
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 559–566

ISBN 978-83-60810-14-9
ISSN 1896-7094

Distributed Internet Systems Modeling
Using TCPNs

Tomasz Rak
Department of Computer and Control Engineering,

Rzeszow University of Technology,
Poland

Email: trak@prz-rzeszow.pl

Slawomir Samolej
Department of Computer and Control Engineering,

Rzeszow University of Technology,
Poland

Email: ssamolej@prz-rzeszow.pl

Abstract—This paper presents a Timed Coloured Petri Nets
based programming tool that supports modeling and perfor-
mance analysis of distributed World Wide Web environments.
A distributed Internet system model, initially described in
compliance with Queueing Theory (QT) rules, is mapped onto
the Timed Coloured Petri Net (TCPN) structure by means of
queueing system templates. Then, it is executed and analyzed
using Design/CPN toolset. The proposed distributed Internet
systems modeling and design methodology has been applied
for evaluation of several system architectures under different
external loads.

I. I NTRODUCTION

ONE OF modern Internet (or Web) systems development
approaches assumes that the systems consist of a set of

distributed nodes. Dedicated groups of nodes are organizedin
layers (clusters) conducting predefined services (e.g. WWW
service or data base service). Simultaneously, for a significant
number of Internet applications some kind of soft real-time
constraints are formulated. The applications should provide
up-to-date data in set time frames [13]. The appearing of new
abovementioned development paradigms cause that searching
for a new method of modeling and timing performance evalu-
ation of distributed Internet systems seems to be an up-to-date
research path.

One of intensively investigated branch of Internet systems
software engineering is formal languages application for mod-
eling and performance analysis. Amid suggested solutions
there are: algebraic description [7], mapping through Queueing
Nets (QN) [4], [12], modeling using both Coloured Petri Nets
(CPN) [8] and Queueing Petri Nets (QPN) [5].

Our approach proposed in this paper may be treated as
extension of solutions introduced in [5]. Queueing Petri Nets
(QPN) idea has been transferred onto formalism of Timed
Coloured Petri Nets (TCPNs) [3]. To create classic queueing
system models defined as in [2] we used Design/CPN tool
package [1]. As a result we developed a programming tool
which is able to map timed behavior of queueing nets by
means of simulation. The Design/CPN performance tool [6]
has been used to effectively capture and analyze data for
created models. The main features of the preliminary version
of our software tool were announced in [10].

The remaining work is organized as follows. In section 2,
we introduce rules of mapping queueing systems into TCPNs.

In the next section, we present a method of applying the
TCPNs based queueing systems models (TCPNs templates)
to distributed Internet system modeling. Section 4 focuseson
results of simulation some detailed Internet system models
while section 5 sums up the paper and includes our future
research plans.

We assumed that the reader is familiar with TCPN for-
malism [3], [9] and with main features of Design/CPN tool
[1], [6].

II. QUEUEING SYSTEM IMPLEMENTATION

Queueing Netusually consists of a set of connectedqueue-
ing systems. Each queueing systemis described by an ar-
rival process, a waiting room and a service process. In the
proposed programming tool, we worked out several TCPNs
basedqueueing system templates(Processor Sharing (PS) and
First In First Out (FIFO)) most frequently used to represent
properties of distributed Internet system components. Each
template represents a separate TCPN net (subpage) which
may be included in the model of the system as a substitution
transition (using hierarchical CP nets mechanisms [3]).

Queueing system properties are mapped to the TCPNs net as
follows. At a certain level of system description, a part of hard-
ware/software is modeled as a TCPN, where some dedicated
substitution transitionsare understand as queueing systems.
To have the queueing functionality running ”under” selected
transitions the mapping to adequate TCPNs subpages must be
done. The corresponding subpages include the implementation
of the adequate queueing system.

