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Abstract—The paper is devoted to the special key management
algorithm for the stream ciphers defined in [12] via finite au-
tomata corresponding to the family of directed algebraic graphs
of high girth and two affine transformation. Security of the key
based on the complexity of the discrete logarithm problem. It has
additional heuristic security because of the “hidden base”and
“hidden value” of the discrete logarithm function. We consider
the heuristic evaluation of the complexity for different attack by
the adversary on our private key cipher. The detailed description
of the whole algorithm is given. Implemented software package
has been used for the evaluation of mixing properties and speed
of the private key encryption.

I. I NTRODUCTION

W E WILL introduce the key management block for the
stream ciphers defined in [12] via finite automata cor-

responding to the family of directed algebraic graphs of high
girth. The time evaluation of software package implementing
these algorithms compares well with the performance of fast
but not very secure RC4, DES, algorithms based on simple
graphs (symmetric anti reflexive binary relations) developed
during last ten years [4].

In Section 3 we described modified algorithm in term of
arithmetical dynamical systems. We add the key management
block to our algorithm and consider the heuristic evaluation
of active attacks by the adversary.

The explicit description of the dynamical system is given
in last section in terms of corresponding finite automata. We
give the explicit formula for invariants we use in algorithm.

Section 4 devoted to evaluation of speed of the encryption
in case of special rings of kindZs

2 , s ≥ 8.

II. BASIC CRYPTOGRAPHICAL TERMINOLOGY

Assume that an unencrypted message,plaintext, which can
be image data, is a string of bytes. It is to be transformed into
an encrypted string orciphertext, by means of a cryptographic
algorithm and akey: so that the recipient can read the message,
encryption must beinvertible.

Conventional wisdom holds that in order to defy easy
decryption, a cryptographic algorithm should produce seeming
chaos: that is, ciphertext should look and test random. In
theory an eavesdropper should not be able to determine any
significant information from an intercepted ciphertext. Broadly
speaking, attacks to a cryptosystem fall into 2 categories:
passive attacks, in which adversary monitors the communi-
cation channel andactive attacks, in which the adversary may

transmit messages to obtain information (e.g. ciphertext of
chosen plaintext).

An assumption first codified by Kerckhoffs in the nineteen
century is that the algorithm is known and the security of
algorithm rests entirely on the security of the key.

Cryptographers have been improving their algorithms to
resist the following two major types of attacks:

(i) ciphertext only—the adversary has access to the en-
crypted communications.

(ii) known plaintext—the adversary has some plaintextx and
corresponding ciphertexts.

Nowadays the security of the plaintext rests on encryption
algorithm (or private key algorithm), depended on chosen key
(password), which has good resistance to attacks of type (i)
and (ii), and algorithm for the key exchange (public keys)
with good resistance to active attacks, when the adversary can
generate each plaintextp and get the corresponding plaintext
c (see [2], [3], [9] or [10]). The combination of appropriate
private key and public key algorithms can lead to symmetric
algorithm with good resistance even to active attacks. The
example of such combination will be given in the next section
of the paper.

III. A RITHMETICAL DYNAMICAL SYSTEMS AS

ENCRYPTION TOOLS

Let K be the commutative ring,F (K) = K[t, x1, x2, . . . ]
is the ring of all polynomials in variablest, x1, x2, . . . . We use
symbolReg(K) for the totality of regular elements i.e not a
zero divisors:a ∈ Reg(K) implies a× x 6= 0 for eachx 6= 0.
Let K∞ = {x = (t, x1, x2, . . . )|xi ∈ K, t ∈ K, supp(x),∞}
andKn = {(x1, x2, . . . , xn)|xi ∈ K}.

Let us consider two polynomial mapsP andR of K∞ into
K∞:

(t, x1, x2, . . . , ) → (t, P1(t, x1, x2, . . . ), P2(t, x1, x2, . . . ), . . . )

and

(t, x1, x2, . . . , ) → (t, R1(t, x1, x2, . . . ),

R2(t, x1, x2, . . . ), . . . ),

where Pi(t, x1, x2, . . . ) and Ri(t, x1, x2, . . . ), i = 1, 2, . . .
are elements ofF (K).

