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  Abstract — This paper compares task jitter measurement 
performed under RTLinux and RTX  hard real-time operating 
systems. Both the operating environments represent Hardware 
Abstraction  Layer  extensions  to  general-purpose  operating 
systems,  and  make  possible  to  create  a  real-time  system 
according to the POSIX 1003.13 PSE 54 profile (multipurpose 
system).  The  paper  is  focused  on discussion  of  experimental 
results, obtained on PC hardware, and their interpretation. 

I. INTRODUCTION: APPLICABILITY OF GENERAL-PURPOSE OPERATING 
SYSTEMS IN CONTROL SYSTEMS

EAL-TIME task is a task, which meets prescribed dead-
line. Control system is a computer system, which physi-

cally realizes real-time tasks. The physical realization of the 
real-time task is not ideal, but it shows latencies and jitters.

R
Operating system and hardware support the real-time tasks 

with standardized means, which have non-zero and variable 
overhead.  Kernel  latency  is  defined  as  a  delay  between 
scheduled  and  actual  execution  of  a  task   (e.g.  between 
scheduled and actual instance starting time) [5]. The kernel 
latency is not stable, but it shows a jitter. Jitter is defined as a 
variable deviation from ideal timing event. The causes of jit-
ter encompass code branching into paths with different exe-
cution  times,  variable  delays  implied  whenever  variable 
amount of code or data is stored in or read from caches and 
buffers, as well as noise and electromagnetic interference. 

The substance of jitter can be seen in a need for parallel 
processing, which in turn stems from inevitable conflict be-
tween predictability and unpredictability. The control system 
has to be predictable and deterministic as much as possible. 
Control systems are intended to communicate with technol-
ogy, as well as with people managing the technology (at least 
an emergency stop pushbutton is provided). Seen from this 
viewpoint,  control system shall be appropriately flexible. As 
the result, a control system design represents a compromise 
between stability and adaptability.

It is possible to design a control system on two computers, 
one designed to meet technology demands, and the other de-
signed to meet the user interface demands, but there is also 

the possibility to realize such system on one computer only. 
Computer system of this scope is standardized in the POSIX 
1003.13 standard, as the PSE 54 profile (multipurpose sys-
tem). PSE 54 - sized solutions are often preferred for their 
challenging possibility to use a broad range of standardized 
and low-cost  hardware components,  primarily intended for 
general-purpose computers, but on the other hand, they can 
involve  lack  of  predictability  typical  for  general-purpose 
(non real-time) systems.

Traditional general-purpose kernel provides full range of 
API services specified in the POSIX 1003.1 standard,  and 
because of that, it cannot guarantee appropriately determinis-
tic behavior, required in most real-time and technology con-
trol applications. Basic approaches to make such architecture 
more real-time one include

• low-latency kernel,
• preemptible kernel,
• hardware abstraction layer (HAL).

Low-latency kernel represents a traditional approach. The 
low-latency kernel is monolithic (i.e. it cannot be preempted 
by task), but its design minimizes latencies and jitters of the 
kernel API services typically used in real-time applications.

Preemptible kernel can be preempted by task. Preemptiv-
ity by task means, that a task can preempt the kernel just ser-
vicing another task, and enter the kernel instead. This type of 
premptivity  is  called  reentrancy.  However,  at  least  some 
parts of a kernel (scheduling, interrupt service mechanism) 
cannot  be  made  reentrant.  Moreover,  the  idea  of  a  pre-
emptible kernel itself does not imply, that the kernel is deter-
ministically preemptible, i.e. its jitters are acceptably stable.

Last but not least, hardware abstraction layers can be ap-
plied. A hardware abstraction layer receives timer interrupt 
and sends a virtual (software) interrupt to the general-pur-
pose  operating  system  kernel,  thus  providing  a  virtual 
(slower)  clock  for  the  general-purpose  operating  system. 
This can be seen as a cycle stealing. In the free time, real-
time tasks can be run. Obviously, latencies and jitters of the 
HAL layer must be kept low enough by design.
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II. RTLINUX AND RTX BASICS

Both the RTLinux and RTX represent real-time Hardware 
Abstraction Layers. RTLinux is the product of the FSMLabs, 
Inc.,  designed  for  the Linux operating environment,  while 
RTX is the product of the Citrix Systems Inc. (Ardence), and 
is designed to run under the Windows operating system.

