Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 657-664 ISSN 1896-7094

Simulator Generation Using an Automaton Based
Pipeline Model for Timing Analysis

Rola Kassem, Mikaél Briday, Jean-Luc Béchennec, and Ymamguet Guillaume Savaton
IRCCyN, UMR CNRS 6597 ESEO
1, rue de la Noé — BP92101 4, rue Merlet de la Boulaye — BP30926
44321 Nantes Cedex 3 — France 49009 Angers Cedex 01 — France
firsthame.name@irccyn.ec-nantes.fr guillaume.savaton@eseo.fr

Abstract—Hardware simulation is an important part of the dependencies and device usage on the timing. This descripti
design of embedded and/or real-time systems. It can be used t js transformed into a finite state automaton, which is then
compute the Worst Case Execution Time (WCET) and to provide .onsformed into the simulator source code by adding the

a mean to run software when final hardware is not yet available

Building a simulator is a long and difficult task, especially Instr_uctlon behaVIour (see figure 1). The alm of the automa-
when the architecture of processor is complex. This task can ton is to provide a faster—yet accurate—simulator because
be alleviated by using a Hardware Architecture Description hazards of the pipeline are not computed at execution time
Language and generating the simulator. In this article we feus put at generation time instead. This paper focuses on pipeli
on a technique to generate an automata based simulator fronhe 4 4elling and does present the pipeline description in our
description of the pipeline. The description is transformel into an ADL: HARMLESS [7] (Hardware ARchitecture Modellin
automaton and a set of resources which, in turn, are transfamed : X i 9
into a simulator. The goal is to obtain a cycle-accurate simiator ~Language for Embedded Software Simulation) but the method
to verify timing characteristics of embedded real-time syeems. presented may be extended to include the modelling of other

An experiment compares an Instruction Set Simulator with ard parts of the architecture like branch prediction or cache
without the automaton based cycle-accurate simulator. memories

I. INTRODUCTION Il. RELATED WORK

SMULATION of the hardware platform takes place in the Pipeline and resource scheduling have been studied widely
inal stage of development. It can be used for 2 taskg jnstryction schedulers, that are used by compilers to ex-
The first task is the evaluation of the Worst Case ExeCUlifyit the instruction level parallelism and to minimise the

Time (WCET) to compute the schedulability of the applicatioy, ram execution time. In [12], Miiller proposes to use one
[9]. Th.e second t.ask IS j[he test of the application usn& more finite state automata to model the pipeline and build
scenarios before final testing on the real hardware platforg1 simulator. Then the simulator is used by the instruction
This test is useful because simulation allows an easy a.E’alyécheduler to compute the execution time of instruction se-

of the execution. In both cases, a cycle accurate model of th¢snces The automata can be quite large and minimisation

hardware platform must be used to insure that timings of t?&chniques may be used to alleviate them. In [13], Proedpstin

simulation are as close as possible to timings of the ex@tuti, |\ Fraser use the same approach but a different algorithm
on the real platform.

i _which produces directly a minimal automaton. In [1], Balaan
A common approach for the hardware modelling [5] 'Rubin improve the algorithm on [12] and [13] by allowing

based on an hardware centric view; in this approach, the oniace instructions in already scheduled sequences and
processor is usually modelled by a set of functional blocksyegent the BuildForwardFSA algorithm which is used toduil
The blocks communicate and synchronise with each OthgE o\ tomaton. In these works, only structural hazards are
in order to .hand_le the pipeline haz_arQs. A plpel!ne can Byen into account. It makes sense for instruction scheslule
modelled with this approach by designing a functional block Other works have been done to build simulator for WCET
for each stage of the pipeline (a SystemC [8] module f‘?slrnalysis using an ADL. In [10], Li and al. use the EXPRES-
inst_ance). This app_roach s very useful in th_e design PECEHON ADL to build anexecutions grapland express pipeline

as it allows synthesis generation. However, sSimulatorSaf& 147445 The hazards are resolved at run-time. In [14] r&ava

generated from these kind of models are slow because of H}?d al. use a minimal ADL to generate a model based on
block synchronisation cost. In our approach, we proposa¢o Lbroebsting and Eraser work

an Architecture Description Language (ADL) to describe the In [2], another kind of pipeline modelling using coloured

pipeline and t_he _instruction s_et O_f the target architectlife Petri Nets is presented, but functional behaviour is noérak
goal of the pipeline description is to focus on the effects (?ltuto account. The simulator cannot execute a real binarg.cod

