
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 703 – 709 ISSN 1896-7094

 Abstract — This paper compares task jitter measurement
performed under RTLinux and RTX hard real-time operating
systems. Both the operating environments represent Hardware
Abstraction Layer extensions to general-purpose operating
systems, and make possible to create a real-time system
according to the POSIX 1003.13 PSE 54 profile (multipurpose
system). The paper is focused on discussion of experimental
results, obtained on PC hardware, and their interpretation.

I. INTRODUCTION: APPLICABILITY OF GENERAL-PURPOSE OPERATING
SYSTEMS IN CONTROL SYSTEMS

EAL-TIME task is a task, which meets prescribed dead-
line. Control system is a computer system, which physi-

cally realizes real-time tasks. The physical realization of the
real-time task is not ideal, but it shows latencies and jitters.

R
Operating system and hardware support the real-time tasks

with standardized means, which have non-zero and variable
overhead. Kernel latency is defined as a delay between
scheduled and actual execution of a task (e.g. between
scheduled and actual instance starting time) [5]. The kernel
latency is not stable, but it shows a jitter. Jitter is defined as a
variable deviation from ideal timing event. The causes of jit-
ter encompass code branching into paths with different exe-
cution times, variable delays implied whenever variable
amount of code or data is stored in or read from caches and
buffers, as well as noise and electromagnetic interference.

The substance of jitter can be seen in a need for parallel
processing, which in turn stems from inevitable conflict be-
tween predictability and unpredictability. The control system
has to be predictable and deterministic as much as possible.
Control systems are intended to communicate with technol-
ogy, as well as with people managing the technology (at least
an emergency stop pushbutton is provided). Seen from this
viewpoint, control system shall be appropriately flexible. As
the result, a control system design represents a compromise
between stability and adaptability.

It is possible to design a control system on two computers,
one designed to meet technology demands, and the other de-
signed to meet the user interface demands, but there is also

the possibility to realize such system on one computer only.
Computer system of this scope is standardized in the POSIX
1003.13 standard, as the PSE 54 profile (multipurpose sys-
tem). PSE 54 - sized solutions are often preferred for their
challenging possibility to use a broad range of standardized
and low-cost hardware components, primarily intended for
general-purpose computers, but on the other hand, they can
involve lack of predictability typical for general-purpose
(non real-time) systems.

Traditional general-purpose kernel provides full range of
API services specified in the POSIX 1003.1 standard, and
because of that, it cannot guarantee appropriately determinis-
tic behavior, required in most real-time and technology con-
trol applications. Basic approaches to make such architecture
more real-time one include

• low-latency kernel,
• preemptible kernel,
• hardware abstraction layer (HAL).

Low-latency kernel represents a traditional approach. The
low-latency kernel is monolithic (i.e. it cannot be preempted
by task), but its design minimizes latencies and jitters of the
kernel API services typically used in real-time applications.

Preemptible kernel can be preempted by task. Preemptiv-
ity by task means, that a task can preempt the kernel just ser-
vicing another task, and enter the kernel instead. This type of
premptivity is called reentrancy. However, at least some
parts of a kernel (scheduling, interrupt service mechanism)
cannot be made reentrant. Moreover, the idea of a pre-
emptible kernel itself does not imply, that the kernel is deter-
ministically preemptible, i.e. its jitters are acceptably stable.

Last but not least, hardware abstraction layers can be ap-
plied. A hardware abstraction layer receives timer interrupt
and sends a virtual (software) interrupt to the general-pur-
pose operating system kernel, thus providing a virtual
(slower) clock for the general-purpose operating system.
This can be seen as a cycle stealing. In the free time, real-
time tasks can be run. Obviously, latencies and jitters of the
HAL layer must be kept low enough by design.

978-83-60810-14-9/08/$25.00 © 2008 IEEE 703

Task jitter measurement under RTLinux and RTX operating
systems, comparison of RTLinux and RTX operating environments

Pavel Moryc
Technical University of Ostrava

Faculty of Electrical Engineering
and Computer Science

Department of Measurement and
Control

Centre for Applied Cybernetics
Ostrava, Czech Republic

Email:
pavel.moryc@mittalsteel.com

Jindřich Černohorský
Technical University of Ostrava

Faculty of Electrical Engineering
and Computer Science

Department of Measurement and
Control

Centre for Applied Cybernetics
Ostrava, Czech Republic

Email:
jindrich.cernohorsky@vsb.cz

704 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

II. RTLINUX AND RTX BASICS

Both the RTLinux and RTX represent real-time Hardware
Abstraction Layers. RTLinux is the product of the FSMLabs,
Inc., designed for the Linux operating environment, while
RTX is the product of the Citrix Systems Inc. (Ardence), and
is designed to run under the Windows operating system.

