Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 673—678 ISSN 1896-7094

Modeling Real-Time Database Concurrency Control
Protocol Two-Phase-Locking in Uppaal

Martin Kot
Center for Applied Cybernetics
Dept. of Computer Science,
Technical University of Ostrava
17. listopadu 15,708 33 Ostrava — Poruba
Czech Republic
Email: martin.kot@vsb.cz

Abstract—Real-time database management systems (RT-system in some formalism and a property expressed usually in
DBMS) are recently subject of an intensive research. Model the form of formula in some temporal logic. Model checking
checking algorithms and verification tools are of great conern algorithm checks whether the property holds for the model of

as well. In this paper we show some possibilities of using a t Th it t ted ification tool
verification tool Uppaal on some variants of pessimistic cotur- a system. ere are quite many automated veriication t0ols

rency control protocols used in real-time database manageemt Which implement model checking algorithms. Those tools
systems. We present some possible models of such protocolsise different modeling languages or formalisms and differe
expressed as nets of timed automata, which are a modeling|ogics.

language of Uppaal. The idea of the research described in this paper came

I. INTRODUCTION from authors of V4DB. They were interested in using a
: o verification tool on their system. They would like to verify
ANY real-time applications need to store some da

. X . " d compare different variants of algorithms and protocols
in a database. It is possible to use traditional databa& P 9 P

§ed in RTDBMS. To our best knowledge, there are only rare
management systems (DBMS). But they are not able to gu

X o a tempts of automated formal verification of real-time bate
antee any bounds on a response time. This is the reasoné %(

i tem. In fact we know about one paper ([9]) only where
Z(r:g?élgg real-ime database management systems (RTDBMpjj, suggested a new pessimistic protocol and verified it

using Uppaal. They presented two small models covering onl
Research in RTDBMS focused on evolution of transacti 9 -pp yp gony

: . L) . HWeir protocol.
processing algorithms, priority assignment strategiesam-

| techni But th h based There is not any verification tool intended directly for
currency control techniques. But the research was baset @3, time database systems. We have chosen the tool Uppaal
cially on simulation studies. Hence at Technical univgrsit

i OO , _because it is designed for real-time systems. But, it is ss@p
Ostrava, Vaclav Krol, Jindfickbernohorsky and Jan Pokorny, " \ced on so-called reactive systems, which are quite

designed and implemented an experimental real-time dsgab ifferent from database systems. So we need to solve the

s.ystem calleq V4DB [6], WhICh Is suitable fpr S‘.“dY of re roblem of modeling data records of the database and some
time transaction processing. The system is still in furth ther problems. Then we would like to check some important
development but some important results were obtaineddg}reabroperties of used protocols and algorithms, for example:

Formal verification is of great interest recently and ﬁndébsence of a deadlock when using an algorithr,n which should
its way quickly from theoretical papers into a real live. #nc avoid deadlock in the transaction processing, processimg

prove_that a syst_em (or more exactly a model of_a system) h(‘ftﬁion with bigger priority instead of transactions withaghar
a desired behavior. The difference between testing andab"Briority and so on

verification is that during testing only some possible cotapu Big problem of verification tools is so called state space

tions are chosen. Formal verification can prove correctoéssexplosion_ Uppaal is not able to manage too detailed models.

all possible computations. A drawback of formal venfu:atloOn the other hand, too simple models can not catch important

is that for models \.N'th high _degcrlptlve power are almo roperties of a real system. So we need to find a suitable level
all problems undecidable. It is important to find a mod f abstraction

with an appropriate_descript_ive power to capture a.peh".iv'orOne of the most important and crucial parts of RTDBMS
of a system, yet with algorithmically decidable verificatio is concurrency control. There were many different concur-
prcl)bler:ps. id lled del checki rency control protocols suggested. In this paper, we will
n t3 IS gape_lth_/vefcon& fer S(.)f. called model ¢ e% ”Fg f(SESncentrate on variants of a pessimistic protocol called- tw
e.g. [3]. [8]). This form of verification uses a model o "’bhase-locking (2PL). First variant is basic 2PL protocoért
Author acknowledges the support by the Czech Ministry of dation, slightly mOdiﬁeq version Where deadlim?s are u§ed to abort
Grant No. 1M0567. waiting transactions and finally 2PL — high priority where a

