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Abstract—In this paper we present a novel agent-based simu-
lation  model  for  the  natural  selection  of  replicating  agents 
whose survival depends on their  programs for selecting their 
strategy to interact with each other. Game theoretic models de-
scribe this kind of interaction. The simulator can be used both 
for analysis, design and verification of autonomous systems (by 
intuitively  abstracting  them into  our  model  and running the 
simulation). Good system design can be selected even for diffi-
cult, underspecified design problems. Although the inspiration 
of the model comes from evolutionary game theory, the evolving 
agents may represent not only biological, but also technical sys-
tems (e.g. software agents), and thus in some cases the underly-
ing evolutionary mechanisms and observations differ from the 
typically published results.

I. INTRODUCTION

HIS article presents a novel, realistic agent-based simu-
lation  model  for  the  natural  selection  of  replicating 

agents whose survival depends on their programs for select-
ing their strategy to interact  with each other [1].  Compact 
game theoretic  models  describe  such  interaction,  masking 
most low-level details, but nevertheless catching the essential 
program features, and simplifying simulation [2].

T

The implementation of the proposed simulation model is a 
domain-independent problem-solving tool that facilitates not 
only analysis, but also design and verification of autonomous 
systems. Assuming that there is a fixed set of different  de-
sign alternatives (e.g. different types of software agents) in 
the real environment which interact with each other repeat-
edly and randomly in a pairwise manner, and that their num-
ber depends on their success in these interactions, they can 
be modeled – including their environment – by (1st) a fixed 
pool of game playing agents (being able to replicate and ter-
minate) and (2nd) a 2-person game. These are the two inputs 
of our simulation model as shown in Fig. 1.

 

Fig.  1 The simulation model and its use in system analysis and design

The simulation is boldly as follows: agents are repeatedly 
and randomly paired  to play the 2-person game, and their 
survival (and chance for replication) depends on the utility 
they can  gather  during that  process.  Thus quantitative  as-
pects enter the simulation via the proportion of subpopula-
tions of these different agents constituting the initial popula-
tion. Evolution essentially means the dynamics of the distri-
bution of these different agents (species) within the evolving 
population. This way we intend to find the agent correspond-
ing to the best design alternative even when the under-de-
fined  specification  (usually  due  to  missing,  or  uncertain 
knowledge  about  the  task  environment)  does  not  make it 
possible to pinpoint the optimal design via the traditional de-
sign process. The success of this process depends very much 
on the abstracting phase,  where the real  problem is repre-
sented as an input for our simulation model.

The inspiration for the model comes mainly from evolu-
tionary game theory, and the seminal experiments of Robert 
Axelrod with the Tit-For-Tat (TFT) strategy in the repeated 
Prisoner’s  Dilemma (PD) [3]–[5]. Several other models of 
program evolution exist, but our approach differs from them 
mainly in the following [6]–[8].

1. We  utilize  natural  selection  as  a  realistic  “driving 
force”, and not some preprogrammed, explicit mecha-
nism, to evolve the population;

2. we do not consider  the emergence of new variants, 
only proliferation, i.e. asexual replication (spreading);

3. we do not impose any formal constraints on the struc-
ture and inner workings of the agent programs.

We hope thus to  model,  predict,  and  support  design in 
several interesting real world situations (e.g. the success of 
given software agents managing resources or being engaged 
in electronic commerce on the Internet).

The rest of the paper is organized as follows: Section 2 in-
troduces  the  background  of  the  simulator,  Section  3  de-
scribes its architecture and implementation in detail, Section 
4 presents and evaluates some essential experiments, Section 
5 contains conclusions and outlines future research.

II. BACKGROUND

In  the  following,  we  will  briefly  summarize  those  ap-
proaches, which mainly influenced our model. The purpose 
of this is to introduce some fundamental concepts, and to en-
able later discussion of similarities and differences.
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A. Axelrod’s experiments

The goal of Axelrod’s experiments was to find a program 
which efficiently plays the repeated PD game (cf. Table I). 
At  first  15,  then  62  programs  were  chosen,  and  pairwise 
compared. Every program played against each other a fixed 
number of rounds.  In  every round they had to choose be-
tween two strategies (cooperate or defect), and got their re-
spective payoff according to their collective choice.

