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Abstract—Recently it was produced a backtrack technique for
the efficient approximation of a time series’ future optima.Such
an estimation is succeeded based on a selection of sequenced
points produced from the repetitive process of the continuous
optima finding. Additionally, it is shown that if any time ser ies is
treated as an objective function subject to the factors affecting
its future values, the use of any optimization technique finally
points local optimum and therefore enables accurate prediction
making. In this paper the backtrack technique is compiled with
a steepest descent methodology towards optimization.

I. I NTRODUCTION

PREDICTING future was always a rather challenging task
with levels of attractiveness in the case of financial issues.

Stock prices prediction, regardless its attractiveness isa very
difficult task [1]. The introduction and use of time series
provided the task of prediction with data history, decreasing
the level of arbitrariness when executing.

Many empirical studies throuhgout literature have discussed
the predictability of financial time series in respect woth the
data history. In finance the daily stock prices comprise a time
series, but also in meteorology, daily maximum or minimum
temperatures may report one, too. Agriculture, physics, or
geology, as most scientific fields interested in reporting data
based on time observations, tend to produce time series
reports.

Apart from the data history itself, time series has promoted
into a major forecasting tool, based on statistical methodolo-
gies that use historical data to predict not future points, but the
future prices, of any time series regardless their data content.

However, in the case of financial time series it is of great
importance to clarify that the average investor would rather
be informed about the time that the lowest and highest values
will occur than the next day’s– -probably ordinary—value.
In mathematical means this could be translated as the time
series’ local minimum and maximum, respectively. The lack of
applications concentrating on when the maximum or minimum
would appear regardless the next point’s value, led us to the
obvious:Since all known forecasting methodologies are price-
oriented, it is essential to focus on a point-oriented one in
order to forecast not the value of the time series, but the time
that its optima will occur.

Time series is considered as a sequence of data points
arranged according to time. Lett be the time intervals of

time T ; thus, the time seriesY is given by

Y = Yt : t ∈ T . (1)

On the other hand, the phenomenon represented by a time
series may be also treated as a mathematical function with
m variables. Thus, this phenomenon may be described by an
unknown but existable functionF : IRm → IR given by:

Z = F (x1, x2, . . . , xm), (2)

wherex1, x2, . . . , xm are them variables’ values—each de-
pending on time—that affect the phenomenon. Obviously, the
values of the time series in equation (1) are equal to those in
equation (2)

F (x1,t, x2,t, . . . , xm,t) = Yt, ∀t ∈ T, (3)

wherexi,t denotes the values of thexi in time t.
The unknown functionF may be calculated for all possible

values of any variablexi. However, while the phenomenon
evolutes them parameters are assigned by specific arithmetic
values that are smoothly modified through time. Therefore,
the time seriesY is also the graphical representation of
discrete points that lead to a curve described by a function
g(x1,t, x2,t, . . . , xm,t). So, every time series is the trace of
the curveg along the functionF ; on this basis the time series
curve could be treated as a generic function ofm variables.

For example, assume that the graphical representation of a
random functionF is as shown on fig. 1, while equation’s
g trace on it is represented by the white line. Since this
curve may be represented as a generic function, its graphical
representation is shown in fig. 2.

So, the time series may be represented as the trace of the
curve ofg along the functionF . On this basis, any time series
is equivalent to a curve on them-dimensional space, thus for
the optima’s prediction any optimization technique may be
applied.

In this paper we propose a backtrack technique that al-
lows any optimization algorithm that obtains “memory” being
applied in finding future local optima. Section II includes a
brief literature review of most methodologies based on which
time series prediction is made. The methodology proposed is
decomposed on II-C. Finally in V further research interests
and applications are proposed.
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Fig. 1. The time series’ general function. The white line traces the time
series’ real values according to its parameters values.

Fig. 2. The function plot of theYt using points from the white line of 1.

II. T IME SERIESFORECASTING

A. Statistical Based Techniques

The widest used methodologies are based on the knowledge
of someof the last known prices, i.e.

