available today. In our networks, sudceyv

Underlay Emulation Engine). Its role is to provide a vehicle ble of ad h fi hile offeri h .
for authoritative emulation of complete networked applicaions /€ capable orad hoc routing while ofiering enough processi

before physically deploying the wireless nodes. The goal ts be POWer to cater to complex applications involving distriit
able to verify those applicationsexhaustively before programming  sensing and monitoring. To thoroughly test and evaluate our
the hardware, such that no further (field) tests are necessgr We  work, we turn to virtualization.

explain how VUE? achieves this goal owing to several facilitating At the lowest level, virtualization can be accomplished by

factors, most notably the powerful programming paradigm . lati - fi ticular instructi t ib
adopted in our platform. As implied by the holistic nature of simulating in software a parucular instruction set, 1.8y,

the discussed system, our presentation touches upon opereg Means of a bytecode interpreter. This approach has been the
systems, simulation, network protocols, real-time system and basis even for commercial grade products, but within the

programming methodology. scope of our paper the primary example is Maté [8]. The
main shortcomings of such an approach are (a) the interprete
|. INTRODUCTION overhead (in terms of both space and time), (b) a lack of

back ends for compilation from familiar high-level langesg
LTHOUGH simple wireless devices built from low-endinto the invented bytecode format, and (c) the need to define
components are quite popular these days, one seld@ma interaction with peripheral components, e.g., transcs,
hears about serious wireless networks within this framkwoin a manner consistent with the invented instruction set. If
While it is not a big challenge to implement simple broacthe virtual machine is fairly well established, e.g., JVMen
casters of short packets, it is quite another issue to ttlemthone can claim that at least (b) and (c) have been addressed.
into collaborating nodes of a serious ad hoc wireless systeHowever, there seems to exist no successful virtual machine
Apparently, many popular ad hoc routing schemes proposgelared to sensor devices. For example, even virtual machine
and analyzed in the literature [1]-[6] address devices \ithintended for small footprint devices (like Dalvik VM [9], ga
somewhat larger resource base. To make matters worse, sefithe Google Android platform [10]) are “heavyweight” for
people believe that such devices must be programmed in Jagasor nodes. In addition (as it happens with Dalvik VM), not
to make serious applications possible [7]. all of the language libraries are implemented, raising tioles
In this context, efforts to introduce an order and methodadn the extent that VMs can be ported to small platforms
ogy into programming small devices often meet with skepvithout compromising fidelity.
ticism and shrugs, the common misconception being thatOn the other end of the spectrum, we find virtualization by
one will not have to wait for long before those devicemeans of an API provided by the underlying operating system.
disappear and become superseded by larger ones capabl€hef API is accessible using familiar high-level languagies |
supporting “serious” programming platforms. This is natetr C or C++. One example is the POSIX API. A platform that
Despite the ever decreasing cost of microcontrollers, vee sean provide run-time emulation of an API can be thought of as
absolutely no reduction in the demand for the ones at teaccessfully virtualizing at the level of the API. Unforately,
lowest end of the spectrum. On the contrary: their low cosommodity OS APIs are very broad, and the abstractions
and power requirements enable new applications and narrihat they promote are expensive to implement on a sensor
the gap between the publicized promise of ad hoc wireledsvice. For example, the Berkeley sockets API is a powerful,
sensor networking and the actual state of affairs. Simiar albeit expensive, way to abstract network communication.
the impossibility of having the three desirable propertiés Even worse, it is not a useful abstraction for small devices
food (cheap, fast, and good tasting) present at the same titiat do not even implement a TCP/IP stack.
wireless sensor networking has problems being cheap, ad hodVe believe that a viable compromise between the two
and useful, all at once. extremes is to introduce a small footprint OS, to specify