This work is supported by ANR (French National Research Aggmnder In the work presented hgreafter, we extend the BuildFor-
Grant Number ADEME-05-03-C0121. wardFSA algorithm to take into account the data hazards (dat

978-83-60810-14-9/08/$25.00 2008 IEEE 657

658 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Harmless
description
(pipeline +

instruction set
description)

|:> Harmless |:'|> C++j C++j |jv C++
compiler : : compiler
| |

galdy! U U
Fast Cycle

P2A E{) Q/ I:> A2CPP Accurate

Simulator

pipeline model
(automaton)

Fig. 1. Development chain. Tools presented in this papdudiegp2a anda2cppto transform a pipeline description into a fast simulat@ing an automaton
model.

dependency), the control hazards and the resources which ca
be held by external hardware devices that are not modelled
using one automaton.

The paper is organised as follow: Section Ill presents hc 5 t4
the pipeline is modelled. The two kind of resources ar
their usage are described. Instruction classes are irtestu
Section IV explains the automaton generation algorithm. _
section V, a brief description of HARMLESS ADL with a ' T
focus on pipeline description, is given. Section VI presen
examples. Section VII presents the simulation result pledi
by our approach. Section VIII explains the relation betwee
simulation and WCET. At last, section 1X concludes thi:
paper.

;
w
T
[N
ing
L
—
—
+
RN
—
+
o
f=s
3
)

|
T
-
m(o|m

lw)
O

T
n
f
-
m|o|m

mlo|lm|s

\/
instructions

state I| m|o|m|S

state 1
state 2
state 3
state 4
state 1

IIl. PIPELINE MODELLING

Sequential pipelines are considered in this paper (i.eethe
are no pipelines working in parallel nor forking pipelines)
An automaton is used to model the pipeline behaviour whe
a state of the automaton represents the pipeline state &
particular time (see figure 2).

At each clock cycle, the pipeline goes from one state -
another according to hazards. They are classified into thi
categories:

« Structural hazardsare the result of a lack of hardware

state 4
resource;
« Data hazardsare the result of a data dependancy betwet
instructions;
« Control hazardsthat occurs when a branch is taken in state 3
the program. Fig. 2. A state of the automaton represents the state of thelipé at a

. . . _given time. In this example with a 4-stages pipeline, thretruictions are in
Control hazard are resolved in the simulator at runtim e pipeline at time, and the 'D’ stage was stalled at tintel. The automaton

instructions that are in the delay slot of a branch instaucti highlights the pipeline sequence, assuming that there lis @me instruction
are dynamically replaced by NOP instructions, if the brandype (this restriction is only made for clarity reason).

is found to be taken. Constraints resulting from structarad

data hazards are used to generate this automaton and nabdelle

usingresources

ROLA KASSEM ET. AL: SIMULATOR GENERATION USING AN AUTOMATONBASED PIPELINE MODEL 659

A. Resources the pipeline. It allows the instruction that is in thet ch stage

Resourcesre defined as a mechanism to describe tempothlwalt for its operands, and resolves the data dependancy.

constraints in the pipeline. They are used to take into aticou _
structural hazardsanddata hazardsn the pipeline. Algorithm 1: Instructions and data dependancy controller
Two types of resources are definédternal and external _nteraction during simulation.

resources, that model constraints respectively staficafid if _there is an instruc_tion in the fetch staged the instruction
s P y st will need operands in the decode statpen

dynamically. _ - The instruction sends a request to the controller;
1) Internal resources:can be compared to “resources” in if at least one register is bugien