In fig. 1a a simple TCPN is presented where PS substitution
transition is interpreted as a certain queueing system. ThePS
transition acquires the queueing system functionality when the
subnet as in fig. 1b is substituted for it. Figure 1b illustrates
an example queueing system -/M/1/PS/∞ (exponential service
times, single server, Processor Sharing service discipline and
unlimited number of arrivals in the system; the queue’s arrival
process in our modeling approach is defined outside of queue-
ing system model). Packets to be served by given queueing
system are delivered by port placeINPUT_PACKS. Then, they
are scheduled in a queue inPACK_QUEUE place. Every given
time quantum (regulated by time multiset included inTIMERS
place) the first element in the queue is selected to be served

978-83-60810-14-9/08/$25.00c© 2008 IEEE 559

560 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

a)

PACKS1

PACKAGE

PACKS6

PACKAGEHS

PS

b)

ADD_PS

PACK_QUEUE

PACK_QUEUE

nil

EXECUTE_PS

[ps_queue<>nil]

TIMERS

TIMER
1‘1

EXECUTED
_PACKS

PACKAGE

INPUT_PACKS

PACKAGE

P In

REMOVE_PS

[#6 pack <= 0]

OUTPUT_PACKS

PACKAGE

P Out

ADD_PS1

[#6 pack > 0]

pack

add_PS
(pack,ps_queue,
discExp(1.0/
ps1_ser_mean_time)
)

ps_queue

ps_queue

update_PS
(ps_queue)

1‘tim1
1‘tim1@+ps1_quantum

release_PS
(ps_queue,ps1_quantum)

pack pack
@+ps1_quantum

pack

add_PS1
(pack,ps_queue)

ps_queue

ps_queue
ps_queue

Fig. 1. TCPNs model of -/M/1/PS/∞ queuing system: a) primary model page b) detailed model page

(execution of transitionEXECUTE_PS). Then, it is placed at
the end of the queue or directed to leave the system (execution
of transitionADD_PS1 or REMOVE_PS respectively). Number
of tokens inTIMERS place represents number of servers for
queueing system.

Full description of the model requires colors and functions
definition in CPN ML language connected to the net elements:

v a l ps ser mean t ime = 1 . 0 ;
v a l pack gen mean t ime = 1 . 0 ;
c o l o r ID= i n t ; c o l o r PRT= i n t ;
c o l o r START TIME= i n t ; c o l o r PROB= i n t ;
c o l o r AUTIL= i n t ; c o l o r RUTIL= i n t ;
c o l o r INT= i n t ; c o l o r TIMER= i n t t imed ;
c o l o r random val = i n t w i th 1 . . 1 0 0 ;
va r t im va l : INT ; va r n : INT ;
va r t im1 : TIMER; c o l o r PACKAGE=

p r o d u c t ID∗PRT∗START TIME∗PROB∗AUTIL ∗RUTIL t imed ;
va r pack :PACKAGE; c o l o r PACKQUEUE= l i s t PACKAGE;
var ps queue :PACKQUEUE;

Corresponding arc functions (add_PS(), add_PS1(),
update_PS(), release_PS()) release or insert tokens
within the queue:

fun add PS (pack :PACKAGE, queue :PACKQUEUE,
s e r t i m e : i n t)= i f queue = n i l
t hen [(# 1 pack , #2 pack , #3 pack , #4 pack ,
se r t im e , s e r t i m e)]
e l s e (#1 pack , #2 pack , #3 pack , #4
pack , se r t im e , s e r t i m e) : : queue ;
fun add PS1 (pack :PACKAGE, queue :PACKQUEUE)=
i f queue= n i l
t hen [pack] e l s e pack : : queue ;
fun update PS (queue :PACKQUEUE)= rev (t l (r ev queue)) ;
fun r e l e a s e P S (queue :PACKQUEUE, ps quantum : INT)= l e t
v a l r pack =hd (rev queue) In
(#1 r pack , #2 r pack , #3 r pack , ran ’ randomval () ,
#5 r pack , #6 r pack−ps quantum) end ;

The state of the system is determined by the number
and distribution of the tokens representing data packet
flow. Each of the tokens representing a packet is
a tuple PACKAGE = (ID, PRT, START_TIME,
PROB, AUTIL, RUTIL) (compare source code including
color’s definitions), where:ID - token identification (allowing
token class definition etc.),PRT - priority, START TIME -

time of a token occurrence in the system,PROB - probability
value (used in token movement distribution in the net),
AUTIL - absolute value of token utilization factor (for PS
queue) andRUTIL - relative value of token utilization factor.
Tokens havetimed attribute scheduling them within places
which are not queues.