We consider two families:fn
t and gt

n of Kn onto Kn

sending(x1, x2, . . . , xn) to

(P ′

1(t, x1, x2, . . . ), P
′

2(t, x1, x2, . . . ), P
′

n(t, x1, x2, . . . xn))
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and

(R′

1(t, x1, x2, . . . ), R
′

2(t, x1, x2, . . . ), R
′

n(t, x1, x2, . . . xn)),

whereP ′

i and R′

i, i = 1, 2, . . . , n correspond to the special-
isationsxn+1 = 0, xn+2 = 0, . . . of Pi and Ri associated
with the pair (P , R). We identify ft andgt, t ∈ K with the
corresponding mapsKn → Kn

Let r = (r1, r2, . . . rt) ∈ Reg(K)
t be the tuple of length

l(r)) = t. We introduceFr, as the composition of maps
fr1

, gr2
, . . . , fr2s−1

, gr2s
in case oft = 2s and as composition

of fr1
, gr2

, . . . , fr2s−1
, gr2s

, fr2s+1
for t = 2s + 1.

We say that the pairP andR form an arithmetical dynam-
ical system depending on timet if the following conditions
hold

1) existence ofx = (x1, . . . , xn) ∈ Kn such that
ft1(x1, x2, . . . , xn) = ft2(x1, x2, . . . , xn) for somet1 and t2
implies the equalityt1 = t2.

2) mapsft and gt, t ∈ K are bijections andf−t and g−t

are inverse maps for them.
3) There is a constantc, c > o such that for each pair of

tuplesr, b of regular elements, conditionsl(r) ≤ cn, l(r) ≤ cn
andFr(x) = Fb(x) for somex implies r = b.

If (P, R) form an arithmetical dynamical system, then the
inverse ofFr, l(r) = 2s + 1 is Fb, where

b = (−r2s+1,−r2s, . . . ,−r1).

If l(r) = 2s then F−1
r is the composition ofg−r2s

and Fd,
whered = (−r2s−1,−r2s−2, . . . ,−r1).

We can treatKn as the plainspace, refer to the unionU of
Reg(K)

t, 1 < t < cn as the key space and treatx → Fa(x) as
the encryption map corresponding to the keya. The ciphertext
y = Fa(x) can be decrypted by the mapF−1

a written above.
So the algorithm is symmetrical. The property 3 implies that
different keys of length< cn produce distinct ciphertexts.

We introduce the following directed graphφ = φ(n)
corresponding to mapsft

n and gt
n over Kn. Firstly we

consider two copies ofP (set of points) andL (set of lines)
of the free moduleKn. We connect pointp ∈ P with the line
l ∈ L by directed arrow if and only if there ist ∈ Reg(K)
such thatft(p) = l. Let t be the colour of such a directed
arrow. Additionally we joinl ∈ L andp ∈ P by directed arrow
with the colourt if there is t ∈ Reg(K) such thatgt(l) = p.
We can considerφ as finite automaton for which all states
are accepting states. We have to chose pointp (plaintext) as
initial state. It is easy to see thatft andgt are the transition
functions of our automaton. Lett1, . . . , ts be the "program"
i.e. sequence of colours fromReg(K). Then the computation
is the directed passp, ft1(p) = p1, gt2(p

1) = p2, . . . . If s is
even then the last vertex isfts

(ps−1), in case of odds we get
gts

(ps−1) = ps as the result of the computation (encryption).
The stop of the automata corresponds just to the absence of
the next colour.

The inverse graphφ(n)
−1 can be obtained by reversing of

all arrows inφ. We assume that colours of arrow inφ and its
reverse inφ−1 are the same. So we can considerφ(n)−1 as
an automaton as well. Then the decryption procedure starting

from the ciphertextps corresponds to the pass inφ−1 defined
by sequence of colours−ts,−ts−1, . . . ,−t1.

Finally, we can consider well defined projective limit
φ of automataφn, n → ∞ with the transition function
Pt(x1, x2, . . . ) = P (t, x1, x2, . . . ) and Rt(x1, x2, . . . ) =
R(t, x1, x2, . . . ). In case of finiteK we can useφ as a
Turing machine working with the potentially infinite text inthe
alphabetK. Results of [41] allow to formulate the following
statement.