978-83-60810-14-9/08/$25.00 2008 IEEE 853



854 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

the API supported by the OS, and to subsequently offerA highly practical project—the development of a low-
virtualization at the level of that API. Note that in follomg cost wireless badge—inspired the idea to implement a
this approach, we do not need a new toolchain for codemplete executable environment for microcontrollersedas
production, since we neither have to invent a new highen SMURPH’s programming paradigm. After developing a
level language nor do we need to procure a compiler baBMURPH model for the badge, the most reliable way of
end for a new (invented) instruction set. In this paper, weansporting it to the real device was to implement the tar-
focus on the interplay of PicOS (our operating system for tiget microprogram on top of a tiny execution environment
microcontrolled devices [11]) and VUEthe Virtual Under- mimicking SMURPH’s mechanism for multithreading and
lay Emulation Engine for realistically simulating netwerk event handling [11]. Incidentally, that mechanism faatkid
applications programmed in PicOS). a stackless implementation of multithreading. Consedyent
the resultant footprint of the complete application wasg-tri

Il. PIcOS ially small (< 1 KB of RAM), while the application itself

The most serious problem with implementing non-trivialwas expressed as a structured and self-documenting program
structured, multitasking software on microcontrollersthwi strictly conforming to its SMURPH model.
limited RAM is minimizing the amount of memory resources )
needed to sustain a thread. The most troublesome comporiend € anatomy of a PicOS thread
of the thread footprint is its stack, which must be prealteda  Fig. 1 shows a sample PicOS thread. In this C code, new
to every thread in a safe amount sufficient for its maximukeywords and constructs are straightforward macros helndle
possible need. by the standard C preprocessor. T ry statements mark
PicOS strikes a compromise between the complete laidle different states of the thread’s FSM.

of threads and overtaxing the tiny amount of RAM with )
thread (sniffer)

fragmented stack space. A thread contains a numbehnexdk- entry (RC_TRY) -—
pointsthat provide preemption opportunities. In the imposed g:g’;‘:ﬁ = EZ‘J‘ﬂit(ﬁ;ﬁzéffd);
structured organization of a thread, we try to (a) avoid iogk entry (RC_PASS) +——— '
the CPU at a single thread for an extensive amount of time if ‘gg::e‘;;;i;::‘r‘s ;;|g§§§f’}“) {
and (b) use the checkpoints as a natural and useful element delay (1000, RC_LOCKED) ;
of a thread’s specification to enhance its clarity and redtsce N release;
structure’s complexity. These ideas lie at the heart of BisO
concept of threads, which are structured like finite state entry (RC_LOCKED)
machines (FSMs) and exhibit the dynamics of coroutines, [12] entry (RC_ENP)
[13] with multiple entry points and implicit control trarest et (e ety
The value of FSM-like programming abstractions is evident proceed (RC_TRY);

to anyone developing networking protocols, as most prdsoco endthread

tend to be described, or even formalized, as communicating

FSMs. In addition, programming using a coroutine paradigm Fig. 1: Code for a sample PicOS thread.

is a fairly well-accepted approach and has survived in moder

languages (e.g., “stackless” Python [14] and more recentlyA thread can lose the CPU when (a) it explicitly relinquishes

Ruby [15]). The only general criticism coroutines receise icontrol at the boundary of its current state (etgl, ease) or

that the lack of arbitrary preemption might allow CPU-boun¢b) a function call blocks (e.gt,cv_r np if no new packets

tasks to monopolize the CPU. This is not a fundamentate available). In both cases, the CPU returns to the sciedul

problem, because a CPU-bound task can be broken down iatgich can then allocate it to another thread. Whenever athre

a sequence of states to allow preemption at state transitiog assigned the CPU, execution continues in that thread’s

However, an important element of our view is to use thgurrent state

coroutine paradigm as a meansdiscourageCPU-intensive  Before executingr el ease, a thread typically issues a

tasks on sensors. Instead, any tasks of this kind should mi@mber ofwait requestsidentifying one or more events to

either moved to data collectors (i.e., full-scale comm)t@r resume it in the future (e.gahen for IPC anddel ay for timed

delegated to specialized (possibly reconfigurable) harelwa events). The collection of wait requests issued by a thread i
On a historical note, we arrived at PicOS indirectly agvery state describes the dynamic options for its tramsitio

a step in the evolution of our network simulation systerfunction from that state.