While packets are being served, the components of a tuple
are being modified. At the moment the given packet leaves the
queueing system, a newPROB field value ofPACKAGE tuple
is being generated randomly (release_PS function). The
value may be used to modify the load of individual branches
in the queueing system model. Generally, the queueing sys-
tem template is characterized by the following parameters:
average tokens service time (ps_ser_mean_time), number
of servers (number of tokens inTIMERS place) and service
discipline (the TCPN’s structure).

In the software tool developed, it is possible to construct
queueing nets with queueing systems having PS and FIFO
disciplines. These disciplines are the most commonly used for
modeling Internet systems. Some our previous works include
the rules of mapping TCPNs into queues of tokens scheduled
according priorities [9], [8]. The presented templates have
been tested on their compatibility with mathematical formulas
determining the average queue length and service time as
in [2].

III. I NTERNET SYSTEM MODELING AND ANALYSIS

APPROACH

Having a set TCPN based queueing systems models a
systematic methodology of Internet system modeling and
analysis may be proposed. Typically, modern Internet systems
are composed of layers where each layer consist of a set of
servers—a server cluster. The layers are dedicated for proper
tasks and exchange requests between each other.

To efficiently model typical Internet systems structures we
proposed 3 modeling levels:

• superior—modeling of input process, transactions be-
tween layers and requests removal,

• layer—modeling of cluster structure,

TOMASZ RAK ET. AL: DISTRIBUTED INTERNET SYSTEMS MODELING 561

Fig. 2. Example distributed Internet system environment

• queue—modeling of queueing system.
To explain our approach to Internet system modeling a

typical structure of distributed Internet system structure will
be modeled and simulated. The example queueing model of
the system consists of two layers of server clusters (fig. 2) and
is constructed following the rules introduced in [4] and [5].

The front-end layer is responsible for presentation and
processing of client requests. Nodes of this layer are modeled
by PS queues. The next layer (back-end) implements system
data handling. Nodes of this layer are modeled by using the
serially connected PS and FIFO queues. The PS queue models
the server processor and FIFO models the hard disc drive of
server. Requests are sent to the system can be processed in
both layers or removed after processing in front-end layer.The
successfully processed requests are turned to the customer.

Figure 3 shows the TCPN based model of abovementioned
queueing network. The superior level of system description
is presented in fig. 3a, whereas in fig. 3b and 3c detailed
queueing systems topologies at each layer of the system are
shown (compare fig. 2). Server cluster of the first layer (e.g.
WWW servers; fig. 3b) as well as the second layer cluster (e.g.
database; fig. 3c) have been demonstrated on the main page of
TCPN net as substituted transitions:front-end_cluster
andback-end_cluster.
T2 and T3 transitions (compare fig. 3a) are in conflict.

Execution of transitionT2 removes a token from the net
(modeling the possible loss of data packet). However, if
T3 fires, the data packet is transferred for processing in
the second layer of the system. Guard functions connected
to the mentioned transitions determine proportions between
the tokens (packets) rejected and the ones remaining in the
queueing net (in the example model approximately30% of
the tokens is rejected).

On the superior level of system description (fig. 3a) we
have also defined arrival process of the queueing network
(T0 transition withTIMER0 andCOUNTER places).TIMER0
place andT0 transition constitute a clock-like structure that
produces tokens (requests) according to random, exponentially
distributed frequency. These tokens are accumulated in a form

of timed multiset inPACKS1 place and then forwarded into
the queueing-based model of the Internet system. When each
token is being generated its creation time is memorized in the
PACKAGE tuple. This makes it possible to conduct an off-line
analysis of the model.

