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Abstract—Recently it was produced a backtrack technique for time T'; thus, the time serie¥ is given by
the efficient approximation of a time series’ future optima. Such
an estimation is succeeded based on a selection of sequenced Y=Yi:teT. (1)

points produced from the repetitive process of the continuos .
optima finding. Additionally, it is shown that if any time series is ~ ©N the other hand, the phenomenon represented by a time

treated as an objective function subject to the factors affeting S€ries may be also treated as a mathematical function with
its future values, the use of any optimization technique finly m variables. Thus, this phenomenon may be described by an

points local optimum and therefore enables accurate prediton ynknown but existable functiof’ : IR™ — IR given by:
making. In this paper the backtrack technique is compiled wth
a steepest descent methodology towards optimization. Z = F(x1,%2,...,2m), (2)

I. INTRODUCTION wherez, zs, . .., x,, are them variables’ values—each de-
REDICTING future was always a rather challenging taskending on time—that affect the phenomenon. Obviously, the
with levels of attractiveness in the case of financial issueglues of the time series in equation (1) are equal to those in
Stock prices prediction, regardless its attractivenessvsry equation (2)
d|ff|c-ult task [1]. The mtr.od_uctlop and use of time series F(210,@0.0, s 2ms) = Y, VteT, 3)
provided the task of prediction with data history, decregsi
the level of arbitrariness when executing. wherex; » denotes the values of the in time t.

Many empirical studies throuhgout literature have disedss The unknown functiorf” may be calculated for all possible
the predictability of financial time series in respect wdtle t values of any variable;;. However, while the phenomenon
data history. In finance the daily stock prices comprise & tinevolutes then parameters are assigned by specific arithmetic
series, but also in meteorology, daily maximum or minimumvalues that are smoothly modified through time. Therefore,
temperatures may report one, too. Agriculture, physics, the time seriesY is also the graphical representation of
geology, as most scientific fields interested in reportinta dadiscrete points that lead to a curve described by a function
based on time observations, tend to produce time seriggi : 24,...,&mzt). SO, every time series is the trace of
reports. the curveg along the functiorn¥’; on this basis the time series

Apart from the data history itself, time series has promotexlirve could be treated as a generic functiomofariables.
into a major forecasting tool, based on statistical metlmdo For example, assume that the graphical representation of a
gies that use historical data to predict not future pointsthe random functionF' is as shown on fig. 1, while equation’s
future prices, of any time series regardless their dataecint g trace on it is represented by the white line. Since this

However, in the case of financial time series it is of greaurve may be represented as a generic function, its grdphica
importance to clarify that the average investor would ratheepresentation is shown in fig. 2.
be informed about the time that the lowest and highest valuesSo, the time series may be represented as the trace of the
will occur than the next day’s— -probably ordinary—valuecurve ofg along the functior¥'. On this basis, any time series
In mathematical means this could be translated as the tilsesquivalent to a curve on the-dimensional space, thus for
series’ local minimum and maximum, respectively. The latk ¢he optima’s prediction any optimization technique may be
applications concentrating on when the maximum or minimuapplied.
would appear regardless the next point's value, led us to thdn this paper we propose a backtrack technique that al-
obvious:Since all known forecasting methodologies are pricdews any optimization algorithm that obtains “memory” bgin
oriented, it is essential to focus on a point-oriented one @pplied in finding future local optima. Section Il includes a
order to forecast not the value of the time series, but the tinbrief literature review of most methodologies based on whic
that its optima will occur time series prediction is made. The methodology proposed is

Time series is considered as a sequence of data poidézomposed on II-C. Finally in V further research interests
arranged according to time. Letbe the time intervals of and applications are proposed.
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programming constraints and in 2000, Best and Hlouskova,
[8], also included the concept of the fully and non-risky
assets. The use of mean-variance efficient frontiers for the
efficient assets’ exchange in Jacobs et al, [9], also apjiied
long positions through the critical line algorithm (CLA)L&
traces out mean-variance efficient sets still includingeays

of linear equality or inequality constraints.