THEOREM 1
For each commutative ringK there are a cubical polyno-

mial mapsP and R on K∞ forming arithmetical dynamical
system with the constantc ≥ 1/2 such that for each stringr
of elements fromReg(K) the polynomial mapFr is cubical.

The example as above has been defined explicitly in [5] in
graph theoretical terms. The mapsP andR will stand further
for that particular example. Corresponding to(P, R) graphs
φ(n) are strongly connected i.e. from the existence of directed
pass from vertexv to w follows thatw and v are connected
by a directed pass. So connected components ofφ(n) are well
defined.

We combine the encryption processFr corresponding to
finite automatonφ(n) and stringr of elements fromReg(K)
with two invertible sparse affine transformationAf1 andAf2
and use the compositionAf1 × Fr × Af2 as encryption map.
We refer to such a map asdeformationof Fr. In case of
Af1 = Af2

−1 we use termdesynchronization. In case of
desynchronization the ciphertext is always distinct from the
plaintext. We assume thatAf1 andAf2 are parts of the key. De-
formated or desynchronised encryption is much more secure,
because it prevents adversary to use group automorphisms and
special ordering of variables during his/her attacks.

In the case of deformation with fixedAf1 and Af2 and
flexible r the property that the different passwords of kind
r lead to different ciphertexts is preserved, but the situation,
where the plaintext and corresponding ciphertext are the same
can happen. Anyway the probability of such event is1/|V |,
whereV = Kn is the plainspace.

A. Watermarking Equivalence and Hidden Discrete Logarithm

THEOREM 2
Let φ(n), n ≥ 6 be the directed graph with the vertex set

Kk+1 defined above for the pair(P, R).
(i) There are the tuplea = a(x), x ∈ Kn+1 of

quadratic polynomialsa2, a3, . . . , at, t = [(n + 2)/4] in
K[x0, x1, . . . , xn] such that for each directed passu = v0 →
v1 → vn = v we havea(u) = a(v).

(ii) For any t−1 ring elementsxi ∈ K), 2 ≤ t ≤ [(k+2)/4],
there exists a vertexv of φ(n) for whicha(v) = (x2, . . . , xt) =
(x). So classes of equivalence relationτ = {(u, v)|a(u) =
a(v)} are in one to one correspondents with the tuples inKt.

(iii) The equivalence classC for the equivalence relationτ
on the setKn+1 ∪ Kn+1 is isomorphic to the affine variety
Kt∪Kt , t = [4/3n]+1 for n = 0, 2, 3 mod 4, t = [4/3n]+2
for n = 1 mod 4.
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We refer toτ as watermarking equivalence and callC as
above generalised connected component of the graph,

Let |K| = d andη numerating function i.e bijection between
K and{0, 1, . . . , d − 1}. For each tuplet = (t0, t1, . . . ts) ∈
Ks+1 we consider its numberη(t) = η(t0) + η(t1)d + · · · +
η(ts)d

s. Let Reg(K) = b ≥ 2, µ be the bijection between
Reg(K) and{0, 1, . . . , b−1}. We obtainreg(t) by taking the
string of digits forη(t) baseb and computingµ−1 for each
digit. So reg(t) is a string of characters from the alphabet
Reg(K).

THE ALGORITHM: Correspondents Alice and Bob
are taking smallest prime numberp from interval
(b[(n+5)/2c], b[(n+5)/2]), where c is some constant> 3/2
and some numberm, m < p. Alice takes the plainspace
x computes stringa(x) (see theorem ?), thenz = η(a(x))
and u = zm mod p. She treatsu as integer and takes string
d(x) = reg(u) of characters fromReg(K). Her encryption
is Af1 × Fn

d(x × Af2. We think that numbersm, c and fixed
mapsAfi, i = 1, 2 are parts of the key.

Let c be the ciphertext. Bob computesz defined above az
z = η(a(c)), computes stringd(x) and use decryption map
(Af2)

−1 × Fn
d(x)

−1 × Af1.
Let Cn(x) = C(x) be the encryption function corresponding

to deformation of dynamical system. The adversary may try
to find the factorizationCn(x) = ((Af1)) × Fn

d(x) × Af2,
where Afi, i = 1, 2 are unknown and the functiond(x)
is reg((η(a(x)m)), where m is unknown also. During his
active attack he can compute finite number of valuesC(xi),
i ∈ J and use this information for finding the factorization.
The following heuristic argument demonstrate that it can be
difficult task.