[12]. They model structural hazards. ‘ - the rt()aque§t fails: the external resource associated is
As the pipeline state is knowni.€. the instructions are e|seset tobusy;

defined for each stage of the pipeline), then the state of - the request success: the external resource associated
eachinternal resourceis fully defined (taken or available). L is set toavai | abl e;
In that case, when the automaton is built (and then theelse _ _
simulator), constraints described bgternal resourcesare - the request success: the external resource associatetl is s
. - . to avai | abl e;
directly resolved when the set of next states is built.
Internal resources are designed to describe structural haz
ards inside a pipeline. As these resources are taken into ac-)
count at build time §taticapproach), no computation overhead®- Instruction class
is required to check for this type of constraint at runtime. To reduce the automaton state space, instructions that use
For example, each pipeline stage is modelled by an interrtaé same resources (internal and external) are groupeditb bu
resource. Each instruction that enters in a stage takes thsruction classes.
associated resource, and releases that resource wheweislea The number of instruction classes is limited 28e=:+fint
The resulting constraint is that each pipeline stage gets(&..; and R;,; are the number of respectively external and
most one instruction. Another example of internal resour@eternal resources in the system), but this maximum is not
is presented in section VI. reached because some resources are shared by all instajctio
2) External resourcesrepresent resources that asleared like pipeline stages, which leads to get a lower number of
with other hardware components such as timers or memamgtruction classes.
controllers. It is an extension of internal resources tcetak
into account resources that must be manadgdamically
(i.e. during the simulation). For instance, in the case of a The automaton represents all the possible simulation sce-
memory controller, the pipeline is locked if it performs darios of the pipeline. A state of the automaton represents a
request whereas the controller is busy. Otherwise, thdipgpe State of the pipeline, which is defined as the list of all pair
stage that requests the memory access takes the resource{instruction classes, pipeline stggi the pipeline at a given
If an external resource can be taken by instructions fHne. For a system witl instruction classesthere arec + 1
more than one pipeline stage, a priority is set between stageossible cases for each pipeline stagef the pipeline (each
For example, at least two pipeline Stages may Compete fBﬁtrUCtion class or a Sta“) The automatonfiisite because
a memory access using a single pipelined micro-controliéMas at mos{c + 1)* states. The initial state is the one that
without instruction cache nor data cache. represents an empty pipeline. A transition is taken at each
One interesting property of the external resources is thaClock cycle and its condition dependsly on:
allows to check for data hazards. An external resource id,use « the state of the external resources (taken or available);
associated to data dependancy controllein this section, we « theinstruction classof the next instruction that can be
suppose that the first stages of the pipeline dretach stage, fetched in the pipeline.
followed by adecode stage that reads operands. Internal resources are already resolved in the generated au
The data dependancy controller works as presented tomaton and does not appear in the transition’s condition.
algorithm 1 when instructions in the pipeline are execute@ther instructions in the pipeline are already known for a
An instruction that is in the=et ch stage sends sequestto given automaton state, thus only the next instruction thHkt w
the controller to check if all of the operands, that will bkga be fetched is necessary. This transition’s condition isedal
in the next stagellecode), are available. If at least one of thebasic condition. As many different conditions can appear to
register is busy (because it is used by one or more instngtigo from one state to another one, the transition’s condison
in the pipeline), the request fails and the associated matera disjunction ofbasic conditions.
resource is set tbusy. The number of possible transitions is limited to at most
When the transition’s condition is evaluated to get thex 2=+ for each statéc is the number ofnstruction classes
next automaton state, the transition associated with tbwg nand R..; is the number of external resources in the system).
condition (the transition’s condition depends of the state It implies that there are at most + 2)° x 2%t transitions
external resources) will lead to a state that inserts a stall for the whole automaton.

IV. GENERATING THE FINITE AUTOMATON

660

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

The automaton generator algorithm is presented in algoAlgorithm 3 : Function thaigets the next automaton stafeom
rithm 2 and is based on a breadth-first exploration graph te given state, with a known basic condition.

prevent stack problems. The basic idea of the algorithm isfor each pipeline stage, from the last to the fidst

that from the initial state, it computes all the possibleibas
conditions. From the current state, each possible transis

taken to get the set of next automaton states. The algorithm
is then reiterated for each state that have not been pratesse

Algorithm 2: Generation of the automaton pipeline model.