Furthermore, the distinctive introduction of the exporment
smoothing model provided by Brown, [10], and Box and
Jenkins, [11], arose new evidence towards predicting time
series more efficiently. Such methodologies applied the so
called auto-regressive integrated moving average (ARIMA)
models to find the best fit of a time series on its own past
Fig_. 1’. The time series" gener_al function. The white linecés the time values: the effectiveness of both methodologies though is a
series’ real values according to its parameters values. Lo . .

rather controversial issue according to Kuan and Lim, [12].

Most methodologies put aside the issue of the next point
on which a research may focus and be interested in, and
highlight on forecasting the next value. Thus, Taggart],[13
and Merton, [14], included the concept of the stock market
timing in theoretical means, involving financial trends and
macroeconomic policies.

B. Artificial Intelligence Techniques

Alternative applications appeared at the late 90’s, whew, L
and Jo, [15], and Edwards et al, [16], incorporated with the
best time-to-market issue in terms of Artificial Intelligen
to predict future stock price movements including weighted
factors such as past data and market volatility.

Fig. 2. The function plot of th&} using points from the white line of 1.

Il. TIME SERIESFORECASTING

A. Statistical Based Techniques Additionally, Pavlidis et al, [17], [18], incorporated the
The widest used methodologies are based on the knowledigiee series modelling and prediction through the spectrum
of someof the last known prices, i.e. of feed-forward neural networks as one-step local predicto
» applied on exchange rates. Grosan and Abraham, [1], and
Y, = Z Yt —1)+e (4) Chen et al, [19], incorporated results from genetic al@ponit

and neural network applications together, in a single multi
objective algorithm to conclude that the obtained resydfsear
more accurate than the single use of one technique.

The common characteristic amongst these forecasting

Eleler, ... e0-1] =0 (5) methodologies is that they neglect the aspectopfima’s
prediction in favor of that oVvalue’s prediction.

It was H. Markowitz [2] who applied the mean-variance
model on historical data and finally predicted future pricés. Optimization Techniques
quite accurate in respect to the real ones. Based on hisggione «“Optimization is the act of obtaining the best result under

contribution that future points may be detected through thgen circumstances[20]. Mathematically this may be
historical information provided by past data, and statati

=1
where®; € R, and for the estimation of the new poikt are
usedp known points and a residua] that satisfies

assumption including means, variances and covariances; ma min f(X) (6)
applications in several subject areas introduced. Sewslal st ¢;(X)<0,j=12,....m

liography on time series forecasting for finance incorpextat L(X)=0,j = n

with the probability theory. Sharpre, [3], in his pioneernin ! ’ Y

1970, set basis on the generalized portfolio theory of eapiwvhereX = {z1,xo,...,z,} is an n-dimensional vectof( X )

market, introducing the concepts of economics of risk arnsl called the objective function ang;(X) and ;(X) are,
investment. In 1972, Merton, [4], incorporated with a set akspectively, the inequality and equality constraintdsisthe
assets by explicitly discussing the characteristics of nmeabasic form of the constrained optimization problem. In theec
variance and efficient portfolio frontier. Further extems of the lack of constraints, the problem is the unconstrained
added by Pang, [5], Perold ,[6], and extended the level of thptimization one. It is common, by applying appropriate
parametric methods’ usage in large scale selecting prablemmodifications, to transform any constrained problem into an
In 1990, Best and Grauer, [7], included the general lineanconstrained one.



ELENI G. LISGARA ET. AL: ESTIMATING TIME SERIES FUTURE OPTIM USING A STEEPEST DESCENT METHODOLOGY 895

A well known class of algorithms for unconstrained optiz!, 22, ... ™. According to the time series notation in

mization is the Steepest Descent methods firstly introdbged equation (1), point; is denoted byt; = (2%, 2%, ..., 2¢).
Cauchy, [22], Without lack of generality it is supposed that the predittio
of future maximum is in question; the procedure is decom-
=2t — NIVE,. (7) posed in two stages:
where X! is the optimal step length along the search 1) Backward search for minimum When applying any
direction—V E.. optimization technique, it is concluded that most of