Consequently, an executable (in a simulation sense) queue-
ing network model is obtained. Tokens generated by arrival
process are transferred in sequence by models of WWW server
layer, by the part of the net that models loss (expiration)
of some packets and by database layer. Provided that the
system is balanced and has constant average arrival process,
after some working time, the average values of the average
queue length and response time are constant. Otherwise, their
increase may occur.

The main parameters of the system modeled are the queue
mean service time, the service time probability distribution
function and the number of servicing units defined for each
queueing system in the model. In the demonstrated model it
has been assumed that queues belonging to a given layer have
identical parameters.

At this stage of our research it has been decided that
simulation will be the main mechanism used to do analysis
of the constructed model. In our simulations we applied the
performance analysis subsystem built in Design/CPN toolkit
[6], [8]. It allows collecting selected elements of the net state at
the moment of an occurrence certain events during simulation.
It has been assumed that in each of the model layers, queue
lengths and response time will be monitored. Monitoring of
the abovementioned parameters helps to determine whether
the model of the system is balanced. Fig. 4 shows example
plots obtained in the simulation of the discussed model.

The example experiment covered model time range from0
to 100 000 time units. Fig. 4a shows the state of selected
queue when the modeled system was balanced. Response time
does not increase and remains around average value. System is
regarded as balanced if the average queue lengths in all layers
do not increase. In fig. 4b response time for unbalanced system
was shown. The results concern the same layer as previously
and identical time range for the simulation. It is clear that
response time (fig. 4b) increase during the experiment. On the
basis of the plot in fig. 4b, it can be concluded that the modeled
system under the assumed external load would be overload
and probably appropriate modifications in the structure of the
system would be necessary. The software tool introduced in
our paper makes it possible to estimate the performance of
developing Internet system, to test and finally to help adjust
preliminary design assumptions.

Having the possibility to capture the net’s state during the
simulation within a certain time interval, it can be possible
to select model parameters in such a manner that they meet
assumed time restrictions. Additionally, the parameters of real
Internet system can be used to fit parameters of the constructed
model.

562 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

a)

TIMER0

TIMER
1‘1

T0
C

output (tim_val);
action
discExp(1.0/
pack_gen_mean_time);

COUNTER

INT 1‘1

PACKS1

PACKAGE

PACKS6

PACKAGE

front-end_cluster

HS

front-end_cluster#25

T1

PACKS8

PACKAGE

PACKS11

PACKAGE

T4

back-end_cluster

HS

back-end_cluster#26

PACKS7

PACKAGE

T3
[#4 pack >=1
 andalso
#4 pack<=70]

T2 [#4 pack >=71
andalso
#4 pack <=100]

tim1

tim1
@+tim_val

(n,0,intTime(),
0,0,0)n

n+1

pack

pack

pack pack

pack

pack

b)

PS_Q1_1

HS

PS_Q1_1#8
PACKS6->OUTPUT_PACKS
PACKS1->INPUT_PACKS

PS_Q1_2

HS

PS_Q1_2#9
PACKS6->OUTPUT_PACKS
PACKS1->INPUT_PACKS

PACKS6

PACKAGE

P

OutPACKS1

PACKAGE

P

In

c)

PACKS89

PACKAGE

PS_Q2_1

HS

PS_Q2_1#4
PACKS89->OUTPUT_PACKS
PACKS8->INPUT_PACKS

PS_Q2_2

HS
PS_Q2_2#5
PACKS89->OUTPUT_PACKS
PACKS8->INPUT_PACKS

FIFO_Q2

HS

FIFO_Q2_1#15
PACKS11->OUTPUT_PACKS
PACKS89->INPUT_PACKS

PACKS11

PACKAGE

P

Out
PACKS8

PACKAGE

P

In

Fig. 3. TCPNs based queueing system model: a) main page, b) front-end cluster subpage and c) back-endcluster subpage

a)