A. RTLinux

RTLinux  microkernel  (fig.  1a)  implements  a  Hardware 
Abstraction Layer inserted between hardware and Linux ker-
nel.  Both  the  RTLinux microkernel  and  the  Linux kernel 
have to communicate mutually, thus it is necessary to make 
certain modifications into the Linux kernel.  The modifica-
tions include 

• modification  of  macros  for  disabling  and  en-
abling  interrupts  in  order  to  use  internal  HAL 
signals (software interrupts)  instead of using cli 
and sti assembler instructions,

• modification of interrupt handlers, in order to use 
signals instead of direct Interrupt Controller ac-
cess,

• modification of device drivers in order to prevent 
them from using sti/cli assembler instructions di-
rectly as well. 

Within a RTLinux thread, time is measured with resolu-
tion that depends on hardware. On the Pentium 4 platform, 
the time resolution is equal to 32 ns.

[1] and [4] discuss the overall architecture more deeply. 
Basic  resources  used  for  interprocess  synchronization  and 
IPC communication in the RTLinux/Linux environment are 
semaphores,  mutexes,  shared memory pools,  and real-time 
data  pipes,  which are  more  complex  structures  combining 
buffers and mutexes.  Moreover, many A/D cards are con-
trolled by direct access to registers, thus direct I/O access is 
an important feature.

B. RTX

RTX microkernel  is  similar  to RTLinux kernel  in func-
tionality,  but  different  in  realization  (fig.  1b).  It  supports 
real-time tasks,  which are called RTSS threads.  The Win-
dows kernel is a proprietary solution, and its source code is 
not freely available to the public. Fortunately, two possible 
access paths to its modification exist. The first customizable 
part is the Windows HAL, and the second one is a device 
driver [2]. Basically, it is necessary to modify the Windows 
HAL for three purposes:

• to add interrupt isolation between Windows ker-
nel and RTSS threads,

• to implement high-speed clocks and timers,
• to implement shutdown handlers.

The two interconnection points between Windows kernel 
and RTX microkernel mentioned above make possible to re-
alize  connection  between RTX microkernel  and  Windows 
kernel, providing the same functionality as the interface be-
tween RTLinux microkernel and the Linux kernel (fig. 1b), 
[2, fig. 1]. The communication interface between Windows 
and  RTX  kernels  implements  a  low-latency  client-server 
mechanism, which includes both buffers and Service Request 
Interrupts (SRI) [2]. 

Due to the communication interface,  subset of Windows 
API services is callable from within a RTSS thread.  It  in-
cludes APIs for storing data to file, thus real-time pipes are 
not available in the API services set. However, we can rea-
sonably suppose, that similar IPC mechanisms are necessary 
to provide similar functionality, no matter whether they are 
hidden for the programmer. Some of Windows APIs avail-
able from RTSS threads are listed as non-deterministic, i.e. 
they can cause significant jitter  when called from a RTSS 
thread. High-speed (and high resolution) clocks are needed 
for  real-time  precise  timer  realization.   Within  a  RTSS 
thread, time is measured with 100 ns step and resolution.

Shutdown handler is a mechanism delivering more robust-
ness to the real-time RTSS subsystem when the Windows 
subsystem is crashed or regularly shut down.

It  can  be  summarized,  that  following  differences  from 
RTLinux exist:

• no real-time pipes or their equivalents are avail-
able in the API service set,

• it  is possible to call  a subset  of Windows API 
services directly from the RTX (RTSS) real-time 
task,

• time is measured with 100 ns resolution,
• interrupts  to  the  Windows  kernel  are  masked 

while the RTX (RTSS) real-time task runs,
• a real-time interrupt  routine has two mandatory 

parts,  which can  be  used  as  upper  and  bottom 
ISR part,

• it is possible to implement a shutdown handler as 
the last resort resource.