TFT,  a  simple program,  which initially cooperates,  and 
then repeats the previous choice of its opponent, won both 
tournaments by collecting the most at the end. Axelrod con-
cluded, that because of the importance of PD as a model of 
social interaction, the core characteristics of cooperation in 
general must be those found in the TFT.

Axelrod then conducted other experiments to confirm the 
success of TFT, called ecological and evolutionary analysis. 
In  the  former  he  examined  the  dynamics  of  a  population 
composed of programs submitted for the second tournament 
(all having an equal proportion of the initial population). The 
proportion of a program changed according to the propor-
tion-weighted average of its scores against other programs in 
the second tournament. The results of this experiment again 
underpinned  the  success  of  TFT.  Its  proportion  was  the 
largest, and it grew steadily.

In the latter experiment Axelrod used genetic algorithms 
to  evolve programs (represented  as  bit  strings)  that  could 
play against the programs submitted for the second tourna-
ment [9]. Fitness was equal to the then average payoff. The 
algorithm produced programs that played effectively against 
the tournament programs, and resembled TFT.

B. Evolutionary Game Theory

Evolutionary  game  theory,  on  contrary  to  the  previous 
simulations, enables formal analysis and prediction of such 
evolving systems (although only for relatively simple cases).

For example, let’s suppose that we have an infinite popu-
lation of agents, who strive for resources.  The game is di-
vided into rounds, and in every round every agent randomly 
(according to uniform distribution) meets an other agent to 
decide upon a resource of value V>0 . For the sake of sim-
plicity  let’s  say,  that  there  are  only  two types  of  agents: 
hawks (aggressive), and doves (peaceful). 

When two hawks meet, they fight, which costs C , and so 
they get (V-C)/2 per head. When two doves meet, they divide 
the resource equally between each other  (they get  V/2 per 
head). When a hawk meets a dove, then the hawk takes the 
resource (gets V ), while the dove is plundered (gets 0 ). 

TABLE I.
PAYOFF MATRIX OF THE “PRISONER’S DILEMMA” GAME USED BY AXELROD

Player 2
Player 1 Defect Cooperate

Defect 1; 1 5; 0

Cooperate 0; 5 3; 3

This situation is  simply modeled by the  H awk- D ove 
(HD) game (cf. Table II) [10]. The gained payoffs are col-
lected over rounds, and the proportion of hawks and doves 
depends on their average collected payoff. Formally this is as 
follows. 

Let  p
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H
i  

and W
D
i  the average collected payoff of hawks and doves 

in round  i respectively.  For  every  i≥0  p
H
i , p

D
i ∈[0,1 ] , 

and  p
H
i  p

D
i =1  is true. The average collected payoff of 

the whole population in round i , W i  , is 

W i= pi
H W H

i p i
D W D

i (1)

The proportion of hawks and doves in round i+1 is calcu-
lated according to discrete replicator dynamics. 
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The average collected payoff of hawks and doves in round 
i+1 is respectively. 
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Consequently, for example, it can be simply shown that if 
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This means, that the system converges to a state, where 
only hawks remain in the population. Many similar, interest-
ing results can be obtained this way, although the necessary 
assumptions  are  usually  unrealistic,  and  overly  simplified 
(infinite number of agents; trivial programs, that can be han-
dled analytically; etc) [11]. For more realistic and complex 
cases, with arbitrary programs (like in the ecological analysis 
of Axelrod)  and finite,  overlapping generations of varying 
size, we need to use simulations.

III. SIMULATION DRIVEN BY NATURAL SELECTION

The proposed simulation model combines the advantages 
of the previous approaches without their drawbacks.  It  re-
sembles artificial life in many aspects, but it is different in its 
purpose (it tries to capture the key features of not only bio-
logical, but also technical systems’ evolution) [12]. It  is an 
extension to the previous approaches, differing from them in 
the following.

TABLE II.
PAYOFF MATRIX OF THE “HAWK­DOVE” GAME

Player 2
Player 1

Hawk Dove

Hawk (V-C)/2; (V-C)/2 V; 0

Dove 0; V V/2; V/2

1. Populations are finite, and vary in size;
2. Generations are overlapping;
3. Agents are modeled individually;
4. The selection mechanism, and the fitness of agents is 

not explicitly given, but it is a product of agents’ fea-
tures and their interaction;
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5. Modeling of  not  only biological,  but  also technical 
systems’ evolution is considered.

These differences make the model more realistic, and en-
able us to use it not only for analysis, but also for design.