SMURPH [16], [17]. As SMURPH underwent a number of en- o

hancements, its capability for rigorous representatioalighe B- System organization

relevant engineering problems occurring in detailed proto  The organization of PicOS is shown in Fig. 2. VNETI

design turned it into a specification system. Although dgdn (Versatile NETwork Interface) acts as a layerless netwyki

towards modeling networks and their protocols, SMURPHhodule, whereby the equivalents of “protocol stacks” are im

became ale factogeneral purpose specification and simulatioplemented as plug-ins. The set of operations availableug-pl

package for reactive systems [18], [19]. ins involve queue manipulations, cloning packets, insgrti
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special packets, and assigning to them the so-cdilgabsition praxis I TARP | other
codesrepresenting various processing stages. Any protocol (application) lpeles

can be implemented within this paradigm, with TARP (our Agl ] ' olugs Y

Tiny Ad hoc Routing Protocol [20], [21]) being the most VNETI Channel
prominent example. The modus operandi of VNETI is that Al ”’l°de'
packets areclaimed by the protocol plug-ins as well as the ! ! 7 Al
physical interface modules (PHY) at the relevant moments of || VUE? = Virtual Underlay Emulation Engine I

their life in the module’s buffer space. There is no explicit v v v ¥

concept of processing hierarchy, e.g., enforcing traditio e e I e el
layers; thus, packets in VNETI are handled “holistically.” TEEIEE

o —— [
praxis TARP other

(application) plugins
1 ] H Fig. 3: The structure of a VUEmodel.
API \ \ plugs
VNETI
phy . .

H f 1 the model execution too long to wait for the results), and

\ PicOS kernel driver|| driver all that matters is the abstract delays separating thealirtu
1 - events. For example, two threads in SMURPH may be se-
microcontroller I mantically equivalent, even though one of them may exhibit

UART PRI, ADC.DAC ¥ H a drastically shorter execution time than the other, e.ge d
re [ other to more careful programming and/or optimization. In PicOS,

network .

module § jevices however, the threads are not (just) models but they run the

“real thing.” Consequently, the execution time of a threaaym
directly influence the perceived behavior of the PicOS node.
In this context, the following two assumptions made the VUE
project worthwhile:

Fig. 2: The structure of PicOS.

All API functions interfacing the application (called the
praxis in PicOS) to VNETI have the same status as those
interfacing the praxis to the kernel, i.e., they are formall
system calls. As a thread in PicOS can only be resumed at
a state boundary, a potentially blocking system call resguir
a state argument (e.g., the first argument in the functioh cal >
tcv_rnp in Fig. 1).

1) PicOS programs are reactive, i.e., they are practically
never CPU bound. The primary reason why a PicOS
thread is making no progress is that it is waiting for
a peripheral event rather than the completion of some
calculation.

) If needed (from the viewpoint of model fidelity), an
extensive period of CPU activity can be modeled in

I1l. VUE?2 SMURPH by appropriately (and explicitly) delaying

The close relationship between PicOS and our discrete-time certain state transitions.

event-driven network simulator named SMURPH [16], [17] !n most cases, we can ignore the fact that the execution
makes it possible to automatically transform PicOS prax€s & PicOS program takes time at all and only focus on
into SMURPH models with the intention of executing theneflecting the accurate behavior of the external eventsh Wit
virtually. VUE? implements the PicOS AP within SMURPH, this assumption, the job of porting a PicOS praxis to its VUE
and in some cases, it can simply transform PicOS keyword@del can be made simple. To further increase the practical
into their SMURPH counterparts. To represent the physicgdlue of such a model, SMURPH provides for the so-called
environment of a PicOS praxis, it also provides a collectiofisualization modef execution. In that mode, SMURPH tries
of event-driven interfaces. This way, a praxis can be cosdpil©© Map the virtual time of modeled events to real time, such
and executed in the environment shown in Fig. 3, with aifat the user has an impression of talking to a real appbinati
the relevant physical elements of its node replaced by thdipis is only possible if the network size and complexity wilo

detailed SMURPH models. Notably, exactly the same sourt Simulator to catch up with the model execution to real
code of VNETI is used in both cases. time; otherwise, a suitable slow motion factor can be agplie