- Create a list that contains the initial automaton state;

- Create an automaton, with the initial automaton state;

while list is not emptydo

- Get an automaton state in the list (start state);

- Generate all the possible basic conditions (combinations
of external resources, combined with the instruction class

if there is an instruction class in the current staten
if resources required by the instruction class can be
taken in the next pipeline stagken
- Instruction class releases resources in the current
pipeline stage;
if there is a next pipeline stagben
- Instruction class is moved in the next
pipeline stage;
- Resources required in the next pipeline stage
are taken;
- Instruction class is removed from the current
| stage;

of the next instruction fetched);
for each basic conditionlo
- Get the next automaton stathis is a deterministic
automaton), using the basic condition and the start
state;
if the state is not yet included in the automatben
- Add the new automaton state (target state) in the
list;
- Add the new automaton state in the automaton;
if the transition does not exithen
| - Create a transition, with an empty condition;
- Update the transition’s condition, by adding a basic
| condition (disjunct);
| - Remove automaton start state from the list;

The central function of this algorithm is the one that can

get the next automaton statghen a basic condition is known.

reduce the complexity of the automaton, These long
pipelines can be cut in two parts to genarate two smaller
automata that are synchronized using an external re-
sources;

processors with a pipeline that has many branches: each
branch of pipeline may be modelled by a separate au-
tomaton as introduced in [12]. Instruction are dispatched
among different branches, thus each branch has less in-
struction classes. This kind of processor can be modelled
with several automata. Splitting a complex pipeline into
different branches will be studied in future work.

V. A BRIEF DESCRIPTION OFHARMLESS

From a generic pipeline model, this function computes the ne The HARMLESS ADL allows to describe a hardware
state of an automaton, taking into account all the Conﬁai%rchitecture using different parts:

brought by resources (internal and external). A pipeline Is
modelled as an ordered list of pipeline stages, where eactt

pipeline stage is an internal resource. In the algorithmh8, t

the instruction set;
the hardware components used by the instructions like
memory, registers, ALU, ...;

pipeline stages in the loop are taken from the last to the first) _
because the pipeline stage that follows the current one must the micro-architecture;
be empty to get a new instruction. « the pipeline; ,
This algorithm allows to detect sink states in the automaton® the peripherals like timers, input/output, ...
(not shown in the algorithm 3, for clarity reason). A sinkista A conponent, in HARMLESS ADL, allows the func-
corresponds to a wrong pipeline description. tional description of a hardware component. It may contain
Combinatorial explosion The increase in complexity of theone or many methods. Aet hod allows an instruction to
pipeline to model leads to get a combinatorial explosion. Asgcess a function offered by a component.
presented above, the automaton is limited(¢o- 1)° states The micro-architecture is described in anchi t ect ur e
and (c + 2)* x 2% transitions. The maximum size of thesection. It forms the interface between a set of hardware
automaton increases exponentially with the pipeline depth components and the definition of the pipeline. It allows to
the number of external resources, and in a polynomial waypress hardware constraints having consequences on the
with the number of instruction classes. We can discern thrggmporal sequence of the simulator. It may contain many
types of processors: devi ces to control the concurrency between instructions to
« short pipelines (5-6 stages) that can be found in simphecess the same component. Every device in the architecture
processors, generally used in embedded systems (4 stdgeselated to one component. The different methods of a
on the Infineon C167). There is no combinatorial explazomponent can be accessed bgat that allows to control
sion due to the short pipeline; the competition during access to one or many methods. A port
« processors with a single deep pipeline, called supenay be private to the micro-architecture or shared (ie thé po
pipelines (8 stages with the MIPS R4000). There have not exclusively used by the micro-architecture). Thetnex
both a deep pipeline and many instruction classes. $ection shows two examples that illustrate these notions.

ROLA KASSEM ET. AL: SIMULATOR GENERATION USING AN AUTOMATONBASED PIPELINE MODEL 661

X, M

VI. EXPERIMENT /_\
OO

Two examples are presented in this section. The first one is
w‘ XM oxm
)

a very simple example which leads to a very small automaton.
The second one is a more complex example with a 6 pipelife/M

using the Freescale XGate instruction set [4].

A. A simple example

Let's consider an example with a 2 stages pipeline, with
only 1 instruction (Nop), 1 component (the Memory) and one Fig. 3. 4 states automaton generated for the very simple gieam
temporal constraint (the memory access in the fetch stage).

Using the HARMLESS ADL, this pipeline can be described

as follow: there is only one). A transition is taken depending on thesta
architecture Generic { of the external resource. If the resource is busy (tramsitio
device mem: Menory { labelled X, / M), the memory controller access is not allowed
shared port fetch : getVal ue; and no instruction can be fetched, the pipeline remainseén th
} same state. If the external resource is available, an ttgtru
} of class "N’ is fetched. The new state of the pipeline\is.