Yt =

p∑

i=1

ΦiY(t − 1) + εt (4)

whereΦi ∈ R, and for the estimation of the new pointYt are
usedp known points and a residualǫt that satisfies

E[εt|ε1, . . . , εt−1] = 0 (5)

It was H. Markowitz [2] who applied the mean-variance
model on historical data and finally predicted future prices
quite accurate in respect to the real ones. Based on his pioneer
contribution that future points may be detected through the
historical information provided by past data, and statistical
assumption including means, variances and covariances, many
applications in several subject areas introduced. Severalbib-
liography on time series forecasting for finance incorporated
with the probability theory. Sharpre, [3], in his pioneer work in
1970, set basis on the generalized portfolio theory of capital
market, introducing the concepts of economics of risk and
investment. In 1972, Merton, [4], incorporated with a set of
assets by explicitly discussing the characteristics of mean-
variance and efficient portfolio frontier. Further extensions
added by Pang, [5], Perold ,[6], and extended the level of the
parametric methods’ usage in large scale selecting problems.
In 1990, Best and Grauer, [7], included the general linear

programming constraints and in 2000, Best and Hlouskova,
[8], also included the concept of the fully and non-risky
assets. The use of mean-variance efficient frontiers for the
efficient assets’ exchange in Jacobs et al, [9], also appliedin
long positions through the critical line algorithm (CLA); CLA
traces out mean-variance efficient sets still including systems
of linear equality or inequality constraints.

Furthermore, the distinctive introduction of the exponential
smoothing model provided by Brown, [10], and Box and
Jenkins, [11], arose new evidence towards predicting time
series more efficiently. Such methodologies applied the so
called auto-regressive integrated moving average (ARIMA)
models to find the best fit of a time series on its own past
values; the effectiveness of both methodologies though is a
rather controversial issue according to Kuan and Lim, [12].

Most methodologies put aside the issue of the next point
on which a research may focus and be interested in, and
highlight on forecasting the next value. Thus, Taggart, [13],
and Merton, [14], included the concept of the stock market
timing in theoretical means, involving financial trends and
macroeconomic policies.

B. Artificial Intelligence Techniques

Alternative applications appeared at the late 90’s, when, Lee
and Jo, [15], and Edwards et al, [16], incorporated with the
best time-to-market issue in terms of Artificial Intelligence
to predict future stock price movements including weighted
factors such as past data and market volatility.

Additionally, Pavlidis et al, [17], [18], incorporated the
time series modelling and prediction through the spectrum
of feed-forward neural networks as one-step local predictors
applied on exchange rates. Grosan and Abraham, [1], and
Chen et al, [19], incorporated results from genetic algorithms
and neural network applications together, in a single multi-
objective algorithm to conclude that the obtained results appear
more accurate than the single use of one technique.

The common characteristic amongst these forecasting
methodologies is that they neglect the aspect ofoptima’s
prediction in favor of that ofvalue’s prediction.

C. Optimization Techniques

“Optimization is the act of obtaining the best result under
given circumstances”[20]. Mathematically this may be

min f(X) (6)

s.t. gj(X) ≤ 0, j = 1, 2, . . . , m

lj(X) = 0, j = 1, 2, . . . , n

whereX = {x1, x2, . . . , xn} is an n-dimensional vector,f(X)
is called the objective function andgj(X) and lj(X) are,
respectively, the inequality and equality constraints. This is the
basic form of the constrained optimization problem. In the case
of the lack of constraints, the problem is the unconstrained
optimization one. It is common, by applying appropriate
modifications, to transform any constrained problem into an
unconstrained one.
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A well known class of algorithms for unconstrained opti-
mization is the Steepest Descent methods firstly introducedby
Cauchy, [22],

xi+1 = xi − λ∗
i∇Fi. (7)

where λ∗
i is the optimal step length along the search

direction−∇Fi.
Vrahatis et al, [21], proposed a modification of the steepest

descent algorithm model, called Steepest Descent with Adap-
tive Stepsize (SDAS-2) algorithm, based on the the Armijo’s
method [23].

The SDAS-2 is decomposed, using the parametersx0 for
the initial point, λ0 as the randomly large initial stepsize,
MIT the maximum number of iterations required andε as
the predetermined desired accuracy.