Let as assume that affine transformationAfi, i = 1, 2 are
known for adversary. Notice that finding them can be very
difficult. Then the adversary can computedi = Fn

d(xi)
=

(Af1)
−1C(xi)(Af2)

−1. The pass between vertices of the graph
is unique. The Dijkstra algoritm is not suitable for finding the
pass because the vertex space of the graph is the plainspace.
But may be large group of automorphisms (see [14] and further
referenes) will allow to find the pass. Then the adversary
computes numberbi = η(a(x)m modulo known big prime.
Still he is not able to find numberm because of the complexity
of discrete logarithm problem. So he has to take for the set
{xi|i ∈ J} the totality of representatives from classes of
watermarking equivalence (transversal). So|J | > O(|K|[1/4])
because of theorem 2.

We use termhidden discrete logarithmfor the name of mod-
ified algorithm because affine transformation do not allow the
adversary to compute the class of watermarking equivalence
containing the plaintext (base of the logarithm) and pass inthe
finite automaton corresponding to the value of the logarithm.

IV. EXPLICIT CONSTRUCTION, ALGEBRAIC GRAPHS OF

ARITHMETICAL DYNAMICAL SYSTEM

Missing graph theoretical definitions the reader can find in
[1] or [8]. E. Moore [7] used termtactical configurationof
order(s, t) for biregular bipartite simple graphs with bidegrees

s+1 andr +1. It corresponds to incidence structure with the
point setP , line setL and symmetric incidence relationI. Its
size can be computed as|P |(s + 1) or |L|(t + 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for
the tactical configuration with partition setsP (point set) and
L (line set) and incidence relationI. We define the following
irreflexive binary relationφ on the setF :

Let (P, L, I) be the incidence structure corresponding to
regular tactical configuration of ordert.

Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈
L, p ∈ P, lIp} be two copies of the totality of flags for
(P, L, I). Brackets and parenthesis allow us to distinguish
elements fromF1 andF2. Let DF (I) be thedouble directed
flag graphon the disjoint union ofF1 with F2 defined by the
following rules

(l1, p1) → [l2, p2] if and only if p1 = p2 and l1 6= l2,
[l2, p2] → (l1, p1) if and only if l1 = l2 andp1 6= p2.
We will define below the family of graphsD(k, K), where

k > 2 is positive integer andK is a commutative ring, such
graphs have been considered in [5] for the caseK = Fq.

let P andL be two copies of Cartesian powerKN , where
K is the commutative ring andN is the set of positive integer
numbers. Elements ofP will be calledpointsand those ofL
lines.

To distinguish points from lines we use parentheses and
brackets: Ifx ∈ V , then(x) ∈ P and [x] ∈ L. It will also be
advantageous to adopt the notation for co-ordinates of points
and lines introduced in [5] for the case of general commutative
ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′

2,2, . . . , pi,i,

p′i,i, pi,i+1, pi+1,i, . . .)

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′

2,2, . . . , li,i, l
′

i,i, li,i+1, li+1,i, . . .]

The elements ofP andL can be thought as infinite ordered
tuples of elements fromK, such that only finite number of
components are different from zero.

We now define an incidence structure(P, L, I) as follows.
We say the point(p) is incident with the line[l], and we write
(p)I[l], if the following relations between their co-ordinates
hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (1)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′

i,i

(This four relations are defined fori ≥ 1, p′1,1 = p1,1, l′1,1 =
l1,1). This incidence structure(P, L, I) we denote asD(K).
We identify it with the bipartiteincidence graphof (P, L, I),
which has the vertex setP ∪L and edge set consisting of all
pairs{(p), [l]} for which (p)I[l].

For each positive integerk ≥ 2 we obtain an incidence
structure(Pk, Lk, Ik) as follows. First,Pk andLk are obtained
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from P andL, respectively, by simply projecting each vector
onto itsk initial coordinates with respect to the above order.
The incidenceIk is then defined by imposing the firstk−
1 incidence equations and ignoring all others. The incidence
graph corresponding to the structure(Pk, Lk, Ik) is denoted
by D(k, K).