Vrahatis et al, [21], proposed a modification of the steepest ~theém in order to generate the new point use prior
descent algorithm model, called Steepest Descent with Adap ~ kKnowledge collected from the process data including

tive Stepsize (SDAS-2) algorithm, based on the the Armijo's  POints, function values, gradient values, matrix approx-
method [23]. imations etc. In our case, lat, be the last known

The SDAS-2 is decomposed, using the parametéror point of time series, and by using the SDAS-2 algorithm

the initial point, \° as the randomly large initial stepsize, the next estimation of local minimum is calculated
MIT the maximum number of iterations required andas when applying Algorithm 1. Obviously, in order to
the predetermined desired accuracy. calculate an approximation of th& /' we have used
finite differences. Therefore, by applying the SDAS-2,
Algorithm 1 The SDAS-2 algorithm, [21] the sequence of points that leads to a local minimum

Require: {F;2%\; MIT; s} (s thys thas - - s Tk tmin), WHETE D > Ky > kp >
. ) ) ) ) e > km72 > min IS estimated.

Setk = —1 . o R
while k < MIT and |[VF(z*)| > ¢ do 2) Forwgrd §earch for minimum When this ‘sequence
k— k41 of points is viewed as a forward process, it appears as a
if &> 1 then sequence that starts from the minimum past paint,
Set Ak — IViGh-VFE Y| crisscrosses the last known potptand probably leads
O - lk —azk=1]| to a maximum future oné,,... In this forward process
if A% 70 thin the stepsizeA* and the sequence of points are known
A=05/A from the previous stage 1. The constructed sequence
else o of points provides us with all the information needed
Se_t)\: A to proceed in estimating a future maximum. So, by
end if applying one step of Algorithm 1 from the initial point
else t, an approximation of,,., is obtained.
SetA = X0 . . . .
end if Thus, the previously described process gives the following

backtrack algorithm for the estimation of future local maxi
mum; note that is a very small positive number that reassures
desired accuracy.

Tune )\ by means of a stepsize tuning subprocedure.
Setzktl = 2% — \VF(aF)

end while

return {z*; F(z%); VF(2%)}

Algorithm 2 The backtrack algorithm

Require: {t,,
The following theorem—provided by Vrahatis et al, [21]— rgpeat {tn, €}

concerns the iterative scheme’s convergence of the Algo- Run stage 1 to compute a sequence of paintsy, , tx
1Y 21

ritr']'?e%):rem 1:[21] Suppose that the objective functidn 3 bz, min that 102 to “past” local minimum.
. : Calculate “future” pointt,,, by applying stage 2 usin
IR™ — IR is continuously differentiable and bounded below P +k DY 8pplying siag ¢

O ; , oiNtSty, oy - vy thyy thyy tne
on IR™ and assume tha¥F' is Lipschitz continuous on gett :k"; Qk Far Ty T
IR™. Then, given any:* € IR™, for any sequencéz*}32,, il v/ < g+
tn,

generated by Algorithm 1, satisfying the Wolfe’s conditon

. . . . Settmax == tn+k.
[24], [25], [26] implies thatlimy,_.., VF(z*) = 0.

return t,,qq

I1l. DECOMPOSITION OF THEBACKTRACK PROCEDURE

As already mentioned in | the time seriEsis also the trace  Note that the procedure described in Algorithm (2) is
of a curve along functiod” of m variables. Thus, the problemequivalent to the optimization problem given by equatiop (6
of time series’ optima search is equivalent to the constdiinTherefore, since all assumptions of Theorem 1 are satisfied,
optimization problem (equation 6). the Algorithm 2 converges to an optimum future point.