A. Time flow B. Model scope

The fidelity of the emulation environment depends to a SMURPH threads are programmed in C++, which we
great extent on appropriately handling the flow of time,, i.ehave extended with new keywords and constructs. A special
equating emulated time with real time. In SMURPH, as in afireprocessor (dubbed SMPP) processes the SMURPH source
event-driven simulators, the time tags associated witintsveto produce pure C++ code. PicOS praxes are programmed
are purely virtual. The actual (physical) execution timeaof in plain C with the assistance of a few macros (see Fig. 1)
SMURPH thread is essentially irrelevant (unless it rendeespanded by the standard C preprocessor. Putting trivial sy
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tactic issues aside, the most fundamental difference legtwe
the two systems is the fact that a SMURPH model must
describe the whole network (i.e., a multitude of nodes, each
of them running a private copy of the application), while a comnecting to UART at node 0 ...
complete PicOS praxis is a single program that runs on a | connected

single device. This difference becomes more pronounced if

the network consists of nodes running different praxes,ta no

Node Id: |0 UART (ascii) Connect Quit

uncommon scenario. 8] UART at node 0 O0Oe
We make extensive use of C++ classes to accomplish the
conversion from a single-application node to a multi-naate( Peg: s (lh mid pl) m f g t r h g

. : e . T101(0101) at FLO at 1: far #1
possibly multi-application) emulator. In the conversieach

PicOS praxis becomes a C++ class. Most of the praxis func-
tions and variables become member functions and attributes
of the class, respectively. For truly global (node indiéiet)
functions and data, the compiler need not associate theim wiig. 4: A screen shot afdaenon showing its primary window
a specific class and can instead keep them global. When {tep) and interaction with an individual node over UART
emulator executes and builds the network, it representis edbottom).
node as an object (i.e., instance of the appropriate class).

Beyond the “adaptation layer” for PicOS praxes, the VUE
extension to SMURPH implements detailed models for thgich as passively monitoring environmental conditions and
physical hardware (Section I1I-C). In terms of communicati actively tracking the movement of indoor objects. In the
SMURPH brings in a powerful generic wireless channglubsections that follow, we introduce a few of our applimadi
model [22] that provides enough flexibility to implementand highlight VUE’s ability to accommodate their specific
arbitrarily complex propagation models. All of this potieht (often peripheral-related) virtualization requirements
for modeling allows us to confidently and comprehensivel
verify applications before uploading the code to physic%- coNet
nodes. The EcoNetproject, conceived with the Earth Observation
Systems Laboratory at the University of Alberta, aims to
monitor an environment'’s sunlight, temperature, and hitgnid

The current version of VUE implements detailed mod- Wireless sensor nodes distributed throughout an envirahme
els for a significant subset of PicOS-supported periphera@sriodically measure these characteristics and then trépmm
that include serial communications (UART), physical sene a sink node. In this scenario, a single deployment uses two
sors, general-purpose /0 (GPIO), digital-to-analog evtiv separate applicationscallectorto read/transmit sensor values
ers (DACs), analog-to-digital converters (ADCs), and tighand anaggregatorto receive sensor values. The collector
emitting diodes (LEDs). Some of these devices, such application uses the PicOS sensor functionality to read the
the GPIO pins, may require input or produce output. Faurrent values from its analog sensors.
such devices, VUE offers a variety of peripheral-dependent During execution, the collector application calls the P&cO
options. In the case of the GPIO pins, the developer céimction read_sensor to obtain the latest values from a
describe their 1/O via (a) the initial network descriptidior( device’s sensors. When running on the hardware, PicOS ob-
input only), (b) external files (to pre-generate/scriptuihpnd tains these values using the hardware’s ADC. In the emylator
log output), or (c) communication over a network sockethia t the user can provide the sensor values graphically on a per-
third case, VUE provides a special program namedhenon  node basis using slider widgets. During an experiment, lsimp
that allows the developer to interactively read from andevridragging the sliders interactively changes the sensoresalu
to the peripheral. visible at a node.

The udaenon application is a fundamental component in
the interactive emulation of a wireless sensor node and it8- Mousetraps
peripherals. The initial window in the GUI (Fig. 4, top) alle The Mousetrapproject, conceived with researchers in the
the user to open peripheral-specific windows for individu&niversity of Alberta’s biology department, aims to monito
emulated nodes. For example, the UART window (Fig. 4he common live-catching trap. When a rodent enters one of
bottom) allows two-way communication with a node oveour traps, the movement of the ramp triggers a physical Bwitc
a virtual serial interface. Thisdaenmon application provides that we have added to the trap. The triggering of the switch
access to all VUE-modeled peripherals. creates a message that the node sends to its associated sink.
In the above network, nodes run a single application that use
PicOS’s pin monitoring/notifier functionality for digit@hput.