Algorithm 1 The SDAS-2 algorithm, [21]

Require: {F ; x0; λ0; MIT ; ε}
Setk = −1
while k < MIT and‖∇F (xk)‖ > ε do

k = k + 1
if k ≥ 1 then

SetΛk = ‖∇f(xk)−∇F (xk−1)‖
‖xk−xk−1‖

if Λk 6= 0 then
λ = 0.5/Λk

else
Setλ = λ0

end if
else

Setλ = λ0

end if
Tuneλ by means of a stepsize tuning subprocedure.
Setxk+1 = xk − λ∇F (xk)

end while
return {xk; F (xk);∇F (xk)}

The following theorem—provided by Vrahatis et al, [21]—
concerns the iterative scheme’s convergence of the Algo-
rithm 1:

Theorem 1:[21] Suppose that the objective functionF :
IRm → IR is continuously differentiable and bounded below
on IRm and assume that∇F is Lipschitz continuous on
IRm. Then, given anyx0 ∈ IRm, for any sequence{xk}∞k=0,
generated by Algorithm 1, satisfying the Wolfe’s conditions
[24], [25], [26] implies thatlimk→∞ ∇F (xk) = 0.

III. D ECOMPOSITION OF THEBACKTRACK PROCEDURE

As already mentioned in I the time seriesY is also the trace
of a curve along functionF of m variables. Thus, the problem
of time series’ optima search is equivalent to the constrained
optimization problem (equation 6).

Using the notation of equation (6) lots of the unconstrained
minimization methods are iterative in nature and hence they
start from an initial random solution,X0 ∈ IRm and pro-
ceed towards the minimum point in a sequential manner,

x1, x2, . . . xmin. According to the time series notation in
equation (1), pointti is denoted byti = (xi

1, x
i
2, . . . , x

i
m).

Without lack of generality it is supposed that the prediction
of future maximum is in question; the procedure is decom-
posed in two stages:

1) Backward search for minimum When applying any
optimization technique, it is concluded that most of
them in order to generate the new point use prior
knowledge collected from the process data including
points, function values, gradient values, matrix approx-
imations etc. In our case, lettn be the last known
point of time series, and by using the SDAS-2 algorithm
the next estimation of local minimum is calculated
when applying Algorithm 1. Obviously, in order to
calculate an approximation of the∇F we have used
finite differences. Therefore, by applying the SDAS-2,
the sequence of points that leads to a local minimum
[tn, tk1

, tk2
, . . . , tkm−2

, tmin], where n > k1 > k2 >
· · · > km−2 > min is estimated.

2) Forward search for minimum When this “sequence”
of points is viewed as a forward process, it appears as a
sequence that starts from the minimum past pointtmin,
crisscrosses the last known pointtn and probably leads
to a maximum future onetmax. In this forward process
the stepsizeΛ∗

i and the sequence of points are known
from the previous stage 1. The constructed sequence
of points provides us with all the information needed
to proceed in estimating a future maximum. So, by
applying one step of Algorithm 1 from the initial point
tn an approximation oftmax is obtained.

Thus, the previously described process gives the following
backtrack algorithm for the estimation of future local maxi-
mum; note thatε is a very small positive number that reassures
desired accuracy.

Algorithm 2 The backtrack algorithm

Require: {tn, ε}
repeat

Run stage 1 to compute a sequence of pointstn, tk1
, tk2

,
. . . , tkm−2

, tmin that leads to “past” local minimum.
Calculate “future” pointtn+k by applying stage 2 using
points tkm−2

, . . . , tk2
, tk1

, tn.
Set tn = tn+k

until Y ′
tn

< ε
Set tmax = tn+k.
return tmax

Note that the procedure described in Algorithm (2) is
equivalent to the optimization problem given by equation (6).
Therefore, since all assumptions of Theorem 1 are satisfied,
the Algorithm 2 converges to an optimum future point.

IV. N UMERICAL APPLICATIONS

To investigate the proposed method’s reliability, the method
was applied on two different time series samples; one fi-
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Fig. 3. An application of the backtrack algorithm on Athens Stock Market
general index on April 14, 1999

nancial stock market data and another with meteorological
ones.