The incidence relation motivated by the linear interpretation
of Lie geometries in terms their Lie algebras.α belongs to the
root system

Root = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . ,

(i, i), (i, i)′, (i, i + 1), (i + 1, i) . . . }.

The “root system”

Root = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2),

(2, 2)′ . . . , (i, i), (i, i)′, (i, i + 1), (i + 1, i) . . . }

contains all real and imaginary roots of the Kac-Moody
Lie Algebra Ã1 with the symmetric Cartan matrix. We just
doubling imaginary roots(i, i) by introducing(i, i)′.

To facilitate notation in future results, it will be convenient
for us to definep−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 =
−1, p′0,0 = l′0,0 = −1, and to assume that (1) are defined for
i ≥ 0.

Notice that fori = 0, the four conditions (1) are satisfied
by every point and line, and, fori = 1, the first two equations
coincide and givel1,1 − p1,1 = l1,0p0,1.

Let DE(n, K) (DE(K)) be the double directed graph of
the bipartite graphD(n, K) (D(K), respectively). Remember,
that we have the arce of kind (l1, p1) → [l2, p2] if and only
if p1 = p2 and l1 6= l2. Let us assume that the colourρ(e)
of arc e is l11,0 − l21,0. Recall, that we have the arce′ of kind
[l2, p2] → (l1, p1) if and only if l1 = l2 andp1 6= p2. let us
assume that the colourρ(e′) of arc e′ is p1

1,0 − p2
1,0.

It is easy to see that the vertex set of the new graph is
isomorphic toKn+1∪Kn+1. If K is finite, then the cardinality
of the colour set is(|K| − 1). Let RegK be the totality of
regular elements, i.e. not zero divisors. Let us delete all arrows
with colour, which is a zero divisor. New graphRDE(t, K)
(RD(K)) with the induced colouring is the automaton in the
alphabetReg(K).

Let Pt(x1,0, x0,1, x11, . . . ) and Rt(x1,0, x0,1, x11, . . . ) are
the transition function of infinite graphRD(K) of taking the
neighbour of vertex from the first and second copy of the flag
set forD(K). The connected components of graphD(n, K)
can be given in the following way.

Finally we define the tuplea of theorem 2.
Graph φ(n) is the double flag graph forD(k, K). We

assume thatk ≥ 6and t = [(n + 2)/4]. Each flag
f from F1 ∪ F2 contains the unique pointu u =
(u01, u11, · · · , utt, u

′

tt, ut,t+1, ut+1,t, · · · ) of D(n, K) . For
everyr, 2 ≤ r ≤ t, let

ar(f) = ar(u) =
∑

i=0,r

(uiiu
′

r−i,r−i − ui,i+1ur−i,r−i−1),

anda = a(u) = (a2, a3, · · · , at). So in fact each polynomial
ai depends really fromn variables (see [6]).

V. T IME EVALUATION

We have implemented computer application, which uses
family of graphsRDE(n, K) for private keycryptography.
To achieve high speed property, commutative ringK = Z2k ,
k ∈ {8, 16, 32}, with operations+,× modulo2k. Parameter
n stands for the length of plaintext (input data) and the length
of ciphertext. We mark byG1 the algorithm withk = 8, by
G2 the algorithm withk = 16, and byG4 the algorithm with
k = 32. So Gi, i ∈ 1, 2, 4 denotes the number of bytes used
in the alphabet (and the size of 1 character in the string).

The alphabet for password is the sameK as for the
plaintext. For encryption we use the scheme presented in
section (4). The colour of vertex is its first coordinate.

If u is the vertex,p(u) is the colour of this vertex, andα is
the character of password, then next vertex in the encryption
path v have the colourp(v) = p(u) + α. All the next
coordinates ofv are computed from (3) set of equations.

All the test were run on computer with parameters:

• AMD Athlon 1.46 GHz processor
• 1 GB RAM memory
• Windows XP operating system.

The program was written in Java language. Well known
algorithms RC4 and DES which were used for comparison
have been taken from Java standard library for cryptography
purposes—javax.crypto.