 0

 200

 400

 600

 800

 1000

 1200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
es

po
ns

e
tim

e

Time (seconds)

Response time

b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
es

po
ns

e
tim

e

Time (seconds)

Response time

Fig. 4. Sample system response time history: a) system balanced and b)
system unbalanced

IV. EXAMPLE SYSTEM MODEL WITH FRONT-END

CLUSTER AND BACK-END REPLICATION

The worked out modeling and analysis methodology was
used for construction and evaluation of several detailed models
of architectures of distributed Internet systems. The analysis
of the models were executed with use of performance analysis
tools for TCPN nets [13]. CSIM [11] simulating environment
and experiments on real Internet system were used for TCPNs
simulations evaluation. The overview of typical TCPNs based
Internet system models analyzed so far can be found in [8]. In
the remaining part of the paper one example detailed model
will be discussed: ”front-end cluster and back-end clusterwith
replication”.

A. Model description

The queueing model of the example system is introduced
in fig. 5. It consists of two cluster layers of servers. LetA be
the number of homogeneous servers in the first andB in the
second cluster layer respectively. Customer requests are sent
to the chosen node of front-end cluster with1/A probability.
Then they are placed in the queue to get service. The service
in the service unit (processor) can be suspend many times, if
for example the requests need the database access. When the
database access occures, requests are sent to back-end layer.
Any request can also be removed followingpREMOVE path.
In case of sending to the database, a requests steers itself to
service in one of back-end nodes with1/B probability. The
service in the database service unit may be suspend if access

TOMASZ RAK ET. AL: DISTRIBUTED INTERNET SYSTEMS MODELING 563

Fig. 5. Queueing model with cluster in front-end layer and replication in
back-end layer

to the input/output subsystem of the database storage device
is necessary. Requests are returned to the database service
unit after the storage device is served. This operation can be
repeated many times. After finishing servicing in the back-
end layer, requests are returned to front-end servers (pDB).
Requests can visit back-end layer during processing many
times. After finish servicing in front-end server requests are
sent to the customer (pLEAVE).

If the necessity of the database replication appears the
requests are sent to next database node (pREP). Unless none
of these two situations appear the requests are send to front-
end layer (pDB). Replication can also cause resignation from
transaction. Both the replication and the rejection of realizing
transaction are modeled in simplistic way as delivery of task
to the next location of replication.

In this model:

• PS_Q1_A is A queuePS modeling element that processes
in front-end layer,

• PS_Q2_B is B queuePS modeling element that processes
in back-end layer,

• FIFO_Q2_B is B queueFIFO modeling device that
stores data in back-end layer.

Tab. I includes the probabilities values for Internet requests
distribution for considered model. The parameters assumedfor
discussed model are as follows:

• external load,
• the identical parameters of queues,
• request distribution probabilities,
• the number of nodes in experimental environment.

In fig. 6a the main page (superior model level) of TCPN
model that corresponds to the queueing model discussed
above was presented. It makes it possible to transfer tokens
from back-end layer back to front-end layer. It models the
possibility of multiple tokens transfer to the server disk queue
and replication. A subpage, which models back-end layer for

TABLE I
THE VALUE OF PROBABILITIES FOR MODEL

Probability Probability
values for
model [%]

pREMOVE 30
pLEAVE 30

pDB 55
pREP 10

database replication, is described on fig. 6b. The example
shown contains two nodes of database (B=2) and its most
essential properties are as following:

• the possibility of directing tokens to any node (the
location of replication),

• the return of tokens at the beginning of the layer,
• the realization of data synchronisation in individual loca-

tions.

B. Experimental and simulating model verification

Three example cases (configurations) of considered model
were used to derive the architecture features. Individual cases
mean as follows:

• case 1—A=2, B=2,
• case 2—A=4, B=2,
• case 3—A=4, B=4.