We have used both PicOS and VUgether to implement  The API for the pin notifier functionality includes functisn
and test a variety of practical wireless network appligatio to enable, disable, and check it. An application that useslit

C. Peripherals

IV. APPLICATION DEVELOPMENT
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wait for the predefined eve™MON_NOTEVENT. On the actual (Fig. 5a, right), which is akin to the functionai n in a
hardware, this event is implemented through interrupt keaed traditional C program. In a&trand namedsender (Fig. 5a,

and some auxiliary functions, e.g., needed for debountiag teft), we place the code that transmits ping packets. We use
switch. In the emulator, we use essentially the same codk, anstrand so that we can pass it the retransmission delay as
the user can graphically change the value of a monitored in@n argument (in this case, line 34 sets the delay to about two
pin using a button in the GUI. seconds). Finally, we place the code for packet receptioh an
acknowledgement generation inthread namedr ecei ver

(not shown).

The Tags and Peggproject at Olsonet aims to locate a Consider first the thread namedot (Fig. 5a, right). The
sensor-enabled object within a sensor-enabled environm%ywordem ry identifies a state boundary and its argument
Nodes in the network periodically broadcast short messaggfentifies the state name. This thread contains a single stat
and then other nodes use received signal strengths to perfezamedrs_| NI T. The first three lines of this state essentially
localization. This deployment also uses two applicati@T™® serve as a constructor to (a) register a physical device with
for mobile nodes and one for static nodes. To obtain Sign@gNETI, (b) register a protocol plug-in with VNETI, and
strength values, nodes use PicOS's standard packet regep(¢) open a session using that device and protocol. After some
functions. error handling code, this thread continues to enable the'sad

When the application calls the PicOS functioet _rx, the transmitter and receiver along with starting the previpusl
application can retrieve a received packet from VNETI, and gtroduced processesnder andr ecei ver .
the same time, the corresponding signal strength. In thé-har |t jg quite possible for a single application to support a
ware, the signal strength comes from the radio transcefeer. yariety of different physical radio transceivers. Such aeca
the emulator, SMURPH'’s generic wireless model Calculat%ght arise where a particu'ar dep'oyment’s Speciﬁc charac
signal strengths for all virtual receptions, and the viliaation teristics later dictate the best hardware. VNETI's absinas
of the PicOS API uses these calculated values. From th‘%ke this type of f|ex|b|||'[y possib|e_ For each Supported
application's perspective, there is no difference betw#®n radio transceiver, the VNETI API provides a single func-
hardware and virtual environment. tion with the prefixphys_ to register the physical device
(e.g., Fig. 5a:25). To support multiple radios, developzn
. . . . . — use trivial preprocessor directives (egi,f and#endif) to
In this section, we describe a simping application to call the appropriatphys_ function. Beyond this initialization

:cl_llustra:e ho(;/v ou_rt pkl)?tf?rm ”a”?'lfotfms Qtﬁ'ggﬁ tshet r?f id:/ur tage, most applications require no further changes tackwit
iles into code suitable for compilation with bo e hardwa |, oo different transceivers.

(P'CQS) a_nd the e_mulator (VUE In this example, two nodes Another noteworthy point is VNETI’s protocol plug-in reg-
run |denF|caI copies of the softwareWhen powered on, istration using the functioncv_pl ug(...) (e.g., Fig. 5a:26).

a node |mmed|ate!y begins to br_oad_cast unaddressed p registering thenull protocol plug-in for the ping appli-
packets that contain a.IocaIIy mamtqmed sequence numb(f%{tion, calls to functions in the VNETI API provide the
Whenever a node receives su_ch aping p_acket, I broadcea grammer with a more or less direct connection to the
an acknowledgr_n_ent that contains the rece|ve_d sequence Nk, ork. The programmer then has much flexibility to manage
ber. Upon receiving an acknowledgement with the last s packet overhead. Beyond theil plug-in, our platform

sequence number, a nqde inc_rements its locally maintain{,g o implements the Tiny Ad hoc Routing Protocol (TARP)
sequence number and immediately broadcasts another p['ffgperform the ad hoc routing that we mentioned in our

pa_lcket. I a ping packet goes un_acknowledged, a node retrapg .,y ction. Given our plug-in oriented approach, uses c
mits the ping afte_r a predetermined delay. . implement further protocols as desired.