A. RTLinux

RTLinux microkernel (fig. 1a) implements a Hardware
Abstraction Layer inserted between hardware and Linux ker-
nel. Both the RTLinux microkernel and the Linux kernel
have to communicate mutually, thus it is necessary to make
certain modifications into the Linux kernel. The modifica-
tions include

• modification of macros for disabling and en-
abling interrupts in order to use internal HAL
signals (software interrupts) instead of using cli
and sti assembler instructions,

• modification of interrupt handlers, in order to use
signals instead of direct Interrupt Controller ac-
cess,

• modification of device drivers in order to prevent
them from using sti/cli assembler instructions di-
rectly as well.

Within a RTLinux thread, time is measured with resolu-
tion that depends on hardware. On the Pentium 4 platform,
the time resolution is equal to 32 ns.

[1] and [4] discuss the overall architecture more deeply.
Basic resources used for interprocess synchronization and
IPC communication in the RTLinux/Linux environment are
semaphores, mutexes, shared memory pools, and real-time
data pipes, which are more complex structures combining
buffers and mutexes. Moreover, many A/D cards are con-
trolled by direct access to registers, thus direct I/O access is
an important feature.

B. RTX

RTX microkernel is similar to RTLinux kernel in func-
tionality, but different in realization (fig. 1b). It supports
real-time tasks, which are called RTSS threads. The Win-
dows kernel is a proprietary solution, and its source code is
not freely available to the public. Fortunately, two possible
access paths to its modification exist. The first customizable
part is the Windows HAL, and the second one is a device
driver [2]. Basically, it is necessary to modify the Windows
HAL for three purposes:

• to add interrupt isolation between Windows ker-
nel and RTSS threads,

• to implement high-speed clocks and timers,
• to implement shutdown handlers.

The two interconnection points between Windows kernel
and RTX microkernel mentioned above make possible to re-
alize connection between RTX microkernel and Windows
kernel, providing the same functionality as the interface be-
tween RTLinux microkernel and the Linux kernel (fig. 1b),
[2, fig. 1]. The communication interface between Windows
and RTX kernels implements a low-latency client-server
mechanism, which includes both buffers and Service Request
Interrupts (SRI) [2].

Due to the communication interface, subset of Windows
API services is callable from within a RTSS thread. It in-
cludes APIs for storing data to file, thus real-time pipes are
not available in the API services set. However, we can rea-
sonably suppose, that similar IPC mechanisms are necessary
to provide similar functionality, no matter whether they are
hidden for the programmer. Some of Windows APIs avail-
able from RTSS threads are listed as non-deterministic, i.e.
they can cause significant jitter when called from a RTSS
thread. High-speed (and high resolution) clocks are needed
for real-time precise timer realization. Within a RTSS
thread, time is measured with 100 ns step and resolution.

Shutdown handler is a mechanism delivering more robust-
ness to the real-time RTSS subsystem when the Windows
subsystem is crashed or regularly shut down.

It can be summarized, that following differences from
RTLinux exist:

• no real-time pipes or their equivalents are avail-
able in the API service set,

• it is possible to call a subset of Windows API
services directly from the RTX (RTSS) real-time
task,

• time is measured with 100 ns resolution,
• interrupts to the Windows kernel are masked

while the RTX (RTSS) real-time task runs,
• a real-time interrupt routine has two mandatory

parts, which can be used as upper and bottom
ISR part,

• it is possible to implement a shutdown handler as
the last resort resource.

III. APPLIED MEASUREMENT METHOD

The measurement method applied is described in [3] and
more deeply in [4]. Based on RTLinux resource analysis,
following important RTLinux characteristics have been iden-
tified:

• precision of scheduler (measured as task starting
time jitter),

• interrupt latency time,
• execution time of typically used API services,

e.g.
 pipe write and read operations,
 shared memory write and read operations,
 thread switching time

• I/O port read and write access time.
The I/O access is also included, because it characterizes

hardware, and presents the basic method of communication
with both sensors and actuators.