Experimental environment and the CSIM packet were used
to verify proposed TCPN models. The experimental system
consisted of a net segment (100Mb/s), set of computers (Pen-
tium 4, 2.8 GHz, 256 MB RAM) with Linux operating system
(kernel 2.4.22) and Apache2 software (for WWW servers) as
well as MySQL, version 4.0.15 (for database servers) [8].

The verification model was written by using CSIM sim-
ulator. This is a process oriented discreet event simulation
package used with C or C++ compilers [11]. It provides
libraries that a program written can be used in order to modela
system and to simulate it. The models created by using CSIM
[8] were based on presented queue models (fig. 5) (similarly
as TCPN models).

As a result we obtained the evaluated TCPNs based model
of the Internet system discussed. The model made it possible
to predict response time of the system developed. Average
error between TCPN and CSIM models amounts to (tab.
II) 9,5 % for response time. The comparison of results for
TCPN models and experiments gave the following errors for
individual model cases (tab. III) 14,9 %. In compare with
experimental environment the average error of simulation for
response time amounted to 15,1 % for TCPN and 14,1 % for
CSIM respectively. In case of experiments (tab. III) there is
the lack of compare for case 3 because of number of nodes
in laboratory environment.

C. Performance analysis

In fig. 7 the queue lengths for the model (cases 2 and 3)
were shown. These cases differ from each other by a number
of nodes in corresponding layers. Values of queue lengths

564 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

a)

TIMER0

TIMER 1‘1

T0
C

output (tim_val);
action
discExp(1.0/
pack_gen_mean_time);

COUNTER

INT 1‘1

PACKS1

PACKAGE

PACKS6

PACKAGE

front-end_cluster

HS

front-end_cluster#25

T1

PACKS8

PACKAGE

PACKS11

PACKAGE

T4

back-end_cluster

HS

back-end_cluster#26

PACKS7

PACKAGE

T3
[#4 pack >=1
 andalso
#4 pack<=70]

T2
[#4 pack >=71
andalso
#4 pack <=100]

PACKS77

PACKAGE

T22
[#4 pack >=71
andalso
#4 pack <=100]

T33
[#4 pack >=1
 andalso
#4 pack<=70]

PACKS66

PACKAGE

T44

tim1

tim1
@+tim_val

(n,0,intTime(),
0,0,0)

n
n+1 pack pack

pack

pack

pack

pack

pack

pack

pack

pack

b)

PACKS89

PACKAGE

PS_Q2_1
HS

PS_Q2_1#4
PACKS89->OUTPUT_PACKS
PACKS2000->INPUT_PACKS

FIFO_Q2_1
HS

FIFO_Q2_1#15
PACKS899->OUTPUT_PACKS
PACKS203->INPUT_PACKS

PACKS11

PACKAGE

P

Out
PACKS8

PACKAGE

P

In

PACKS88

PACKAGE

PS_Q2_2

HS

PS_Q2_2#13
PACKS88->OUTPUT_PACKS
PACKS2010->INPUT_PACKS

FIFO_Q2_2

HSFIFO_Q2_2#16
PACKS888->OUTPUT_PACKS
PACKS204->INPUT_PACKS

NIC1
[#4 pack >=1
andalso
#4 pack<=10]

NIC2

[#4 pack >=1
andalso
#4 pack<=10]

PACKS200

PACKAGE

PACKS201

PACKAGE

NIC4

[#4 pack >=11
andalso
#4 pack <=45]

NIC3

[#4 pack >=11
andalso
#4 pack <=45]

PACKS203

PACKAGE

PACKS204

PACKAGE

NIC2_1

NIC1_1

NIC30
[#4 pack >=46
andalso
#4 pack <=100]

NIC40

[#4 pack >=46
andalso
#4 pack <=100]

PACKS899

PACKAGE

PACKS888

PACKAGE

NIC2_10

NIC1_10

NIC2_100

NIC1_100

PACKS2010

PACKAGE

PACKS2000

PACKAGE

pack

pack pack

pack

pack pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

packpack

packpack

pack

(#1 pack,
#2 pack,
#3 pack,
ran’random_u(),
#5 pack,
#6 pack)