Before presenting code, the t.e_rﬂnr.ead (used loosely i “pq remaining VNETI API functions begin with the prefix
Section 1) requires some clarification. In the context fCV and primarily serve as state and buffer management

the source code, our platiorm makes a distinction betwe?gbl_e | briefly describes some of thev_ functions relevant
presented code.

processes with and without arguments. By doing so, we CAthe
In Fig. 5a, left, we present the code for the stramrdder .

improve compatibility between the hardware and emulator
M Bur platform, we define a number of data types to provide

targets. We call a process that expects a typed data argu
on initialization ast r and. Many instances of at r and may consistent variable sizes between the different targetie T
ord word that appears in the definition ofender

exist at any given time, where each operates on its own IO%W
(private) data. We call a process that tends to operate mgloidentifies the type of itsdata argument (thewor d type is
a 16-bit unsigned value). Later in the strand, the user can

data and does not accept such an argumetrtir&ad. Only
on\?v|n7tancezllof;h.:jea(tjhmay exist a}. anty g|\{e? tlme. access this data argument using the (implicit) variataea.

e olglca y I|V|f e the ping appt))lca} lon ';h; dree P'OYpon entering the statéN_SEND, code checks whether the
cesses. In our platiorm, execution begins at adroot  node received an acknowledgement for the last ping. If so, it
*The application’s complete source code is available ordine 'mmed'ately proceeds to send an_()ther pln.g. If not, it (69 _aet

http:/tinyurl.com/67a4t6. timer to delay before rebroadcasting the ping and (b) waits f

C. Tags and Pegs

V. CASE STUDY: PING
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01: strand (sender, word) 22: thread (root)
02: entry (SN_SEND) 23: entry (RS_INIT)
03: if (last_ack != last_snt) { 24: // setup the radio
04: delay ((word)data, SN_NEXT) ; 25: phys_dm2200 (DEV_ID, MAX LENGTH) ;
05: when (&last_ack, SN_SEND) ; 26: tcv_plug (DEV_ID, &plug_null);
06: release; 27: sfd = tcv_open (WNONE, DEV_ID, 0);
07: } 28: if (sfd < 0) {
08: last_snt++; 29: diag ("Cannot open tcv interface");
09: proceed (SN_NEXT) ; 30: halt ()
10: entry (SN_NEXT) 31: }
11: x_packet = tcv_wnp (SN_NEXT, sfd, 32: // start sender
12: DATA LENGTH) ; 33: tcv_control (sfd, PHYSOPT_TXON, NULL);
13: x_packet[0] = 0; 34: runstrand (sender, 2048);
14: x_packet[1l] = PKT DAT; 35: // start receiver
15: ((lword*)x_packet) [1] = wtonl (last_ snt); 36: tcv_control (sfd, PHYSOPT RXON, NULL);
16: tcv_endp (x_packet) ; 37: runthread (receiver);
17: entry (SN_OUT) 38: // done with initialization
18: ser_outf (SN_OUT, "SND %lu, len = %d\r\n", 39: finish;
19: last_snt, DATA_LENGTH) ; 40: endthread
20: proceed (SN_SEND) ;
21: endstrand
(a) User-written code for the processes sender and root prior to preprocessing.
POl: int sender (word zz_st, address zz_da) { Pl6: ((lword*)x_packet) [1] =
P02: word *data = (word*) zz_da; P17: ((((last_snt) & Oxffff) << 16) |
P03: switch (zz_st) { P18: (((last_snt) >> 16) & Oxffff));
P04: case 0: P19: tcv_endp (x_packet) ;
PO5: if (last_ack != last_snt) { P20: case 20:
P06: delay ((word)data, 10); P21: ser_outf (20, "SND %lu, len = %d\r\n",
PO7: zzz_uwait ((word) (&last_ack),0); P22: last_snt, 10);
P08: zz_restart entry (); P23: proceed (0);
P09: } P24: break;
P10: last_snt++; P25: default:
P11: proceed (10); P26: if (zz_st == Oxffff)
P12: case 10: P27: return (0);
P13: x_packet = tcv_wnp (10, sfd, 10); P28: zz_badstate ()
Pl4: x_packet[0] = 0; P29: }
P15: x_packet[1l] = OxABCD; P30: return 1;
P31: }
(b) Preprocessed code for the process sender when targeting PicOS.
VO01l: void sender::zz_code () {
Vv02: switch (TheState) {
Vo03: case SN_SEND: __ state_label SN SEND:
vo04: if ((((PingNode *)TheStation)-> _na_last ack) !'= (((PingNode *)TheStation)-> _na last_snt)) {
Vv05: ( ((PicOSNode*)TheStation)-> na delay ((word)data,SN_NEXT) );
Vv06: ( ((PicOSNode*)TheStation)->_na when (
VvO07: ((int) (IPointer) (& (((PingNode *)TheStation)-> _na last_ack))), SN_SEND) );
vo08: return;
Vv09: }
Vv1o0: (((PingNode *)TheStation)-> _na_last snt)++;
V1l: do { zz_AI timer.zz proceed (SN_NEXT); return; } while (0);
vi2: case SN_NEXT: _ state_label SN NEXT:
v13: x_packet = ( ((PicOSNode*)TheStation)-> na_tcv_wnp (
vi4: SN_NEXT, (((PingNode *)TheStation)-> _na_sfd),10) );
Vv15: x_packet[0] = 0;
Vie: x_packet[1l] = 0xABCD;
V17: ((lword*)x packet) [1] = (((((((PingNode *)TheStation)-> _na last snt)) & Oxffff) << 16) |
v18: ((((((PingNode *)TheStation)-> na last_snt)) >> 16) & Oxffff));
Vv19: ( ((PicOSNode*)TheStation)->_na_tcv_endp (x_packet) );
V20: case SN _OUT: __ state label SN _OUT:
v21: ( ((PicOSNode*)TheStation)-> na_ser outf (SN_OUT, "SND %lu, len = %d\r\n",
v22: (((PingNode *)TheStation)-> _na_ last_snt), 10) );
v23: do { zz_AI_ timer.zz proceed (SN_SEND); return; } while (0);
V24: }
Vv25: }