III. APPLIED MEASUREMENT METHOD

The measurement method applied is described in [3] and 
more deeply in  [4].  Based  on RTLinux resource  analysis, 
following important RTLinux characteristics have been iden-
tified:

• precision of  scheduler (measured as task starting 
time jitter),

• interrupt latency time,
• execution  time  of  typically  used  API  services, 

e.g.
 pipe write and read operations,
 shared memory write and read operations,
 thread switching time

• I/O port read and write access time. 
The I/O access is also included, because it characterizes 

hardware, and presents the basic method of communication 
with both sensors and actuators.

A generalized application has been written, which uses the 
above-mentioned RTLinux key resources. The application is 
called RT-golem, and its design is described in [3] and [4]. 

As RTLinux and RTX operating environments are func-
tionally similar and their key resources are merely the same, 
it can be supposed, that similar design can be used for jitter 
measurement under the RTX operating environment too.

The RT-golem is written in C language, thus it should be 
portable.  But,  both  the  environments  contain  non-portable 
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extensions, and as a result, the design had to be partially re-
written. The RT-golem re-written for the RTX environment 
is called Win-golem.

The  measurement  method  is  realized  in  measurement 
architecture.  The  measurement  architecture  includes  both 
software  (measurement  and  workload  tasks  and  operating 
system), which all  is a  mere design abstraction,  and hard-
ware,  which presents  its  physical  realization.  Nonetheless, 
we should note, that the border between software and hard-
ware design is rather fuzzy, and many non-trivial resources 
formerly realized in software design are recently applied in 
hardware design too.

 

Fig. 1a RT-golem architecture

 

Fig. 1b Win-golem architecture

IV. EXPERIMENTAL SETUP

Series of measurements have been performed. It has been 
measured on different hardware (PC Dell, PC no name), un-
der different operating environments (RTLinux Free v. 3.1, 
RTX v.  8)  and  under  different  workload  (basic  workload 
only, basic workload and additional workload). Experimental 
setup configuration chart  is given in Figure 1,  while hard-
ware configurations are presented in Table 1.

 

Fig. 2 Experimental setup configuration chart 

Basic workload means a workload caused by the operating 
system kernel (kernel overhead), daemons normally needed 
and running, and the measurement task. Additional workload 
is presented with a shell script copying short files (bash or 
command.com) in a loop.

TABLE 1. TEST SYSTEM DETAILS

PC DELL GX 280

CPU Intel P4 3.0 GHz, 1 MB L2 cache

RAM 1024 MB

HDD SAMSUNG SV0842D, SATA, 75GB

WDC WD800JD-75JNC0, 8 GB, ATA-66
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Fig. 3.  RT-golem and Win-golem results comparison: Periodic Task Starting Time, PC Dell, basic workload only

 

 Fig. 4.  RT-golem and Win-golem results comparison: Periodic Task Finishing Time, PC Dell, basic workload only 

 

Fig. 5.  RT-golem and Win-golem results comparison: Periodic Task Starting Time, PC Dell, basic and additional workload (copying files)
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Fig. 6.  RT-golem and Win-golem results comparison: Periodic Task Finishing Time, PC Dell, basic and additional workload (copying files)

 

blue: mean
yellow: median

Fig. 7.  RT-golem and Win-golem results comparison: Execution Time Means vs. Medians, PC Dell,  basic and additional workload (copying files)

 

 

Fig. 8.  RT-golem and Win-golem results comparison: Execution Time Standard Deviations vs. Interquartile Ranges, PC Dell, basic and additional 
workload (copying files)
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Fig. 9.  RT-golem and Win-golem results comparison: Periodic Task Starting Time, PC no name, basic and additional workload (copying files)

 

Fig. 10.  RT-golem and Win-golem results comparison: Periodic Task Finishing Time, PC no name,  basic and additional workload (copying files)