A. Athens’ Stock Market

The proposed application is tested on the daily closing
prices of the Athens’ Stock Market. The data consists of the
daily closing prices of 18 years—from 1985 until 2002. In
Figure 3 is presented an application of the backtrack algorithm
towards predicting Athens’ Stock Market general index for the
randomly chosen date of April 14, 1999. The last 50 known
values of general index are used; i.e. in the case of April 14,
1999, the 50 last known indexes are from January 29, 1999
until April 14, 1999. These points are represented on Figure
3 with the square symbol. In Figure 3, again, the gray circles
stand for the index’s actual values index for the exchanging
period from April 15, 1999 till July 14, 1999. Future values
are connected together with the discontinuous line. The points
depicted from the backtrack algorithm are symbolized with
the rhomb symbol.

In Figure 4 is presented an application of the SDAS-2
backtrack algorithm towards predicting Athens’ Stock Market
general index for the randomly chosen date of July 13,
1998; then Algorithm 2 is applied to approximate future local
minima and maxima. The last 50 known values of the general
index are used; i.e. in the case of July 13, 1998, the 50 last
known indexes are from May 4, 1998 until July 13, 1998.
These points are represented on Figure 4 with the square
symbol. In Figure 4, again, the gray circles stand for the
index’s actual values for the exchanging period from July 14,
1998 till September 16, 1998. Future values are connected
together with the discontinuous line. The points depicted from
the SDAS backtrack algorithm are symbolized with the rhomb
symbol.

To investigate the SDAS backtrack algorithm’s reliability,
the algorithm was applied on 1000 randomly chosen prices
to approximate the datestmin and tmax that produce local
minima and local maxima, respectively. Since we assume that
the investor seeks for assets that are relatively cheap to buy
and their price increase, the table only includes the cases that
the local minima emerges before the local maxima.

Fig. 4. An application of the SDAS backtrack algorithm on Athens Stock
Market general index on July 13, 1998

TABLE I
STATISTICAL INDEXES APPLIED ON RANDOMLY CHOSEN ASSETS

Quantity Days Return

Min 1.00 -0.2320

Q1 4.00 0.0020

Median 9.00 0.0520

Mean 15.54 0.0662

Q3 21.25 0.1162

Max 55.00 0.4020

s.d. 15.65 0.1343

The difference between the estimations for local minima
and local maxima is extracted in terms of time, that is
days of market activity. Furthermore, each asset’s return was
calculated based on the function

R =
Ytmax

− Ytmin

Ytmin

(8)

In Table I are briefly reported the statistical indexes that
characterize the variables “days” and “return” obtained from
equation 8. Specifically, the raw “days” includes indexes
regarding the difference in market days between local minima
and local optima,tmax − tmin; likewise, raw named “return”
illustrates the indexes that result from variableR estimated
from equation (8). The abbreviations used as columns are
referred to the local minimum, first quarterQ1, mean value,
median, third quarterQ3 and standard deviation.

It is therefore, observed that the mean between the predicted
local minima and local maxima is 15 days approximately.
During this period the mean return is about6.6%.

B. Athens Temperature

As widely known, the time series derived from meteorolog-
ical data appear to have several local optima due to weather’s
dependence from sensitive factors. We have constructed a time
series based on the data collected from the National Technical
University of Athens’ meteorological station, that includes
information about the temperature for every 10 minutes from
February 14, 1999 until today.

If the time series’ graph is closely observed, for instance
for the Christmas Day of 2006 (Fig. 5), it is obvious that
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Fig. 5. Athens’ temprature during Christmas Day of 2006.

TABLE II
STATISTICAL INDEXES APPLIED ON RANDOMLY CHOSEN ASCENDING

TEMPERATURES

Quantity Forecasted Max Forecasted Min

Min -1.16 -8.93

Q1 -0.20 -0.21

Median 0.03 0.01

Mean 0.20 -0.08

Q3 0.24 0.28

Max 4.64 3.62

s.d. 0.99 1.39

there is a high number of optima. Furthermore, there are areas
of continuous changes from minima or maxima, especially
around the global maxima—occurred in 15.00—and the global
minima—occurred in 22.30.