C. Detailed Description of the Simulation Model

The basis of the model is an intuitive combination and ex-
tension of the ideas discussed in Section 2. The simulation is 
divided into rounds. There is a finite number of agents in the 
population, who are randomly paired in every round (accord-
ing to uniform distribution) to play a 2-person game in the 
role  of  one of  the  players.  Every agent  of  the population 
plays the same type of game (e.g. just PD, or just HD) in ev-
ery round of a run, and each of them has a program (e.g. 
TFT,  Random,  Always-Cooperate,  Always-Defect)  for  se-
lecting its strategy in these plays.

After a pair of agents finished to play in a given round, the 
respective (possibly negative) payoffs are added to their in-
dividually cumulated utility. If the utility of an agent gets be-
low a level (e.g.  zero),  then the agent dies, i.e. it  instantly 
disappears from the population, and won’t play in the fol-
lowing rounds; otherwise it may reproduce depending on its 
reproduction strategy. Every agent has a reproduction strat-
egy (defining how, and when to reproduce), but only asexual 
proliferation,  i.e.  replication without change is  considered. 
After every agent finished the given round (died, survived, or 
even replicated), comes the next round.

It can be seen, that in this model there is no explicit selec-
tion mechanism directly controlling the proportion of agents 
in  the  population  (like  replicator  dynamics,  or  roulette 
wheel),  but  it  is  an  implied,  emergent  phenomena.  Every 
agent has its own lifecycle (they are born with given features, 
interact with each other, change, maybe even reproduce, and 
then possibly die), and only those are “selected” for repro-
duction, whose features make them able to survive in the en-
vironment up to that moment. In our view this process is real 
natural selection.

Of course there are many other more or less similar defini-
tions in literature originating mostly from Darwin [13]. For 
instance, it is usual to say that “natural selection is a process 
that affects the frequency distributions of heritable traits of a 
population” [14] (page 16), and that “heritable traits that in-
crease the fitness of their bearers increase in frequency in a 
population” [15]  (page  821),  etc.  These statements do not 
contradict our views, but they aren’t specific enough in the 
sense, that they allow even the selection behind a genetic al-
gorithm to be called “natural”.  The reason for  that  is that 
these statements stem from biology and genetics, which are 
concerned with natural systems [16], [17]. This is why we 
use a “new” definition.

Moreover,  we  need  to  differentiate  between  modeling 
natural selection of natural, and technical systems. In respect 
of  technical  systems,  “natural  selection”  may  reflect  the 
“natural” peculiarities of technical application areas, which 
may be quite far from what can be considered natural in bio-
logical, or social science. We differentiate these aspects by 
introducing agents’ reproduction strategies.

We’ll consider two types of reproduction: type 1 is called 
“natural”,  and  type  2  is  called  “technical”.  Agents  with 

type 1  reproduction  can  have  only  a  limited  number  of 
offsprings in their lifetime (maximum one per round). They 
replicate,  if  their  utility  exceeds  a  given  limit  (limit  of 
replication). After replication, their utility is decreased with 
the cost of replication (which is usually equal to the limit of 
replication). Offsprings start with zero utility, and the same 
program,  and  features,  as  their  parents  originally (i.e.  the 
same lower limit of utility necessary for survival, limit and 
cost of replication, and limit on the number of offsprings).

On the other hand, agents with type 2 reproduction can 
have unlimited offsprings (maximum one per round). They 
replicate when their utility exceeds the limit of replication, 
but this limit is doubled every time an offspring is produced, 
and their utility does not decrease. Offsprings start with the 
same utility,  program, and features,  as their  parents at  the 
moment of replication (i.e.  the same lower limit of  utility 
necessary for survival, and limit of replication).

The rationale behind the above design choices originates 
in the following: biological agents can reproduce only a lim-
ited number of times during their  lifetime, while technical 
systems (e.g. software agents) usually do not have such limi-
tations. The replication (copy) of a technical system is usu-
ally inexpensive compared to the replication of a biological 
agent. Offsprings of technical systems may be exact copies 
of  their  parents  with the same level  of  quality,  while  off-
springs of a biological system usually develop from a lower 
(immature) level. The level of “maturity”, where a biological 
system can reproduce, may be constant, and the same as its 
parents’, but it may increase in the case of a technical system 
(to represent the increasing cost of production, or the amount 
of resources needed, etc).