TABLE 1. (CONTINUED) TEST SYSTEM DETAILS

PC NO NAME

CPU Intel P4 2.4GHz, 32 K of L1 cache 

mainboard MSI 865 PE Neo2-P

RAM 256 MB

HDD Seagate Barracuda ST380011A 80 GB ATA-100

Maxtor WDC WD100EB-00BHF0 10 GB ATA-66

V. EXPERIMENTAL RESULTS

Representative  selection  of  results  is  presented  further. 
The series of graphs, presented in fig. 3 through 6, and in 
figures 9 and 10, show the task instance starting (or finish-
ing) times comparison. These graphs are completed with sta-
tistical  data  evaluation  graphs  (fig.  7  and  8),  which show 
mean vs. median comparison and standard deviation vs. in-
terquartile range comparison on the PC Dell platform.

 The task instance starting time is calculated from the pre-
vious task instance starting time (as in [3]).  This means, the 
starting time delay impacts  two adjacent  values.  First,  the 
difference  between  the  correct  and  delayed  instance  is 
longer, which causes the spike up on the graph, and then, the 
difference between the delayed and next correct instance is 
shorter, which causes the spike down. If both spikes are sym-
metrical, the second value is okay. Finishing time is calcu-
lated from task instance starting time [3]. Spikes on the rela-
tive starting time graphs below oscillate around 1 msec, be-

cause they show scheduling jitter, i.e. a difference of the ac-
tual relative starting time from the nominal value, which is 1 
msec.

VI. CONCLUSION

It can be concluded from the presented experimental re-
sults, that the measured task starting time jitter (kernel jitter, 
[5]) is significantly lesser on the RTX-based measurement 
architectures, than on the RTLinux Free-based architectures 
(fig. 3, 5, 9). The median of task finishing time is approxi-
mately the same within the applied range of  test architec-
tures  and workloads.  Under  RTLinux Free,  the port  write 
time median value is ca. 15% less than the port  read time 
median value,  but  under  RTX both medians are  the same 
(fig. 7).  As with the task starting time, task finishing time 
shows significantly lesser jitter on the RTX-based architec-
tures (fig. 4, 6, 8, 10).

Using the RTLinux Free operating system, it has been  ob-
served (on graphs presented above and in [2], [3], and [4]), 
that most of the jitter instances are near the best-case values, 
but  sometimes  significantly  higher  spikes  occur.  These 
spikes can form typical patterns (measurement of task rela-
tive starting time, left graphs on fig. 3, 4, 9), or can be ob-
served randomly (left graphs on fig. 6, 7, 10), but in any case 
their amplitude is typical for the underlying hardware. How-
ever, with the RTX and Windows system, the spikes are sig-
nificantly less (fig. 3, right graph), or none at all.
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It  can be supposed,  that  the significant  worst-case jitter 
spikes  observed  in  experiments  with  RTLinux  Free  are 
caused by cache writing and flushing effects (in accordance 
with [2]). As the measurements are performed on the top of 
the hardware and software stack, and the virtual  resources 
presented to the measurement task by the operating system 
API services are quite distant to the resources presented to 
the operating system by the hardware (more precisely, by the 
part of the operating system realized in hardware), it is not 
possible to validate such hypothesis by methods described 
here. However, the absence of this phenomenon on both test 
hardware  with RTX operating  system can  imply,  that  the 
RTX microkernel  prevents the hardware from flushing the 
cache freely. Moreover, some further tracks can be given. [2] 
notes video drivers as most cache demanding part of Win-
dows operating system, and in the RTX platform evaluation 
kit, video is used as a workload. Video is a real-time task as 
well as a RTX microkernel task. Thus, the conflict between 
video and RTX microkernel can be seen as the conflict be-
tween two real-time cache-demanding tasks, which can lead 
to swapping the RTX code out of the cache. 

Unfortunately,  the RTX microkernel  source  code  is  not 
freely available,  and it  is  not  possible to verify the tracks 
given above with the code analysis. However, the measure-
ment results as well as the tracks given above can suggest, 
that the mechanism of locking the real-time code in the hard-
ware cache is worthy to be studied and implemented.
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