A generalized application has been written, which uses the
above-mentioned RTLinux key resources. The application is
called RT-golem, and its design is described in [3] and [4].

As RTLinux and RTX operating environments are func-
tionally similar and their key resources are merely the same,
it can be supposed, that similar design can be used for jitter
measurement under the RTX operating environment too.

The RT-golem is written in C language, thus it should be
portable. But, both the environments contain non-portable

PAVEL MORYC ET. AL.: TASK JITTER MEASUREMENT UNDER RTLINUX AND RTX OPERATING SYSTEMS 705

extensions, and as a result, the design had to be partially re-
written. The RT-golem re-written for the RTX environment
is called Win-golem.

The measurement method is realized in measurement
architecture. The measurement architecture includes both
software (measurement and workload tasks and operating
system), which all is a mere design abstraction, and hard-
ware, which presents its physical realization. Nonetheless,
we should note, that the border between software and hard-
ware design is rather fuzzy, and many non-trivial resources
formerly realized in software design are recently applied in
hardware design too.

Fig. 1a RT-golem architecture

Fig. 1b Win-golem architecture

IV. EXPERIMENTAL SETUP

Series of measurements have been performed. It has been
measured on different hardware (PC Dell, PC no name), un-
der different operating environments (RTLinux Free v. 3.1,
RTX v. 8) and under different workload (basic workload
only, basic workload and additional workload). Experimental
setup configuration chart is given in Figure 1, while hard-
ware configurations are presented in Table 1.

Fig. 2 Experimental setup configuration chart

Basic workload means a workload caused by the operating
system kernel (kernel overhead), daemons normally needed
and running, and the measurement task. Additional workload
is presented with a shell script copying short files (bash or
command.com) in a loop.

TABLE 1. TEST SYSTEM DETAILS

PC DELL GX 280

CPU Intel P4 3.0 GHz, 1 MB L2 cache

RAM 1024 MB

HDD SAMSUNG SV0842D, SATA, 75GB

WDC WD800JD-75JNC0, 8 GB, ATA-66

706 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 3. RT-golem and Win-golem results comparison: Periodic Task Starting Time, PC Dell, basic workload only

 Fig. 4. RT-golem and Win-golem results comparison: Periodic Task Finishing Time, PC Dell, basic workload only

Fig. 5. RT-golem and Win-golem results comparison: Periodic Task Starting Time, PC Dell, basic and additional workload (copying files)

PAVEL MORYC ET. AL.: TASK JITTER MEASUREMENT UNDER RTLINUX AND RTX OPERATING SYSTEMS 707

Fig. 6. RT-golem and Win-golem results comparison: Periodic Task Finishing Time, PC Dell, basic and additional workload (copying files)

blue: mean
yellow: median

Fig. 7. RT-golem and Win-golem results comparison: Execution Time Means vs. Medians, PC Dell, basic and additional workload (copying files)

Fig. 8. RT-golem and Win-golem results comparison: Execution Time Standard Deviations vs. Interquartile Ranges, PC Dell, basic and additional
workload (copying files)

708 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 9. RT-golem and Win-golem results comparison: Periodic Task Starting Time, PC no name, basic and additional workload (copying files)

Fig. 10. RT-golem and Win-golem results comparison: Periodic Task Finishing Time, PC no name, basic and additional workload (copying files)

TABLE 1. (CONTINUED) TEST SYSTEM DETAILS

PC NO NAME

CPU Intel P4 2.4GHz, 32 K of L1 cache

mainboard MSI 865 PE Neo2-P

RAM 256 MB

HDD Seagate Barracuda ST380011A 80 GB ATA-100

Maxtor WDC WD100EB-00BHF0 10 GB ATA-66

V. EXPERIMENTAL RESULTS

Representative selection of results is presented further.
The series of graphs, presented in fig. 3 through 6, and in
figures 9 and 10, show the task instance starting (or finish-
ing) times comparison. These graphs are completed with sta-
tistical data evaluation graphs (fig. 7 and 8), which show
mean vs. median comparison and standard deviation vs. in-
terquartile range comparison on the PC Dell platform.