D. Using the Simulation Model for Analysis and Design

As mentioned before,  the simulation model can be used 
not only for description, but also for design of technical sys-
tems. Let’s suppose, for example, that we want to design an 
efficient  software  agent  (e.g.  a  broker  agent,  or  a  trading 
agent on the Internet acting on behalf of human users, trying 
to maximize their profit). Our goal is to make this agent as 
efficient and useful as possible in hope that in result it will 
spread better (e.g. more users will start to use it). Of course 
there  are  many other  factors  (like  marketing,  ergonomics, 
etc) that may influence the success of such a system, but, as 
for a Designer, ensuring functional efficiency and usefulness 
is a primary objective. Nonetheless these properties depend 
not only on the program of the agent, but also on its environ-
ment (e.g.  the other concurrent agents),  which may be not 
fully accessible,  too complex and  dynamic to  be  modeled 
and analyzed exactly in order to calculate an optimal system 
design (e.g. in the case of Internet).

It  is inevitable to abstract  the problem. We recommend 
game theory to  model  the  strategic  interaction  in  the  real 
agent-environment.  It  may  mask  most  of  the  subtlety  of 
agents’ programs, but it catches essential features, and works 
toward a simpler simulation, which becomes necessary, if – 
according to the conclusions of Section 2 – agents’ programs 
are too complex to be handled analytically.

For example, let’s suppose that software agents participate 
in electronic auctions on the Internet  to acquire goods for 
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their human users.  The less they pay for  them, the higher 
their individual utility is (from the perspective of their users). 
If two agents agree to cooperate (e.g. to raise the bid only 
until one of them wins and then share equally), then they pay 
less,  than  being  non-cooperative  (e.g.  when  competing 
against each other by bidding more and more to win). The 
best outcome is however for an agent to “cheat” its coopera-
tive partner by defecting (e.g. raising the bid to win while the 
other is not competing and then not sharing the win). This 
outcome is the worst for the other agent since it gets nothing. 
Let’s say, that if a software agent is successful, then after it 
achieves a given profit for its user, then its user invests in an-
other such agent, but if the profit is below a level then she/he 
stops using it. What software agent would we design to bet-
ter survive and proliferate in this scenario? 

The situation can be modeled by the proposed simulation: 
agents have two strategies (cooperate or defect), and the or-
der of their preferences corresponds to a PD game (cf. Sec-
tion 4/A). Now we can estimate the distribution of the vari-
ous software agents in the real agent-environment, and con-
struct an initial population accordingly. Assuming that natu-
ral selection is the “driving force” behind agents’ evolution, 
we can give the corresponding PD game and the initial popu-
lation as an input to the simulation model, and run it. If we 
run the simulation by injecting several  different  candidate 
solutions  into that  initial  population,  we can get  the most 
successful variant. This way we can use natural selection to 
support not only analysis, but also design.

E. Some Thoughts About Natural Selection

But why do we need natural selection? Why don’t we use 
some  other,  explicit  model  (e.g.  replicator  dynamics)  for 
simulating the dynamics of the real environment? – First, we 
claim that using natural selection instead of some explicitly 
declared mechanism for evolving the population of agents al-
lows  more  realistic  predictions  of  several  interesting  real 
world phenomena. In Section 4 we’ll discuss this in more de-
tail (in relation to experiments concerning replicator dynam-
ics).  Second,  if  the selection mechanism is direct  and  ex-
plicit,  then it  usually accounts for  some kind of fitness to 
measure the goodness of individuals. Such a value would re-
flect the goodness of all (maybe even hidden or implicit) fea-
tures influencing the success of an agent in its environment. 
The calculation of such a fitness value can be hopeless for 
complex, dynamic systems and environments.

In the proposed simulation we currently use a cumulated 
utility value associated with the goodness of an agent. But it 
is not a fitness value. The fitness of an unvarying individual 
can change only when its environment changes. But this is 
not true for the cumulated utility, which is only a parameter 
of the agent’s state, and may change even when the agent, its 
program, or its environment does not vary. Also, the survival 
of an agent may depend on much more sophisticated terms 
than just checking if the cumulated utility value is below a 
lower limit. This mechanism could be easily exchanged by a 
much more complex and realistic variant.