978-83-60810-14-9/08/$25.00 2008 IEEE 673

674 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

transaction with higher priority can restart a transactiath z:int[0,5]
a smaller priority. We will show that it is possible to model X>=§ f‘]‘(’;‘hfzo
those protocols, to some level of abstraction, using modeli A :y . B C
’ S x=0,y=z =Y
language of Uppaal. These examples will show possibildfes @ /® @

modeling other similar pessimistic protocols and even some x<=15
other parts of RTDBMS. The models are inspired by the
RTDBMS system V4DB in some way. VADB is experimental

so it has some simplifications which we can use to obtain
simpler models yet with important behavior covered (as V4DB
has). But it is possible to use ideas shown in this paper fibra synchronisation through urgent channel is enabled). An

verification of concurrency control algorithms in general. assignment is a comma separated list of expressions with a

We will also mention a few simple formula with an Uppaal'side-effect. It is used to reset clocks and set values oalubes.
answer to show model checking possibilities on suggestedFigure 1 shows how the described notions are represented
models. graphically in Uppaal. There are 3 locations named and

C. LocationAis initial andB is committed. MoreoveA has an
1. VERIFICATION TOOL UPPAAL invariantx<=15 with the meaning that the automaton could be

Uppaal ([2], [4]) is a verification tool for real-time system in this location only when the value of the clock variaklés
It is jointly developed by Uppsala University and Aalbordess or equalls. The edge betweeA and B has the select
University. It is designed to verify systems that can be nfedie z: i nt [0, 5] — it nondeterministically chooses an integer
as networks of timed automata extended with some furthealue from the range 0 to 5 and stores it in variabl€eThis
features such as integer variables, structured data tyses, edge also has the guax®=5 && y==0. This means that
defined functions, channel synchronization and so on. it can be fired only when the value of the clock variable

A timed automaton is a finite-state automaton extended withis greater or equab and the integer variablg has the
clock variables. A dense-time model, where clock variableglue 0. Data types of variables are defined in a declaration
have real number values and all clocks progress synchrénousection. Further it has synchronization lalssinchr! and
is used. In Uppaal, several such automata working in paralf assignment=0, y=z reseting the clock variable and
form a network of timed automata. setting the value of to the integer variably.

An automaton has locations and edges. Each location hasJppaal has some other useful features. Templates are au-
an optional name and invariant. An invariant is a conjunctidomata with parameters. These parameters are substititted w
of side-effect free expressions of the forun< e or x < e given arguments in the process declaration. This enabkss ea
where z is a clock variable and evaluates to an integer.construction of several alike automata. Moreover, we can us
Each automaton has exactly one initial location. bounded integer variables (with defined minimal and maximal

Particular automata in the network synchronize using chavalue), arrays and user defined functions. These are defined i
nels and values can be passed between them using shaeglaration sections. There is one global declarationisect
variables. A state of the system is defined by the locationswhere channels, constants, user data types etc. are specifie
all automata and the values of clocks and discrete variablesich automaton template has own declaration section, where
The state can be changed in two ways - passing of tinwzal clocks, variables and functions are specified. Andlfina
(increasing values of all clocks) and firing an edge of sonibere is a system declaration section, where global vasabl
automaton (possibly synchronizing with another automaton are declared and automata are created using templates.
other automata). Uppaal's query language for requirement specification is

Some locations may be marked as committed. If at leasased on CTL (Computational Tree Logic, [5]). It consist
one automaton is in a committed location, time passing is naft path formulae and state formulae. State formulae describ
possible, and the next change of the state must involve iadividual states and path formulae quantify over paths or
outgoing edge of at least one of the committed locations. traces of the model.