(#1 pack,
#2 pack,
#3 pack,
ran’random_u(),
#5 pack,
#6 pack)

pack

pack

pack

pack

Fig. 6. TCPNs based queueing system model with cluster in front-end layer and replication in back-end layer: a) main pageand b) back-endcluster subpage

TOMASZ RAK ET. AL: DISTRIBUTED INTERNET SYSTEMS MODELING 565

TABLE II
LAYERS RESPONSE TIME FORTCPNMODEL AND CSIM MODEL

Load
[req./s]

Layer TCPN
Model [ms]

CSIM
Model [ms]

Error [%]

Case 1

100 front-end 49 50 -2.0
100 back-end 567 598 -5.5

300 front-end 701 743 -5.9
300 back-end 813 798 1.8

500 front-end 1001 1109 -1.8
500 back-end 1050 1083 -3.1

Case 2

100 front-end 75 73 2.7
100 back-end 1083 867 19.9

300 front-end 79 85 -7.6
300 back-end 1144 989 13.5

500 front-end 1042 1191 -14.3
500 back-end 965 950 -9.8

Case 3

100 front-end 210 282 -34.2
100 back-end 308 290 5.8

300 front-end 454 472 -3.9
300 back-end 545 499 8.4

500 front-end 512 595 -16.2
500 back-end 520 384 5.2

TABLE III
LAYERS RESPONSE TIME FORTCPNS MODEL AND FOR EXPERIMENTAL

REFERENCE SYSTEM

Load
[req./s]

Layer TCPN
Model [ms]

Experiments
[ms]

Error [%]

Case 1

100 front-end 49 36 26.5
100 back-end 567 409 27.5

300 front-end 701 579 17.4
300 back-end 813 648 20.3

500 front-end 1001 921 8.0
500 back-end 1050 973 7.3

Case 2

100 front-end 75 65 13.3
100 back-end 1083 791 26.9

300 front-end 79 79 0.0
300 back-end 1144 910 20.4

500 front-end 1042 975 6.4
500 back-end 965 925 -6.9

in second layer were presented in charts (case 2—model for
A=4, B=2): PSQ2_1 (fig. 7a) andPSQ2_2 (fig. 7b). Values
of corresponding queue lengths for second layer in case 3
(A=4, B=4) were presented in charts:PSQ2_1 (fig. 7c) and
PSQ2_2 (fig. 7d). Charts of both cases follow assumptions
presented above and the same load. Queue lengths in case 2
are significantly longer than in case 3. It is easy to see benefits
of enlarging number of nodes in back-end layer.

The performance problems were noticed during the dis-
tributed Internet systems analysis. Results of response time in-
dividual layers analysis (tab. II) illustrates behaviour observed
by system customer. The growth of workload generally in-
creases response time of the system. It was noticed that the use
of clustering and nodes replication reduce the response time.

a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
S

Q
2_

1
Le

ng
th

Time (seconds)

Case 2

PSQ2_1 queue length

b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
S

Q
2_

2
Le

ng
th

Time (seconds)

Case 2

PSQ2_2 queue length

c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
S

Q
2_

1
Le

ng
th

Time (seconds)

Case 3

PSQ2_1 queue length

d)

 0

 0.5

 1

 1.5

 2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
S

Q
2_

2
Le

ng
th

Time (seconds)

Case 3

PSQ2_2 queue length

Fig. 7. PS queues lengths history in back-end layer: a), b) for case 2 and
c), d) for case 3

566 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

In case of workload by more than 200 requests per second
the system having the case 1 structure is overloaded. Back-
end layer becomes the system bottleneck. By the adequate
modification of the number of computers in the second layer
the overload condition under 200 request per second has been
overcame. The presented performance analysis methodology
makes it possible to detect early performance problems and to
counteract them.