A. Comparison our algorithm with RC4

RC4 is a well known and widely used stream cipher
algorithm. Protocols SSL (to protect Internet traffic) and WEP
(to secure wireless networks) uses it as an option. Nowadays
RC4 is not secure enough and not recommended for use in
new system. Anyway we chose it for comparison, because of
its popularity and high speed.

RC4 is not dependent on password length in terms of com-
plexity, and our algorithm is. Longer password makes us do
more steps between vertices of graph. So for fair comparison
we have used fixed password length equal suggested upper
bound for RC4 (16 Bytes).

TABLE I
T IME GROW FORAnEāA

−1

n
FOR CHOSEN OPERATORAn

File [MB] G1 [s] G2 [s] G4 [s]

4 0.04 0.02 0.01
16.1 0.12 0.10 0.08
38.7 0.32 0.24 0.20
62.3 0.50 0.40 0.30

121.3 0.96 0.76 0.60
174.2 1.39 0.96 0.74

The mixing properties and speed comparison with DES the
reader can find in [4]. The public key algorithms associated
with the above dynamical system have been introduced in
[11], [13].
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File [MB] RC4 [s] G1 [s] G2 [s] G4 [s]

4 0.15 0.67 0.19 0.08
16.1 0.58 2.45 0.71 0.30
38.7 1.75 5.79 1.68 0.66
62.3 2.24 9.25 2.60 1.09

121.3 4.41 18.13 5.14 2.13
174.2 6.30 25.92 7.35 2.98

Fig. 1. RC4 vs high girth graph based algorithm (128 bit password)

REFERENCES

[1] N. Biggs, Algebraic Graph Theory(2nd ed), Cambridge, University
Press, 1993.

[2] N. Koblitz, A Course in Number Theory and Cryptography, Second
Edition, Springer, 1994, 237 p.

[3] N. Koblitz, Algebraic aspects of Cryptography, in Algorithms and
Computations in Mathematics, v. 3, Springer, 1998.

[4] J. Kotorowicz, V. A. Ustimenko, “ On the implementation of cryptoalgo-
rithms based on agebraic graphs over some commutative rings”, Con-
denced Matters Physics, Proceedings of the international conferences
“Infinite particle systems, Complex systems theory and its application,”
Kazimerz Dolny, Poland, 2005-2006, 2008, vol. 11, N2(54), 347–360.

[5] F. Lazebnik F. and V. Ustimenko, “ Explicit constructionof graphs with
an arbitrary large girth and of large size”,Discrete Appl. Math., 60,
(1995), 275–284.

[6] F. Lazebnik, V. A. Ustimenko and A. J. Woldar, “A New Series of
Dense Graphs of High Girth”,Bull (New Series) of AMS,v.32, N1,
(1995), 73–79.

[7] E. H. Moore,“Tactical Memoranda“,Amer. J. Math.,v. 18, 1886,
264-303.

[8] R. Ore, Graph Theory, London, 1974.
[9] T. Shaska, W. C. Huffman, D. Joener and V. Ustimenko

(editors),Advances in Coding Theory and Cryptography, Series
on Coding Theory and Cryptology, vol. 3, 181-200 (2007).

[10] J. Seberry, J. Pieprzyk,Cryptography: An Introducion to Computer
Security, Prentice Hall 1989, 379 p.

[11] V. Ustimenko, “ Maximality of affine group and hidden graph
cryptsystems“,Journal of Algebra and Discrete Mathematics, October,
2004, v. 10, pp. 51–65.

[12] V. Ustimenko,On the extremal graph theory for directed graphs and its
cryptographical applications, In: T. Shaska, W. C. Huffman, D. Joener
and V. Ustimenko, Advances in Coding Theory and Cryptography, Series
on Coding Theory and Cryptology, vol. 3, 181-200 (2007), 131–156.

[13] V. A. Ustimenko, “On the graph based cryptography and symbolic
computations”, Serdica Journal of Computing, Proceedings of
International Conference on Application of Computer Algebra,
ACA-2006, Varna, N1 (2007), 131-186.

[14] V. A. Ustimenko, “ Linguistic Dynamical Systems, Graphs of Large
Girth and Cryptography”,Journal of Mathematical Sciences, Springer,
vol. 140, N3 (2007), pp 412–434.