(c) Preprocessed code for the process sender when targeting VUEZ.

Fig. 5: Excerpts from the ping application’s source codehdmetfore and after preprocessing.
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TABLE |: Some of the most common VNETI API functionsThe simulator represents each node in the network as an ob-
and their descriptions.

Kk

to

| Function | Description |
tcv_plug Configures a protocol plug-in for the networ
interface; in the ping application, the null plug
in provides a more or less direct connection

the network.
tcv_open Opens a session and returns a session des

tor (akin to a file descriptor).

Crip-

tcv_control

Allows the application to change various p
rameters associated with the transceiver;
the ping application, we use it to enable t
transmit and receive functionality of the radi

a_
in

ne

D.

pn

er

tcv_rnp Acquires the next packet queued for recepti
at the session.

tcv_wnp Requests a packet handle from VNETI in ord|
to send a new outgoing packet.

tcv_left Determines the length of a packet acquired
tcv_rnp.

tcv_endp Indicates explicitly the moment when a pack

has been processed and is no longer neede

a signal (IPC) on the address bést _ack. Therecei ver

process (not shown) triggers the address @ft _ack when plug-in and thus this further subclass is of the tyyde.
it receives an expected acknowledgement. By waiting f§fote that VUE also provides a clas&Node for nodes that run
this signal insender, the application can then immediatelythe TARPprotocol plug-in. Finally, the class representing the
advance the sequence number and send out a new ping pagk&tial application (in this casei ngNode) inherits from the
The programmer’s effort amounts to writing code similar t@rotocol-specific class (in this casiiode) and further defines
that presented in Fig. 5a. Note that the context for this cogee processes and variables of the user’s application. When
is a single node and it is plain C code, albeit enhanced wigkarting a simulation, VUE builds all of the network nodes
new “keywords” to improve clarity and simplify programmingusing the lowest-level (and most complete class), whichig t
that we have implemented as preprocessor macros. Sincedf€e isPi ngNode. To see the different typecasts, first look to
code is plain C, compiling for PicOS simply uses the stafine V04, which typecasts tBi ngNode when accessing node-
dard C preprocessor and compiler. For VU specialized private application variables, and then to lines V05 and V06
preprocessor makes the more complicated transition to Cyyhich typecast tdPi cOSNode for making system calls.
code where multiple applications and nodes must operate in a&otice that the C++ version contains additional labels
single simulation environment that preserves the stateadfed on lines V03, V12, and V20 that begin with the text

individual nodes.