Each edge may have a select, a guard, a synchronizatioi state formula is an expression that can be evaluated for
and an assignment. Select gives a possibility to choose nanstate without looking at the behavior of the model. For
deterministically a value from some range. Guard is a sidexample it could be a simple comparison of a variable with
effect free expression that evaluates to a boolean. Thedguarconstani <= 5. The syntax of state formulae is similar
must be satisfied when the edge is fired. Synchronization labe the syntax of guards. The only difference is that in a state
is of the form Expr! or Expr? where Expr evaluates to a formula disjunction may be used.
channel. An edge witle! synchronizes with another edge (of There is a special state formutkead| ock. It is satisfied
another automaton in the network) with lak€l Both edges in all deadlock states. The state is deadlock if there is ngt a
have to satisfy all firing conditions before synchronizatio action transition from the state neither from any of its gela
There are urgent channels as well — synchronisation througjiccessors.
such a channel have to be done in the same time instanPath formulae can be classified ireachability, safety and
when it is enabled (it means, time passing is not allowdileness. Reachability formulae ask if a given state formula

Fig. 1. Graphical representation of a timed automaton indapp

MARTIN KOT: MODELING REAL-TIME DATABASE CONCURRENCY CONTROL PROTOCOL 675

is satisfied by some reachable state. In Uppaal we use syntax fis_chfrec_id]? 200K yis_chirec_id]?
E<> ¢ wheregp is a state formula. Q

Safety properties are usually of the form: “something bad
will never happen”. In Uppaal they are defined positively:
“something good is always true”. We us¢] ¢ to express, wrt_chirec_id]?
that a state formula should be true in all reachable states, rd_ch[rec_id]?
andE[] ¢ to say, that there should exist a maximal path such
that ¢ is always true.

There are two types of liveness properties. Simpler is of
the form: “something will eventually happen”. We use>
» meaning that a state formulais eventually satisfied. The
other form is: “leads to a response”. The syntaxpis - > 1 fis_chireq_rec].

locked[req_rec]=
with the meaning that wheneveris satisfied, then eventually PN

1 will be satisfied.

The simulation and formal verification are possible in Up-
paal. The simulation can be random or user assisted. It is
more suitable for verification whether the model correspond
with the real system. Formal verification should confirm Ry
that the system has desired properties expressed using the
guery language. There are many options and settings for
verification algorithm in Uppaal. For example we can change [cieared
representation of reachable states in memory. Some of the !ockedred rec=READ
options lead to less memory consumption, some of them speed
up the verification. But improvement in one of these two
characteristic leads to a degradation of the other usually. O reg o

For more exact definitions of modeling and query languages eareemee
and verification possibilities of Uppaal see [2].

ReadLock WriteLock

Fig. 2. Automaton representing a record in a database

real_locks>0
req_rec=next()

oper_time>=MIN_OPER_TIME

Working
oper_time<=MAX_OPER_TIME

locks==OPERATIONS locked[req_rec]==UNLOCKED
oper_time=0 locks++, real_locks++,
locked[req_rec]=WRITE

locked[req_rec]!=
UNLOCKED

locks++

locked[req_rec]==READ
locks++,
locked[req_rec]=WRITE

locked[req_rec]==

[1l. PESSIMISTIC PROTOCOL TWOPHASE-LOCKING UNLOCKED (ockedlreq_recl=WRITE

In this section we suggest one model of pessimistic
concurrency control protocol. Of course, it is not the only
one possible.

Two-phase-locking protocol is based on data locks. Before
access to data the transaction must have a lock. All locks
granted to a transaction are released after all operatibns o
this transaction are executed. There are two types of lofks—
read and write. The first is used for the operation select la@d it avoids overloading). So it is possible to represent oriw@&c

wrt_ch[req_rec]!

-©

ReadRequest

WriteRequest

Fig. 3. Transaction automaton for two-phase-locking proko

latter for update, delete and insert. Either one write lackay- (i.e. currently in execution) transaction as one automaton
eral read locks can be on a particular record (for simpligity After successful end of a transaction the same automaton

our model will be only one read lock allowed for one recordyepresents some other transaction.