: : _ B. A more realistic example
pi peline pFE maps to Generic { . - .
stage F { The second example is more realistic and considers a

mem : fetch: pipeline with 6 stages. The pipeline is composed &fed ch
} ' stage to get the instruction code in memorpecode stage
stage E { which dgcodes_ the instruction, reads operands and performs
} branch instructions, Execut e stages, avenory access
} stage and &V i t eBack stage that performs write accesses on

the register bank. 88 instructions are available in thisrgxda.
In the description above, two objects are declared: theThe concurrency constraints are:

architecture named Generic and the pi peline . the registers file is able to perform 3 reads and 2 writes
namedpFE. in parallel;

the architecture contains one devigee(y) to control the 41 Harvard architecture (separate program and data mem-
concurrency to access the Memory component. In this de- ories) is used:

scription: at a given time, the methget Val ue, thatgetthe | {he computation in the ALU requires 2 stages and is not
instruction code from the memory, can be accessed one time pipelined:

using thef et ch port. We suppose this access can be madeUsing the HARMLESS ADL, this 6 stages pipeline can be
concurrently by other bus masters. So the poghar ed. described as follow:

The pipelinepFE is mapped to th&ener i ¢ architecture. '
The 2 stages of pipeline are listed. In stdgean instruction architecture Generic {

can use thd et ch port. device gpr : GPR {
A shared port is translated to an external resollcé&/hen port rsl : read;
Mis available the Memory can be accessed througf giech port rs2 : read;
port. Since there is only one instruction in this exampler¢h port rs3 : read;
is only one instruction class. The instruction class depend port rdl : wite;
the external resourdglto enter in stagé-. port rd2 : wite;

This description leads to generate the 4 states automa- }
ton shown in figure 3. For each state, the pipeline state is device alu : ALU {
defined at a given time: 'N’ represents an instruction class port all;

and -’ represents an empty stage. A transition’s condition }
is composed of an instruction that could be fetched, and the device mem: Menory {

state of the external resource. 'M’ and /M’ mean that the shared port fetch : read;
external resource is respectively available or busy. Anfof’ shared port loadStore : read or wite;
the instruction class or an external resource means that the }
parameter is irrelevant for the transition’s condition. device fetcher : FETCHER {
The initial state, on the left, represents an empty pipeline port branch : branch;

At the next clock cycle, two transitions may be taken. In both }
transition’s conditions, the instruction class is irrelat (as }

662 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

« 1 external resource to check data dependancies:

pi pel i ne pFDEAMAB nmaps to Generic { dat aDep.
stage Fetch { As each instruction depends on thet ch resource and the
MEM : fetch; pipeline stages, only three resources can differentiaetio-
} tions: there may be a maximum 2f = 8 instruction classes.
stage Decode { We can notice that an architecture without the ALU strudtura
fetcher : branch; constraint, the maximum of instruction classes would be
gpr : rsl, rs2, rs3, rdl, rdz reduced to4. Instructions used in the example (a Fibonacci
} sequence) are displayed in table I. It uses 5 instructiosseks
stage Executel { The 3 remaining instruction classes correspond to implessib
alu release in Execute2 : all; configurations.
}
st age Execute2 { TABLE |
} INSTRUCTIONS USED IN THE EXAMPLE WITH THEXGATE. INSTRUCTIONS
THAT USES THE SAME RESOURCES ARE IN THE SAME INSTRUCTION
stage Menory { CLASS.
mem : | oadSt ore;
} opcode Alu | loadStore | dataDep | Inst. class
stage WiteBack { LDW (load) X X 1
gpr : rd; STW (store) X X 1
LDH (load) X 2
} LDL (load) X 2
} MOV X 3
. Lo . BGT (branch) X 3
In the same way, this description declares two objects : [BRA (branch))
architecture andpi pel i ne. Inthearchitecture, ADDL X X 5
many devices are declared. PdrbadStore allows the ék’ﬂg § § g