F. Implementation Issues

The proposed simulation model was implemented in the 
JADE (Java  Agent  DEvelopment) framework [18]. It is an 

open-source,  Java-based,  platform independent,  distributed 
middle-ware and  API (Application  Programming Interface) 
complying with the FIPA (Foundation for Intelligent Physi-
cal Agents) standards [19]. It enables relatively fast and easy 
implementation of physically distributed, asynchronous, high 
level multi-agent systems.

The implemented software architecture was aimed to be as 
simple, as possible. It consisted of only two JADE agents: a 
GameAgent (GAg), and a PlayerAgent (PAg). GAg was 
responsible for conducting the runs of the simulation, and or-
chestrating PAg-s, while PAg-s were the actual agents in the 
population, who were paired in each round to play a given 2-
person game.

Each  JADE  agent  had  a  variety  of  (mostly  optional) 
startup parameters, which in case of a GAg set the type of the 
game to be played (e.g.  PD, or HD, or else),  the maximal 
number of agents in the population, and the maximal number 
of rounds in the run. The OR-relation of the latter two de-
fined the termination criteria of a run. The startup parameters 
of a PAg set agents’ program and reproduction strategy, ini-
tial utility, the lower limit of utility, the limit and cost of re-
production, the limit on the number of offsprings, and the ca-
pacity of memory. The latter was needed because each agent 
had to be able to use its percept history in order to decide 
upon the strategy to be played in a given round. The percept 
history of an agent associated a series of events (information 
about  past  plays)  to  agent  identifiers  (ID-s).  There  was a 
limit on maximal length of these series and maximal number 
of ID-s. If any of these limits was exceeded then the oldest 
element was replaced by the new one.

Now the simulation went as follows. First a given number 
of  PAg-s were started on the JADE agent platform (consti-
tuting the initial population), followed by a GAg, who at the 
beginning  of  every  round  first  searched  the  platform  for 
available  PAg-s (because later there may have been newly 
born agents, or some agents terminated), then made a pairing 
of the PAg-s, and informed these pairs about the game to be 
played (who plays with whom and in what role). The pairs of 
PAg-s then replied to the GAg with a chosen strategy ID re-
spectively. The  GAg then calculated their respective payoff 
accordingly and informed them about it. This was repeated 
until the termination criterion was satisfied. Several interest-
ing experiments were conducted this way. Some of them are 
explained in the next section.

IV. EXPERIMENTS

The experiments consisted of running the simulation de-
scribed above with several different initial populations and 
games to observe the changes in the number, proportion, and 
average utility of the different types of agent programs. Since 
JADE  is  a  distributed  framework  (and  for  faster  perfor-
mance) a cluster of 10-13 PC-s (with 1-2 Ghz CPU, 0,5-1 Gb 
RAM,  Win.  XP,  and  JADE  3.5)  was  used  to  run  the 
simulations.

Each experiment had its own settings, but a part of them 
was the same for every experiment. The maximal number of 
agents was 800; the maximal number of rounds was 250; the 
maximal number of offsprings was 3; the limit and the cost 
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of reproduction was 20; the lower limit of agents’ utility and 
their initial utility was 0; the maximal number of percept his-
tories (about different opponents) was 1000; and the limit on 
the length of such a percept history was 4 for every agent in 
every experiment. Everyone was playing in every round (ex-
cept when the number of agents was odd). 

In the following we will describe these experiments grou-
ped according to the games the agents’ were playing. Five 
games were examined:  Prisoner’s  Dilemma (PD),  Chicken 
Game (CG), Battle of Sexes (BS), Leader Game (LG), and 
Matching Pennies (MP). The first 4 games are the only inte-
resting (i.e. dilemmas, where the choice is not trivial) bet-
ween the 12 symmetric out of altogether 78 ordinally diffe-
rent 2×2 games [20]. MP is an addition to these because un-
like them it has no pure strategy Nash Equilibrium (NE), and 
this has some interesting implications (cf. Section 4/E) [21].

During the experiments agent programs were drawn from 
a fixed set. Only the following programs were studied yet: 
Always-Strategy1,  Always-Strategy2,  TFT,  and  Random. 
Nonetheless both types of agents’ reproduction strategy (cf. 
Section 3/A) were examined.  All  in all,  this configuration 
was more than enough to run insightful experiments compa-
rable to the previous results discussed in Section 2.