V. CONCLUSION

It is still an open issue how to obtain an appropriate
distributed Internet system. The demonstrated research results
are an attempt to apply Queueing Theory (QT) and TCPNs
formalism to the development of a software tool that can
support distributed Internet system design. The idea of linking
Queueing Nets Theory and Coloured Petri Nets was proposed
previously by other authors in [5]. However, in the presented
approach queueing systems have been implemented using
TCPNs formalism exclusively. As a consequence, alternative
implementation of Coloured Queueing Petri Nets has been pro-
posed. What was more, the rules of modeling and analysis of
distributed Internet systems applying described net structures
was introduced.

This paper deals with the problem of calculating perfor-
mance values like the response time in distributed Internet
systems environment. The values are calculated by using the
Design/CPN tool (TCPN). It is shown how the Coloured
Petri net model of a distributed Internet system is created
with some of its data structures and functions, and gives
an examples of system analysis. A comparison of the re-
sults obtained by using the software tools (Design/CPN and
CSIM) with the results acquired from the real system is
presented.

The proposed approach is attempted to make a contribution
to performance analysis of distributed Internet systems. This
analysis is useful to determinate number and distribution of
elements in the distributed Internet system architecture for
specified requests load.

Our future research will focus on modeling and analyzing
another structures of distributed Internet systems using the
software tool developed. It will be also significant to demon-
strate compatibility of the models with the real systems. TCPN
features such as tokens distinction will be of more extensive
use. We will also make an attempt to create queueing model
systems with defined token classes and consider a possibility
to use state space analysis of TCPN net to determine properties
of the system.

REFERENCES

[1] Meta Software Corporation,Design/CPN Reference Manual for X-
Windows, Meta Software, 1993.

[2] B. Filipowicz, Modeling and optimize queueing systems, POLDEX,
Krakow, 2006. (In Polish)

[3] K. Jensen,Coloured Petri Nets, Basic Concepts, Analysis Methods and
Practical Use, Vol. 1, Springer, 1996.

[4] S. Konunev, A. Buchmann,Performance Modeling and Evaluation of
Large-Scale J2EE Applications, In Proceedings of the 29th Int. Conf. of
the Comp. Meas. Group on Res. Manag. and Perf. Eval. of Enterprise
Comp. Syst., Dallas, Texas, December 7-12, pp. 486-502, 2003.

[5] S. Kounev, Performance Engineering of Distributed Component-Base
Systems, Banchmarking, Modeling and Performance Prediction, Shaker
Verlag, 2006.

[6] B. Linstrom, L. Wells,Design/CPN Perf. Tool Manual, CPN Group, Univ.
of Aarhus, Denmark, 1999.

[7] T. Rak, Model of Internet System Client Service, Computer Science,
Vol. 5, AGH Krakow, 55–65, 2003.

[8] T. Rak, The Modeling and Analysis of Interactive Internet Systems Real-
izing the Service of High-Frequency Offers, PhD dissertation supervised
by J. Werewka, Krakow, AGH, 2007. (In Polish)

[9] S. Samolej,Design of Embedded Systems Using Timed Coloured Petri
Nets, PhD dissertation supervised by T. Szmuc, Krakow, AGH, 2004. (In
Polish)

[10] S. Samolej, T. Rak,Time Properties of Internet Systems Modeling Using
Coloured Petri Nets, WKŁ, pp. 91–100, 2005. (In Polish)

[11] H. Schwetman,CSIM19: A Powerfull Tool for Bilding System Models,
Proceedings Winter Simulation Conference, B. A. Peters, J.S. Smith, D.
J. Medeiros, and M. W. Rohrer, eds., 2001.

[12] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, An
Analytical Model for Multi-tier Internet Service and Its Applications,
Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pp. 291–302,2005.

[13] L. Wells, S. Christensen, L. M. Kristensen, K. H. Mortensen,Simulation
Based Performance Analysis of Web Servers, Proceedings of the 9th
International Workshop on Petri Nets and Performance Models, IEEE,
pp. 59–68, 2001.