Using the notation of equation (6) lots of the unconstrained
minimization methods are iterative in nature and hence they
start from an initial random solution® € IR™ and pro- To investigate the proposed method’s reliability, the rodth
ceed towards the minimum point in a sequential mannevas applied on two different time series samples; one fi-

IV. NUMERICAL APPLICATIONS
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Fig. 4. An application of the SDAS backtrack algorithm on étl Stock

Fig. 3. An application of the backtrack algorithm on Athertsc® Market Market general index on July 13, 1998

general index on April 14, 1999

TABLE |
STATISTICAL INDEXES APPLIED ON RANDOMLY CHOSEN ASSETS

nancial stock market data and another with meteorological

Quantity | Days| Return

ones.
Min 1.00 | -0.2320
A. Athens’ Stock Market Q1 4.00 | 0.0020
The proposed application is tested on the daily closing Median | 9.00 | 0.0520
prices of the Athens’ Stock Market. The data consists of the Mean 15.54 | 0.0662
daily closing prices of 18 years—from 1985 until 2002. In Qs 2125 0.1162
Figure 3 is presented an application of the backtrack atyori Max 55.00 | 0.4020
towards predicting Athens’ Stock Market general index Far t s.d. 1565 | 0.1343

randomly chosen date of April 14, 1999. The last 50 known

values of general index are used,; i.e. in the case of April 14, ) o o
1999, the 50 last known indexes are from January 29, 1999' he difference between the estimations for local minima
until April 14, 1999. These points are represented on Figud®@d local maxima is extracted in terms of time, that is
3 with the square symbol. In Figure 3, again, the gray circl&@ys of market activity. Furthe_rmore, each asset’s retuaa w
stand for the index’s actual values index for the exchangifg/culated based on the function

period from April 15, 1999 till July 14, 1999. Future values R ®)

are connected together with the discontinuous line. Thetgoi Yiin

depicted from the backtrack algorithm are symbolized with |, Taple | are briefly reported the statistical indexes that
the rhomb symbol. characterize the variables “days” and “return” obtaineatrfr

In Figure 4 is presented an application of the SDAS-gyuation 8. Specifically, the raw “days” includes indexes
backtrack algorithm towards predicting Athens’ Stock Metrk regarding the difference in market days between local manim
general index for the randomly chosen date of July 134 |ocal optimatmax — tmin; likewise, raw named “return”
1998; then Algorithm 2 is applied to approximate future locg|ystrates the indexes that result from variatiteestimated
minima and maxima. The last 50 known values of the genefgym equation (8). The abbreviations used as columns are
index are used; i.e. in the case of July 13, 1998, the 50 I@gterred to the local minimum, first quarté);, mean value,
known indexes are from May 4, 1998 until Ju_ly 13, 1998nedian, third quarte€; and standard deviation.

These points are represented on Figure 4 with the squarg is therefore, observed that the mean between the predicte
symbol. In Figure 4, again, the gray circles stand for thgcal minima and local maxima is 15 days approximately.

index’s actual values for the exchanging period from July 1f)ring this period the mean return is ab®ut%.
1998 till September 16, 1998. Future values are connected

together with the discontinuous line. The points depictedif B. Athens Temperature

the SDAS backtrack algorithm are symbolized with the rhomb As widely known, the time series derived from meteorolog-

symbol. ical data appear to have several local optima due to weather’
To investigate the SDAS backtrack algorithm’s reliabjlitydependence from sensitive factors. We have constructedea ti

the algorithm was applied on 1000 randomly chosen pricseries based on the data collected from the National Teghnic

to approximate the datess,;,, andt,.., that produce local University of Athens’ meteorological station, that incksd

minima and local maxima, respectively. Since we assume tlaformation about the temperature for every 10 minutes from

the investor seeks for assets that are relatively cheapyo itebruary 14, 1999 until today.

and their price increase, the table only includes the cds®is t If the time series’ graph is closely observed, for instance

the local minima emerges before the local maxima. for the Christmas Day of 2006 (Fig. 5), it is obvious that
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TABLE Il
STATISTICAL INDEXES APPLIED ON RANDOMLY CHOSEN DESCENDING
TEMPERATURES
Quantity | Forecasted Max | Forecasted Min
Min -2.24 -5.36
Q1 -0.43 -0.38
Median -0.11 -0.07
Mean 0.16 -0.37
Q3 0.34 0.10
Max 4.00 0.56
s.d. 1.24 1.12
Fig. 5. Athens’ temprature during Christmas Day of 2006.
TABLE IV