If a transaction can not get a lock for a request it is placed For simplicity, all transactions are supposed to have
in a queue of this record. After an existing lock is releasedthe same number of operations (given by a constant
new lock is granted to the first transaction in the queue. OPERATI ONS). Each operation accesses one record (i.e. needs
The suggested model consists of several timed automat® lock). A type of operations and an accessed record is for a
created using two templates. One type of automata repsesertl RTDBMS in fact random because it is determined outside
data records in a database. The template is shown on the RTDBMS. We do not need to model concrete operations,

Figure 2. Each record automaton has an integer ID storedonly locks. The record is chosen nondeterministically gsin
rec_i d. There are three locations corresponding to two typeslectr ec: rec_i d_t . The operation is then immediately
of locks and to an unlocked state. Chanmets ch[x] and (due to a committed location) chosen nondeterministidayly

wrt _ch[x] are used for requests for read and write locks amsing one of three possible edges. If a transaction owns the
recordz. Channel | s_ch[x] is for release (unlock) request.demanded type of a lock on the accessed record, it does not

The second template shown on the Figure 3 is intendedasks the lock again. If it has only a read lock, it can ask chang
create automata representing active transactions in gterasy to a write lock. In the array ocked is stored the information
In V4DB is a number of active transactions bounded (prebout owned locks, variableocks contains the number of
dispatcher module of RTDBMS holds the queue of incomingperations for which locks are gained andal | ocks the
transactions and passes them to a dispatcher in such a way tlimnber of records locked by this transaction.

676

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED.
real_locks--

real_locks>0
req_rec=next()

real_locks==0
oper_time>=MIN_OPER_TIME

Working
0per71|me<:MAX70PER7TIME

Inactive

locks==OPERATIONS
oper_time=0 tr_time=0,
locks=0

locked[req_rec]==UNLOCKED
locks++, real_locks++,
locked[req_rec]=WRITE

rd_ch[req_rec]!
locks++, real_locks++,
locked[req_rec]=READ

locks<OPERATIONS
rec:rec_id_t
req_rec=rec

locked[req_rec]!=
UNLOCKED
locks++

locked[req_rec]==READ
locks++,
locked[req_rec]== locked[req_rec]=WRITE

UNLOCKED locked[req_rec]'=WRITE

WriteRequest

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

restart[lock_holder]!
locked[rec_id]=FREE,
lock_type[rec_id]=FREE,
lock_holder=req_trans,
restarted=false

¢

rd_ch[rec_id]? locked[rec_id]=
lock_holder+1,

lock_type[rec_id]=READ

ReadLockr grant!
lock_holder=req_trans,
locked[rec_id]=req_trans+1,

lock_type[rec_id]=READ

rls_ch[rec_id]?
locked[rec_id]=FREE,
lock_t id]=FREE
ock_type[rec_id] rd_ch[rec_id]?
restarted=true

locked[rec_id]=FREE,
lock_type[rec_id]=FREE
rls_ch[rec_id]?
Unlocked

restarted=true

wrt_ch[rec_id]?

ReadRequest erich[reqirec]!/@

tr_time>DEADLINE tr_time>DEADLINE lock_holder=req_trans,
locked[rec_id]=req_trans+1,

lock_type[rec_id]=WRITE \\riteLock
grant!

real_locks==0

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED,
real_locks--

rd_ch[rec_id]?

req_rec=next()

lock_holder==req_trans
real_locks>0 s IT=

lock_type[rec_id]=WRITE
grant!

grant!

locked[rec_id]=
lock_holder+1,
lock_type[rec_id]=WRITE

wrt_ch[rec_id]?

©
/\Igck_ho\der!:req_trans

restart[lock_holder]!
locked[rec_id]=FREE,

If the transaction has all necessary locks, the automaton is ook haderered tans,
in a locationVr ki ng. This represents execution of database restaeaTiae
operations. The time spent in this location is bounded by 5. Automaton representing a record in a database fortPlprotocol
constantsM N_OPER Tl ME and MAX_OPER_TI ME. After
the execution, all locks are released instantly (using citach
states and edges between them).

The described model simulates basic variant of 2PL protoc%T> dead ock
where a deadlock can arise when some transactions wagans that deadlock is reachable in the model and this
mutually for locks granted to other transactions. A smafiroperty is not satisfied. Hence it is verified that the system
modification where transactions exceeding their deadling mis deadlock-free.
be aborted can solve the problem with deadlocks.

Fig. 4. Transaction automaton for modification of two-phksdking protocol

wrt_ch[rec_id]?