 The task instance starting time is calculated from the pre-
vious task instance starting time (as in [3]). This means, the
starting time delay impacts two adjacent values. First, the
difference between the correct and delayed instance is
longer, which causes the spike up on the graph, and then, the
difference between the delayed and next correct instance is
shorter, which causes the spike down. If both spikes are sym-
metrical, the second value is okay. Finishing time is calcu-
lated from task instance starting time [3]. Spikes on the rela-
tive starting time graphs below oscillate around 1 msec, be-

cause they show scheduling jitter, i.e. a difference of the ac-
tual relative starting time from the nominal value, which is 1
msec.

VI. CONCLUSION

It can be concluded from the presented experimental re-
sults, that the measured task starting time jitter (kernel jitter,
[5]) is significantly lesser on the RTX-based measurement
architectures, than on the RTLinux Free-based architectures
(fig. 3, 5, 9). The median of task finishing time is approxi-
mately the same within the applied range of test architec-
tures and workloads. Under RTLinux Free, the port write
time median value is ca. 15% less than the port read time
median value, but under RTX both medians are the same
(fig. 7). As with the task starting time, task finishing time
shows significantly lesser jitter on the RTX-based architec-
tures (fig. 4, 6, 8, 10).

Using the RTLinux Free operating system, it has been ob-
served (on graphs presented above and in [2], [3], and [4]),
that most of the jitter instances are near the best-case values,
but sometimes significantly higher spikes occur. These
spikes can form typical patterns (measurement of task rela-
tive starting time, left graphs on fig. 3, 4, 9), or can be ob-
served randomly (left graphs on fig. 6, 7, 10), but in any case
their amplitude is typical for the underlying hardware. How-
ever, with the RTX and Windows system, the spikes are sig-
nificantly less (fig. 3, right graph), or none at all.

PAVEL MORYC ET. AL.: TASK JITTER MEASUREMENT UNDER RTLINUX AND RTX OPERATING SYSTEMS 709

It can be supposed, that the significant worst-case jitter
spikes observed in experiments with RTLinux Free are
caused by cache writing and flushing effects (in accordance
with [2]). As the measurements are performed on the top of
the hardware and software stack, and the virtual resources
presented to the measurement task by the operating system
API services are quite distant to the resources presented to
the operating system by the hardware (more precisely, by the
part of the operating system realized in hardware), it is not
possible to validate such hypothesis by methods described
here. However, the absence of this phenomenon on both test
hardware with RTX operating system can imply, that the
RTX microkernel prevents the hardware from flushing the
cache freely. Moreover, some further tracks can be given. [2]
notes video drivers as most cache demanding part of Win-
dows operating system, and in the RTX platform evaluation
kit, video is used as a workload. Video is a real-time task as
well as a RTX microkernel task. Thus, the conflict between
video and RTX microkernel can be seen as the conflict be-
tween two real-time cache-demanding tasks, which can lead
to swapping the RTX code out of the cache.

Unfortunately, the RTX microkernel source code is not
freely available, and it is not possible to verify the tracks
given above with the code analysis. However, the measure-
ment results as well as the tracks given above can suggest,
that the mechanism of locking the real-time code in the hard-
ware cache is worthy to be studied and implemented.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education,
Youth and Sports of the Czech Republic under Project TM
0567.

REFERENCES

[1] FSM Labs Inc.,“Getting Started with RT Linux“, 2001.
[2] M. Cherepov et. al.: “Hard Real-Time with Ardence RTX on Micro-

soft Windows XP and Windows XP Embedded“, www.ardence.com,
2002.

[3] P. Moryc, J. Černohorský: “Task jitter measurement under RTLinux
operating system”, in: Proceedings of the International Multiconfe-
rence on Computer Science and Information Technology, ISSN
189-7094, pp. 849 to 858, 2007.

[4] P. Moryc: “Měření procesů reálného času v operačním systému
RTLinux”, Doctoral Thesis, Technical University of Ostrava, Faculty
of Electrical Engineering and Computer Science, 2007.

[5] I. Ripoll et al.: “WP1: RTOS State of the Art Analysis: Deliverable
D1.1: RTOS Analysis”, 2002.