access to 2 methods. the keyword 'or’ is equivalent to the
exclusive orl oadSt or e allows to access the methoéad
or wite. At a given time, if an instruction usesead This example is executed on an Intel Core 2 Duo @ 2.4
in a stage of pipeline, the second methadi t e becomes GHz processor with 2 GB RAM. The results are the following:
inaccessible, and the associated resource is set to busy. 21.3 s are required to compute the whole simulator. This
Sometimes, using any method of a component makeseltipsed time is split in 7.7 s to generate the automaton from
unavailable. Instead of forcing the user to give the list Ibf athe pipeline description, 3.1 s to generate C++ files from the
methods, an empty list is interpreted as a all methods listeH automaton and 10.6 s to compile the C++ files (using GCC
the al u device uses this scheme. 4.0). About 30 MB of RAM are required to generate the
When using a port in a pipeline stage, it is implicitly takemutomaton. The generated automaton has 43 200 states and
at the start of the stage and released at the end. If a p®26 180 transitions. 2 030 401 pipeline states were cakedlat
needs to be held for more than one stage, the stage where drig the generated C++ files represent 4.7 MB in 79 800 lines
released is explicitly given. Here pat | of al u is taken in of code. The simulator generation is fast enough to model
the Execut el stage and released in th&ecut e2 stage. realistic processors.
As in the previous example, shared pdrtsadSt or e and
f et ch are translated to external resources. One is associated
with the data memory controller. The other one is associatedWe present in this section the simulation result provided by
to the program memory controller. A third external resouraeur tool from the example presented in section VI-B:
is used to check for data dependancies during the simulation each line represents an instruction that is executed in the
(see section 11I-A2). pipeline. The instruction that follows a branch instruntio
Other ports may or may not have an associated internal (-) points out that it is a dummy instruction that is fetched
resource. For instance, tigpr device offers enough ports to before the branch detection in the decode stage (1). No

VIl. SIMULATION RESULT

satisfy the needs of the instruction set. So no internalueso behaviour is associated with the instruction because the
is used to constrain the accesses to GPR’s methods. branch instruction is taken;

Instruction classes group instructions that use the sama& each column represents one processor cycle. Numbers
resources (internal or external) as presented in sectleB. || from O (Fetch) to 5 Wite Back) represent the
In this example, 10 resources are used: pipeline stage number in which the instruction is.

« 6 internal resources for the pipeline stages; From this short example, we can get both foeactional

« 1 internal resource for the ALU managemealt:u; behaviour (registers and memory are updated for each in-

« 2 external resources for the memory acces$ed:ch struction) and theemporal behaviourThis short example of
andl oadSt or e; temporal behaviour shows that:

ROLA KASSEM ET. AL: SIMULATOR GENERATION USING AN AUTOMATONBASED PIPELINE MODEL

663

012345
012345
0
0

MOV R6, R7

LDW R2, (R5, R6+)
LDW R3, (R5, R6+)
ADD R4, R2, R3
STW R4, (R5, R6)
ADDL R7, #0x2
BRA - 12

12345

12345
012345
012345
0

12345
0

12345
0

12345
0 12345
012345

012345

Fig. 4. Execution trace produced by the generated simutaidhe Fibonacci sequence

« the four instructions LDW (x2), ADD and STW are data IX. CONCLUSION

dependent, and only one instruction is executed at each_, . .
time in the pipeline. No bypass circuitry is included in hl'hls paper has presented the_method used in HARM.LE.SS
our description; to gen.era.te a Cyc_le Accurate Simulator from the de;cnpﬂon
e BGT nsiicton (ine 4) is delyed for 2 cycke! A PPSINe 2018 hazats. The metiod tes an Iproved
because it needs the ALU result from the previous 9
: . .) and control hazards as well as the concurrent accesses to
instruction (comparison);) .
devices that are not managed statically by the automaton.
The temporal behaviour is required to compute the WCET This improvement is done by using external resources at the
real time applications. cost of a larger automaton. The results look promising. By
adding cycle-accurate pipeline simulation to an Instarctet
Simulator, the simulation time is only increased by a factor
less than 4. Another important part of this work is the design
h ingis directly linked to th of an Architecture Description Language HARMLESS [7]. A
e automaton sequencing is directly linked to the progessq,, part of this language is briefly presented here.. It is a

clock. Thus_, the time required to execute an mstrucUortnlbIoVery important part because it considerably simplify thsigie
depends directly on the number of transitions that are takgn2 cimulator - and so the execution time computation - for

during the simulation. This property can be integrated in particular target processor. Future work will focus on the

sEtatic WCET _I"’_‘pprzof"mh' f?lglzir_:_stance usir:\gﬁn Ilmplri]cit Patllinimisation of the automaton, the use of multiple autontata
nhumeration Technique () approach [11]. In that CaS%duce the global size of the tables, and to model and simulat

the simulator has in charge to give the execution time ofthag, o scalar processors. How to model dynamic superscalar
blocks on which the IPET algorithm is based to determine t focessors, including speculative execution is also @énn
WCET. Additionally, it can give the pipeline state after th