V. PESSIMISTIC PROTOCOL TWGPHASE-LOCKING
IV. M ODIFICATION OF A MODEL OF TWO-PHASELOCKING HIGH-PRIORITY

PROTOCOL The last modification of our model is for a protocol two-

A template for database record automata remains the saphese-locking high-priority (2PL-HP). If a lock is requecst
as in the previous model (Figure 2). A changed transactiby a transaction with a higher priority the transaction wath
automata template is shown on Figure 4. lower priority holding this lock may be restarted.

There is a clock variabler _ti ne added. It measures time For this model we change both automata templates. A new
from the beginning of transaction execution. If a trangacti template for database record automata is depicted on Figure
is waiting for a lock and it reaches its deadline (for simipyic In the global declarations are defined two arraysoeked
same for all transactions given by a constBEADLI NE), it and| ock_t ype. The first one contains information about
can be aborted. This means that all locks previously grantednsactions holding locks for particular records and #ttet
to this transaction are released. one contains information about types of particular locks.

We can use Uppaal to verify that this solution is really suf-ock_hol der is a local variable of one record automaton
ficient to avoid deadlock. For Uppaal, reachability projgsrt used for the ID of transaction holding the lock on this record
are more suitable. So the formula As almost all is chosen nondeterministically (including th

MARTIN KOT: MODELING REAL-TIME DATABASE CONCURRENCY CONTROL PROTOCOL 677

order of activating particular transaction automata), \e@ c rls_chreq_rec]!
model priorities using ID numbers of transaction automata — real locks
higher ID means higher priority.

If the automaton is in the locatiodn! ocked, all requests
passed through channaisl_ch andwt _ch are answered oper_time>=MIN_OPER_TIM
immediately through a channgr ant ed and informations
about this lock are saved to above mentioned arrays and restrivans idp N
variable. . locks==OPERATIONS

If the automaton is in the locatioWitelLock or oper_time=0
ReadLock and a new request arrives, it has to restart a
transaction holding the lock (priorities are checked befive feal locke
request in a transaction automaton). Restarted transactio locks++, real_locks++
is contacted using a channmekst ar t [x] . Then the lock is
granted to a requesting transaction using chagneint . If a
write lock is requested from the locatidteadLock, there is
a possibility to grant it without any other activity (excdpt
the change of a type of lock ihock_t ype array). This is
done when requesting transactiare@_t r ans) is the same
as the current holder of the read lodkock _hol der). loskedlrea rec)

The transaction automata template has to be changed as .. rmcion s
well. The modified version is depicted on the Figure 6.

There are added edges leading to a new locd&®st ar t ReadRequest(()
from all locations where an automaton can be during pass-
ing of time. All those edges have synchronization label
restart[trans_id]. In this way a transaction (with an
ID stored in a variable r ans_i d) can be restarted anytime
by a record automaton. In the locati®est art all previ-
ously gained locks are released and the waiting transaction
with higher priority is notified using global boolean variab
restarted. A function next () returns the smallest ID restarteds=true
number of a record on which is the transaction actually mgjdi real locke=0
a lock.

Requests for locks are guarded. A requested record (speci-
fied by the variable eq_r ec) has to be unlocked or locked
by a transaction with smaller priority. It comes handy to use
0 (constantFREE is defined ad) in the arrayl ocked]] and it is not satisfied, i.e. this transaction could not b&arésd.
for unlocked records and ID of transaction automaton (he. tFor all other transactions the formula
priori(;y of transaction) plus one for a lock holder. Than the<s Ty ansact i on(x) . Restart
guar

real_locks>0
req_rec=next()

real_locks==0

Working
oper_time<=MAX_OPER_TIME

locks=0

lock_type[req_rec]==FREE
&& restarted

grant?

locks++, real_locks++

locks<
OPERATIONS

recrec_id_t
req_rec=rec

restarted
grant?

locked[req_rec]==trans_id+1
locks++

locked[req_rec]!=
trans_id+1

lock_type[req_rec]==
READ

&& restarted
grant?
locks++

lock_type[req_rec]==FREE ||
(lock_type[req_rec]==READ &&
locked[req_rec]==trans_id+1)