The proposed algorithm was tested on the time series data
for the year 2006. In order to avoid the effects derived from
the continuous changes we have randomly chosen points that
appear to follow an ascent or a descent stream. It is supposed
that a time series follows an ascent stream when itsm last
known points are in an ascent order, too. Furthermore, when
the time series appeared following an ascent stream, the
backtrack algorithm was applied for the detection of the past
known minima; the SDAS-2 algorithm was applied only for
the prediction of the future local maxima. Samewise, if the
time series appeared following a descent stream the backtrack
algorithm was applied for the detection of the past maxima,
and the SDAS-2 for the prediction of the local minima.

The results obtained from ascending temperature data are
shown on Table II while those obtained from descending
temperature are shown on Table III. In order to appraise
the statement that for the ascending stream case the level of
successfulness in predicting local maxima is greater than this
for the local minima and vice-verca, table IV was constructed,
it contains the successfulness level for each case.

The values shown on both “Forecasted Max” and “Fore-
casted Min” columns conclude from the difference between
the value of the predicted local optimum point and the value
of the initial known one.

The column “Direction” illustrates the timeseries’ direction,

TABLE III
STATISTICAL INDEXES APPLIED ON RANDOMLY CHOSEN DESCENDING

TEMPERATURES

Quantity Forecasted Max Forecasted Min

Min -2.24 -5.36

Q1 -0.43 -0.38

Median -0.11 -0.07

Mean 0.16 -0.37

Q3 0.34 0.10

Max 4.00 0.56

s.d. 1.24 1.12

TABLE IV
LEVELS OF SUCCESSFULNESS IN PREDICTING MAXIMUM AND MINIMUM

IN CO-RELATION WITH THE TIME SERIES’ STREAM

Direction Min Max

Ascending 47% 52%

Descending 55% 38%

in means of an “ascending” or a “descending” stream. In col-
umn “Min” is shown the level of successfulness in predicting
local minima; same wise, the column “Max” demonstrated
the successfulness level when predicting local maxima. It
is observed that the local maxima’s prediction while the
timeseries follows an ascending stream is quite better thanthis
of the local minima, and vice-versa. However, such behavior
is rather expected due to the usage of the SDAS-2 algorithm
that belongs to the category of the steepest descent algorithms.
According to [27] this category of techniques tends to converge
to the closest optima.

V. CONCLUSIONS ANDFURTHER RESEARCHINTERESTS

This paper is structured based on the rationalization that the
financial time series may be treated as a function subjected to
those that represent all different factors affecting its values
during time, thus we incorporated with optimization tech-
niques instead of statistical ones. Obviously, such a rational-
ization provides strong enough evidence towards applying any
optimization technique. Due to this, the proposed backtrack
technique was applied using the SDAS-2 algorithm incorpo-
rated in [21]. The results obtained provide strong evidence
regarding predictions’ accuracy. Further, it is observed that
the local maxima’s prediction—while the timeseries follows
an ascending stream—is quite better than this of the local
minima, and vice-versa.

The SDAS-2 algorithm was applied since

(a) uses prior knowledge (calculates an approximation of
Lipschitz constant using all sequence points), and

(b) as proposed by [27] the steepest descent methods are the
most reliable as far as it concerns the convergence to
the closest optimum; both characteristics could applied
in portfolio optimization problems.

At this point, three directions could be proposed based
on the backtrack technique: (a) applications of the backtrack
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technique in other minimization algorithms that use informa-
tion collected from sequence points, such as quasi-Newton
methods, conjugate gradient, etc, (b) using these techniques
towards approximate a future minimum and a future max-
imum, as well, of an individual asset, so as to formulate
an asset management technique for its behavior in an asset
portfolio and (c) using backtrack technique with a multi-
objective optimization method for managing a given portfolio.

Further research could be focused on these directions, due
to the interesting results the technique provides; our research
concentrates towards these directions, as well.
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