A. Preprocessing

ject, and the variablgéheSt at i on points to the node currently
being simulated. Another global variable nanTéePr ocess
identifies the current process (e.gender ) within that node
that the simulator is evaluating. Finally, a global varebl
namedTheSt at e holds an integer that identifies the current
state within that process. At any point, these three vasgbl
collectively describe the current state of the simulation.
Notice that all accesses to system calls and node-specific
variables within the user's application use the pointer
TheSt ati on (e.g., Fig. 5¢:V04-V07,V10). At different places
in the preprocessed code, the single object is typecast to
either aPi ngNode or a Pi cOSNode. The derivation of the
relevant classes is as follows. SMURPH provides a base class
to represent a piece of hardware running in the network named
St ati on. VUE? then introduces the notion of R cOSNode
as a specialized type of station and thus derives it from
St at i on. At this level, VUE defines the PicOS system calls
(including those for VNETI) and internal state variablesorf
here, VUE derives a further class that is protocol plug-in
specific; it contains the functions and variables necesgary
implement the plug-in. In this case, we use thdl protocol

__state_l abel _. When the simulator comes across the
keywordpr oceed (e.g., lines V11 and V23), it saves the next
state in the variabl&heSt at e and then returns control to the

In Fig. 5b and c, we show the changes madednder by scheduler to make the state transition. The scheduler miay no
the respective preprocessor to prepare the code for caiopilaimmediately return control to the process if other eventauoc
with PicOS and VUE. In this subsection, we describe somat the same time. When the process does resumayihech
of the changes along with the reasoning behind them.

The first thing to notice is that in both cases the codetbe appropriate state. Sometimes, SMURPH users will want
general structure remains the same. The user-written finitemake a transition that does not involve the scheduler. In
state machine using oust r and/ent ry “keywords” becomes these cases, using the commaradeas (not shown) rather
a switch on a variable containing the current state. In thilan pr oceed accommodates an immediate transition using
PicOS case, the preprocessor substitutes state names thienlabel _st at e_| abel _ along with agot o statement. Note
integer constants because the labelstak i ne preprocessor that none of the code written for VUEPicOS can currently
directives. For VUE, the symbolic names remain becausmake use of theaneas functionality.
an enumerated type represents states and thus the compil&eaders may be unfamiliar with the construct

introduces the integer constants rather than the prepoces

statement on the variablEheSt at e moves the process into

do while (0):

In the VUE? code, notice the appearance of several nemtroduced on lines V11 and V23. It results from a macro
variables (i.e.;TheSt at i on and TheSt at e). These variables expansion of our keyworgr oceed. Essentially, this code is
(and others) arise in the transition from a single-nodedhara C idiom to define a macro consisting of multiple statements
ware) environment to a multi-node (simulated) environmerthat has the syntactic rights of a single statement.
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In both the PicOS and VUEpreprocessed code, name man4s]
gling occurs. In PicOS, preprocessing appends the chasacte
zzz_, zz_, or x_ to functions and variables internal to PicOS[G]
in an attempt to avoid conflicts. In VUJEsome similar man-
gling occurs plus further mangling on node-private vaesabl

- 7
where the processor appendsa_ for similar reasons. [

VI. CONCLUSION

In this paper, we described our “holistic” platform for
building wireless ad hoc sensor networks and focused on
its most representative and essential component: ¥/ (ke [9]
Virtual Underlay Emulation Engine). Using it, developerfo]
can write applications in C, rather than a new programming
language or bytecode, and then easily target to both haedwar
nodes and our emulator. (12]

Through the development of several applications, we have
found that the finite state machine paradigm allows for thes]
natural representation reactive applications. By usinge¥U [14
during the development stage, we can test our applications
exhaustively in a virtual environment before investingdito  [15]
program physical hardware. When we later move our applica-
tions to the hardware, they perform within our expectationge]

(8]
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