G. Prisoner’s Dilemma

PD is one of the most popular 2-person games in game 
theory  [22].  It  is  a  special  case  of  the  HD  game,  when 

0≥> CV  (cf. Table II). The original story of the game is 
about two prisoners,  who are put  in separate  cells (cannot 
communicate),  and  are  asked  to  simultaneously  decide, 
whether to cooperate, or defect. The best outcome is defect-
ing, if the other cooperates, but it is the worst outcome for 
the other. It is better if both defect, and even better, if both 
cooperate. The game is called a “dilemma” because its only 
NE is the sub-optimal Defect-Defect outcome. 

Similar situations may arise in the world of artificial sys-
tems too (cf. example in Section 3/B). If the payoffs are cho-
sen according to the HD game, where V=4, C=2 (and so it 
becomes a PD), then if the initial population consists of alto-
gether 6 agents: 3 Always-Cooperate, and 3 Always-Defect 
agents, then the proportions of the different agent programs 
change according to Fig. 2, which is in accordance with the 
formal  predictions  of  Section  2/B  (cf.  Eq.  5).  Defective 
agents (hawks) infest the population, and the proportion of 
cooperative players (doves) steadily converges to zero. The 
reproduction strategy of agents in Fig. 2 is of type 1 (“natu-
ral”), but essentially the results are the same in case of type 2 
(“technical”) reproduction.

Fig. 3-5 show the change of the quantity, and average util-
ity, if the initial population consists of 3 Random, and 3 TFT 
agents.  The  quantity  of  these  subpopulations  (“species”) 
does not decrease because there are no negative payoffs in 
the game,  and so agents  cannot  die  since their  cumulated 
utility cannot decrease below the lower limit.

Fig. 5 shows the same situation as Fig. 4 except that the 
reproduction is “technical”. A periodical change of the aver-
age  utility  of  subpopulations  can  be  observed  on  Fig.  4, 
while it  is monotonously increasing on Fig.  5.  That  is be-

cause “natural” reproduction has a cost (equal to the limit of 
reproduction) on the contrary to “technical” reproduction.

According to Fig. 3, Random agents typically outperform 
TFT agents by far. This is the case with both types of repro-
duction.  Similarly,  Always-Defect  agents  also  outperform 
TFT agents. These observations seem to differ from the re-
sults mentioned in Section 2/A, although the latter is not so 
surprising, since the numerical values of the game are now 
such, that the defective player gets as much against a cooper-
ating player, as two cooperating players together, and its av-
erage income (5/2) is better than by cooperating (2/2).

 

Fig.  2 Typical change of agent programs’ proportion in PD, if the ini-
tial population consists of 3 Always-Cooperate (green), and 3 Always-

Defect (red) agents whose reproduction strategy is “natural”.

 

Fig.  3 Typical change of agent programs’ quantity in PD, if the initial 
population consists of 3 Random (white), and 3 TFT (blue) agents 

whose reproduction strategy is “natural”.

Moreover, according to Fig. 3-5, the change of subpopula-
tions’ proportion isn’t in direct proportionality with the ratio 
of their average utility and the average utility of the whole 
population, as predicted by replicator dynamics (cf. Eq. 2). It 
must be pinned down, that replicator dynamics holds a cen-
tral  role  among  models  of  evolutionary  dynamics.  Some 
consider it even to be a fundamental theorem of natural se-
lection [23]-[25]. Reference [26] even writes “The dynamics 
of such replicator systems are described by the fundamental 
theorem  of  natural  selection”.  Nonetheless,  according  to 
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these experiments, replicator dynamics seems to   be unable 
to model such scenarios properly. Thus, in our view, the as-
sumptions behind Eq. 2 are unrealistic. 

If, for example, there are two subpopulations, and one of 
them grows exponentially (which is common in evolution), 
then after a while their average utility will determine the av-
erage  utility of  the  whole  population,  and  so  the  ratio  of 
these two averages will converge to 1. In this case replicator 
dynamics  would  predict  that  the  growth  of  the  large 
subpopulation stops (cf. Eq. 2). But why should it?

 

Fig.  4 Typical change of agent programs’ average utility in PD, if the 
initial population consists of 3 Random (white), and 3 TFT (blue) 

agents whose reproduction strategy is “natural”. The average utility of 
the whole population is also shown (light blue).

 

Fig.  5 Typical change of agent programs’ average utility in PD, if the 
initial population consists of 3 Random (white), and 3 TFT (blue) 

agents whose reproduction strategy is “technical”. The average utility 
of the whole population is also shown (light blue).