VIIl. FROM SIMULATION TO WCET

execution of the basic block, directly obtained from the las
automaton state. Our tool is being integrated with the OTAWA
tool [3]: Otawa is a Framework for Experimenting WCET [1]
Computations.

On the real example presented in the previous section, it
takes 23.9 s to simulate 100 million instructions (req@70 (2]
million cycles), on an Intel Core 2 duo@2.4GHz. This cycle
accurate simulation tool is fast enough to be integratedams [3]
static WCET analysis tools. As a comparison, the Instractio
Set Simulator required 6.3 s for the same scenario, but witho
any temporal information. So the increase factor for conmgut
timing properties is less than 4. [4]

We have focus our study in the pipeline modelling, but otheis]
components may significantly influence computation timjngs
such as caches (branch, instructions or data). Additiozlalyd
(that model a cache miss) can be taken into account usir@
external resources, see section IlI-A2

REFERENCES

Vasanth Bala and Norman Rubin. Efficient instruction esiling
using finite state automata. IMICRO 28: Proceedings of the 28th
annual international symposium on Microarchitectupages 46-56, Los
Alamitos, CA, USA, 1995. IEEE Computer Society Press.

Frank Burns, Albert Koelmans, and Alexandre YakovlevcaWanalysis
of superscalar processors using simulationwith coloustd pets.Real-
Time Syst.18(2-3):275-288, 2000.

Hugues Cassé and Pascal Sainrat. Otawa, a frameworkexer
perimenting wcet computations. liEuropean Congress on Em-
bedded Real-Time Software (ERTS)age (electronic medium),
ftp://tp.irit.fr/IRIT/TTRACES/6278 ERTS06.pdf, janvier 2006. SEE. 8
pages.

Freescale Semiconductor, INKGATE Block Guide2003.

Ashok Halambi, Peter Grun, and al. Expression: A langudgr
architecture exploration through compiler/simulatorargétability. In
European Conference on Design, Automation and Test (DAVIE)ch
1999.

John L. Hennessy and David A. Patterso@omputer Architecture A
Quantitative Approach-Second EditioMorgan Kaufmann Publishers,
Inc., 2001.

664

[7] R. Kassem, M. Briday, J.-L. Béchennec, G. Savaton, andriquet.
Instruction set simulator generation using harmless, a havdware
architecture description language. Unpublished.

[8] Kevin Kranen. Syst enC 2.0.1 User’s Guide Synopsys, Inc.

[9] J.Y.T. Leung, editor.Handbook of SchedulingChapman & Hall, CRC

Press, 2004.
[10] Xianfeng Li, A. Roychoudhury, T. Mitra, P. Mishra, anduXCheng.
A retargetable software timing analyzer using architectdescription

language. INASP-DAC '07: Proceedings of the 2007 conference on
Asia South Pacific design automatiqrages 396-401, Washington, DC,

USA, 2007. IEEE Computer Society.
[11] Yau-Tsun Steven Li and Sharad Malik. Performance aislyof

embedded software using implicit path enumeration.Warkshop on

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Languages, Compilers, & Tools for Real-Time Systepages 88-98,
1995.

Thomas Miller. Employing finite automata for resousmheduling. In
MICRO 26: Proceedings of the 26th annual international sgsipm on
Microarchitecture pages 12—-20, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press.

Todd A. Proebsting and Christopher W. Fraser. Detgctaipeline
structural hazards quickly. IROPL '94: Proceedings of the 21st ACM
SIGPLAN-SIGACT symposium on Principles of programminguages
pages 280-286, New York, NY, USA, 1994. ACM Press.

Adriano Tavares, Carlos Couto, Carlos A. Silva, andéJasna, C.
S. Metrolho. WCET Prediction for embedded processors using an ADL
chapter Il, pages 39-50. Springer Verlag, 2005.