WriteRequest

trans_id+1>=locked[req_rec]
]
restart[trans_id]? wrt_chlreq_rec]!

real_locks-- req_trans=trans_id

restart[trans_id]?
real_locks--

real_locks>0
req_rec=next()

Restart

rls_ch[req_rec]!
real_locks--

Fig. 6. Transaction automaton for 2PL-HP protocol

_ is satisfied.
trans_id+1 > | ocked[req_rec]

. . . VI. CONCLUSION
is true whenever the lock areq_r ec is hold by a transaction

with a smaller priority or this record is unlocked.d by a N the previous sections, several timed automata were
transaction with a smaller priority or this record is unledk Shown. They form models of three variants of pessimistic
As in the previous case, although for this model Uppaal c&fhcurrency control protocols used in real-time databaae-m

verify that it is deadlock-free. We can use the same formul@9ement systems. Of course, this were not the only possible
models. The purpose was to show that some important aspects

E<> deadl ock of the real-time database system such as a concurrencytontr

and the answer is negative (i.e. no deadlock is reachable).Can be modeled using such a relatively simple model as nets
Furthermore we can check e.g. if the transaction wit’ﬁf timed automata are. The models can be extended in many

the highest priority could be possibly restarted. The nurH—'ﬁerem ways to capture more behavior Of. those protocols
ber of transaction automata is given using a consta%'?d thus allow many properties to be described as a formula

TRANSACTI ONS. Hence the greatest ID number (this meaHQI the_t:]ogm Ef Uppaal and tthtzn chgclked l.f[f]mgt Its vern:catl_on
priority too) is TRANSACTI ONS- 1. The formula is algoriinms. =ven on presented models (without any extessio
or modifications) different properties have been checketl an

E<> Transacti on(TRANSACTI ONS- 1) . Rest art some simple samples of them were presented in this paper.

678 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Some properties can not be expressed using Uppaal’s mgl-Berard, B., Bidoit, M., Petit, A., Laroussinie, F., Retci, L., Schnoebe-

ification of CTL. The possible solution to this problem is to len, P.: Systems and Software Verification, Model-ChecKleghniques
e K . and Tools. ISBN 978-3540415237, Springer, 2001.
try some other verification tool with other query Ianguage' [4] David, A., Amnell, T.: Uppaal2k: Small Tutorial. Avaitde on-line at

Other parts of real-time database system or other concur- http://www.it.uu.se/research/group/darts/uppaaifiat.ps (September 7,

rency control protocols can be modeled too. For example 2007) , _ ,
L . . L . &5] Henzinger, T.A.: Symbolic model checking for real-tirsgstems. Infor-
priority assignment algorithms have significant influence mation and computation, 111:193-244, 1994,
performance database management system. This is our pognkrol, V.: Metody ovéfovani vlastnosti real-timeatabazového systému
tial future work. s pouzitim jeho experimentalniho modelu. Dissertatthesis. VSB—
Technical university of Ostrava, 2006 (in Czech).

[7] Krél, V., Pokorny, J.,Cernohorsky, J.: The V4DB project—support
REFERENCES platform for testing the algorithms used in real-time datds. WSEAS
[1] Alur, R., Dill, D.L.: Automata for modeling real-time syems. Proc. of Transactions on Information Science & Applications, Isdfe Volume
Int. Colloquium on Algorithms, Languages, and Programmwgume 3, October 2006.
443 of LNCS, pages 322-335, 1990. [8] McMillan, K. L.: Symbolic Model Checking. ISBN 978-07323801,
[2] Behrmann, G., David, A., Larsen, K. G.: A Tutorial on UpgphaAvail- Springer, 1993.
able on-line at http://www.it.uu.se/research/groupaipapers/texts/new- [9] Nystrom, D., Nolin, M., Tesanovic, A., Norstrom, ChHansson, J.:
tutorial.pdf (September 7, 2007) Pessimistic Concurrency-Control and Versioning to Supiizatabase

Pointers in Real-Time Databases. Proc. of théJBuromicro Conference
on Real-Time Systems, pages 261-270, IEEE Computer Spgiedg.