The larger the population, the more offsprings are born. 
The tendency of growth accelerates, if it is not limited by fi-
nite resources, or some other way. So maybe there is an im-
plicit assumption (e.g. about finite resources) in Eq. 2. Ap-
parently  after  a  while  every  evolutionary  system  should 
reach  its  boundaries,  but  until  then  their  growth  must  be 
governed by a dynamics different from replicator dynamics.

The results shown in Fig. 6 utter these concerns further. 
Axelrod’s  ecological  analysis  (cf.  Section  2/A),  based  on 

replicator dynamics, predicts the extinction of the invading 
defectors, but our experiments show the opposite is true [7].

All of the above results are typical in a sense that they are 
indifferent to parameter changes (e.g.  changing the size of 
the initial population;  changing the type,  the limits, or  the 
cost of reproduction, or the payoff values of the game). TFT 
agents could be made a little better by increasing their mem-
ory, but in the end it doesn’t change the overall tendency. 
These observations may also help to explain the scarce evi-
dence of TFT-like cooperation in nature [27].

 

Fig.  6 Typical change of agent programs’ proportion in PD, if the ini-
tial population consists of 50 TFT (blue), and 1 invading Always-De-

fect (red) agent(s) whose reproduction strategy is “natural”.

H.Chicken game

This game is also a special case of the HD game, when 
VC >  (cf. Table II) [22]. The original story is about two 

cars driving toward each other. If both drivers are “reckless”, 
and won’t swerve away, it is the worst outcome, since they 
crash.  Better  is,  if  one  swerves  away  (being  “chicken”), 
while the other wins (best outcome). But it is better for the 
former, if the latter swerves away too. This is a mixed mo-
tive game, since it has two NE-s (if players do the opposite). 

A technical scenario may be the same as in the previous 
example (cf. Section IV/A) with the exception that if both 
agents  are  non-cooperative  (reckless),  then  it  is  the  worst 
outcome for them (e.g. because if two such cheating bidder 
agents meet, they disclose each other, and thus are excluded 
from the auction, and must pay a penalty to the organizers).

Experiments with this game showed different results than 
in case of PD in Section 4/A. The main reason for that is that 
the payoffs were chosen according to HD game, where V=2, 
C=4, and so agents could die because of negative payoffs.

Always-Strategy2 (i.e. Always-Chicken) proved to be the 
best (most proliferating) program out the four studied alter-
natives if there were only two types of programs in the initial 
population.  Always-Reckless  and TFT claimed the second 
place, while Random was the worst. This means that if the 
cost  of  being mutually defective is  beyond the achievable 
value, then it becomes too risky not to cooperate.

It  was  interesting  to  observe,  that  if  Always-Reckless 
proved to be the winner of a situation (i.e. if it extinguished 
an other “species”), then it too died out. In this aspect Al-
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ways-Reckless is “parasite”, that exploits the other subpopu-
lations from whom its survival depends.

Experiments with more than two types of agent programs 
were rather unpredictable. They depended mostly on the ac-
tual pairing of the individuals in the first dozen of rounds.

I. Battle of Sexes

This game is also a mixed motive game, like CG, but it 
differs  from  it  in  that  it  is  asymmetric  by  default  (cf. 
Table III)  [2].  The  original  story is  about  a  husband  and 
wife, who must choose between going to a football match, or 
an opera. The husband would better like to go to the football 
match, while his wife would better go the opera. But, in any 
case, it is more preferable for them to be together, than to be 
alone.

Cooperation is different in the case of the husband, than in 
the case of the wife. They cooperate, if they try to do what is 
best for the other, and if they both do that, it is the worst 
(husband goes to opera, and wife goes to football).

TABLE III.
PAYOFF MATRIX OF THE “BATTLE OF SEXES” GAME

Wife
Husband

Opera Football

Opera 1, 2 -1, -1

Football 0, 0 2, 1
This  means,  that  Always-Cooperate,  and  Always-Defect 

strategies are a bit more complex now, since they depend on 
the role of the agents too. TFT needs also to be revised.

A corresponding technical  scenario could be,  when two 
tasks share the same resource (e.g.  CPU, or server).  Their 
user wants them to finish as soon as possible. The worst case 
is, if they don’t access the resource at all (e.g. its availability 
may have a default cost to the user). If they access it at the 
same time (both defect), it is better, but it slows their execu-
tion too much. So it is better for them to access the resource 
separately, but the first to access it is the best.