LEVELS OF SUCCESSFULNESS IN PREDICTING MAXIMUM AND MINIMUM

TABLE Il IN CO-RELATION WITH THE TIME SERIES STREAM
STATISTICAL INDEXES APPLIED ON RANDOMLY CHOSEN ASCENDING
TEMPERATURES N I N
Direction | Min | Max |

| Quantity | Forecasted Max | Forecasted Min Ascending | 47% | 52%
Min -1.16 -8.93 Descending| 55% | 38%
Q1 -0.20 -0.21
Median 0.03 0.01
Mean 0.20 0.08 in means of an “ascending” or a “descending” stream. In col-
Qs 0.24 0.28 umn “Min” is shown the level of successfulness in predicting
Max 4.64 3.62 local minima; same wise, the column “Max” demonstrated
s.d. 0.99 1.39 the successfulness level when predicting local maxima. It

is observed that the local maxima’s prediction while the
timeseries follows an ascending stream is quite bettertthian

there is a high number of optima. Furthermore, there aresaré’é the local minima, and vice-versa. However, such beha_wor
of continuous changes from minima or maxima, especial'l rather expected due to the usage of the SDAS-2 algorithm

around the global maxima—occurred in 15.00—and the globt pt bel_ongs to the f:ategory of the stee_pest descent diguit
minima—occurred in 22.30. According to [27] this category of techniques tends to cogee

The proposed algorithm was tested on the time series dit

for the year 2006. In order to avoid the effects derived from\, ~oncLUSIONS AND FURTHER RESEARCHINTERESTS
the continuous changes we have randomly chosen points that

appear to follow an ascent or a descent stream. It is supposedinis paper is structured based on the rationalization theat t

that a time series follows an ascent stream whenritéast financial time series may be treated as a function subjeoted t

known points are in an ascent order, too. Furthermore, whiflpse that represent all different factors affecting ittuea

the time series appeared following an ascent stream, giging time, thus we incorporated with optimization tech-

backtrack algorithm was applied for the detection of thet padidues instead of statistical ones. Obviously, such amatio

known minima; the SDAS-2 algorithm was applied only fofZation provides strong enough evidence towards applyiryg a

the prediction of the future local maxima. Samewise, if th@Ptimization technique. Due to this, the proposed backtrac

time series appeared following a descent stream the bakktriechnique was applied using the SDAS-2 algorithm incorpo-

algorithm was applied for the detection of the past maximtated in [21]. The results obtained provide strong evidence

and the SDAS-2 for the prediction of the local minima. ~ regarding predictions’ accuracy. Further, it is observeaf t
The results obtained from ascending temperature data #g 10cal maxima's prediction—while the timeseries folbw

shown on Table Il while those obtained from descendirf) @scending stream—is quite better than this of the local

temperature are shown on Table Ill. In order to apprai@inima, and vice-versa. o

the statement that for the ascending stream case the level of "€ SDAS-2 algorithm was applied since

successfulness in predicting local maxima is greater thn t (a) uses prior knowledge (calculates an approximation of

for the local minima and vice-verca, table IV was constrdcte Lipschitz constant using all sequence points), and

it contains the successfulness level for each case. (b) as proposed by [27] the steepest descent methods are the
The values shown on both “Forecasted Max” and “Fore- Mmost reliable as far as it concerns the convergence to

casted Min” columns conclude from the difference between the closest optimum; both characteristics could applied

the value of the predicted local optimum point and the value in portfolio optimization problems.

of the initial known one. At this point, three directions could be proposed based
The column “Direction” illustrates the timeseries’ direet, on the backtrack technique: (a) applications of the backtra

afhe closest optima.
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technique in other minimization algorithms that use infarm [14] R. C. Merton, “On market timing and investment perforoa. i.
tion collected from sequence points, such as quasi-Newton
methods, conjugate gradient, etc, (b) using these tecbsiqﬁs]
towards approximate a future minimum and a future max-
imum, as well, of an individual asset, so as to formulate

an asset management technique for its behavior in an a;%@t

portfolio and (c) using backtrack technique with a multi-
objective optimization method for managing a given portiol [17]

Further research could be focused on these directions, due

to the interesting results the technique provides; ourarese
concentrates towards these directions, as well.
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