Experiments showed that regardless of the type of repro-
duction, Always-Cooperate and TFT agents were the worst 
(others made them die out every time). Always-Defect was 
the best program, and Random was second (it survived).

J. Leader game

This game is similar to the symmetrical form of BS, with 
the exception that  mutual  defection is  the  worst  outcome, 
and mutual cooperation is better [28].

The name of the game comes from the following situation: 
two cars wait to enter a one­way street. The worst case is, if 
they go simultaneously, because they crash. If both wait (co­
operate),  it  is better.  But it  is even better if  they go sepa­
rately. The one, who goes first, is the best (cf. Table IV) . 

A technical scenario could be similar to the previous ex-
ample in Section IV/C with the exception that if both tasks 
access the resource at the same time, then it breaks (e.g. the 
server crashes). So this is the worst outcome. It is better, if 
they do not access it at all, and even better, if they access it 
separately. The first agent to access the resource is the best.

According to our experiments, TFT and Always-Cooper-
ate  were  better,  than  Always-Defect  agents,  but  Random 
agents  again  outperformed  TFT  agents.  The  reproduction 

strategy made a difference in the tendencies, but not in the 
outcome.

TABLE IV.
PAYOFF MATRIX OF THE “LEADER” GAME

Player 2
Player 1 Go Wait

Go -1, -1 2, 1

Wait 1, 2 0, 0

K. Matching Pennies

This game is asymmetric (like BS), with the exception that 
it  has  no  symmetric  form,  and  cooperation  and  defection 
have no meaning in it [29]. Thus the first (hitherto coopera-
tive) choice of TFT doesn’t particularly matter now.

The original game is about two players, who both have a 
penny. They turn the penny secretly to heads or  tails,  and 
then reveal their choice simultaneously. If the pennies match, 
one player gets a dollar from the other, else it is conversely 
(cf. Table V).

TABLE V.
PAYOFF MATRIX OF THE “MATCHING PENNIES” GAME

Player 2
Player 1

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1
A corresponding technical scenario can be where two soft-

ware agents compete for resources (e.g. locks to files), and 
they have two different strategies to get the resources. One of 
the agents is faster than the other, so if both choose the same 
strategy, then the faster agent gets all of the resources. Else 
the slower agent can also get some of them.

Our  experiments  showed  that  in  this  scenario  Random 
agents were the fittest for survival (playing the only mixed 
NE of the game), but in case of type 1 reproduction they died 
out like all the others. However in case of type 2 (technical) 
reproduction they could cumulate enough utility to  ensure 
their survival, and start proliferating after a while.

V. CONCLUSIONS

In this article we presented a novel agent-based simulation 
model for natural selection of programs selecting strategies 
in 2-person games, and its use in system analysis and design. 
Our goal was (1)  to create a framework enabling agent de-
sign  for  complex,  underspecified  environments  (e.g. 
Internet); (2) to give a realistic model for the natural selec-
tion of not only natural, but also technical systems; and (3) to 
reproduce some decisive experiments.

The framework facilitates agent design by supporting the 
choice of agents (from a finite set of alternatives). The dis-
tinction between natural and technical systems is made by in-
troducing reproduction strategies of the agents. Natural se-
lection is not explicitly present, but emerges from the inner 
workings  of  the  agent  population.  Experiments  revealed 
several interesting aspects of such population dynamics. For 
example, the assumptions behind replicator dynamics were 
shown  to  be  inherently  unrealistic  and  simplifying;  the 
fitness of the Tit-for-Tat strategy was the opposite of what 
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was  expected  according  to  the  previous  experiments  of 
Axelrod; not just the Prisoner’s Dilemma, but several other 
fundamental 2-person games were examined, and for every 
such game a concrete technical analogy was also given. 

There are many possible ways to continue this research. 
For instance the simulation can be further refined by allow-
ing agents to play not only one, but several different games 
during a run. We currently use only 2-person games for mod-
eling strategic interaction between agents.  This can be ex-
tended to N-person games. More complex programs could be 
examined in the experiments. We could introduce sexual re-
production instead of the current asexual replication. A ge-
netic representation of agent programs could be given to en-
able the birth of new variations. Finally, the limits on the car-
dinality of the agent population could implicitly depend on 
environmental resource limitations.
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