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Abstract—The paper is devoted to the special key management transmit messages to obtain information (e.g. ciphertéxt o
algorithm for the stream ciphers defined in [12] via finite au- chosen plaintext).

tomata corresponding to the family of directed algebraic gaphs An assumption first codified by Kerckhoffs in the nineteen

of high girth and two affine transformation. Security of the key . - . -
based on the complexity of the discrete logarithm problem.tlhas century is that the algorithm is known and the security of

additional heuristic security because of the “hidden base’and algorithm rests entirely on the security of the key.
“hidden value” of the discrete logarithm function. We consider Cryptographers have been improving their algorithms to
the heuristic evaluation of the complexity for different attack by  resist the following two major types of attacks:
the adversary on our pri_vate_ key cipher. The detailed descption (i) ciphertext only—the adversary has access to the en-
of the whole algorithm is given. Implemented software packge crypted communications
has been used for the evaluation of mixing properties and sjeel b . ) .
of the private key encryption. (ii) knowr-1 pIal_ntext—the adversary has some plaintextx and
corresponding ciphertexts.
I. INTRODUCTION Nowadays the security of the plaintext rests on encryption

E WILL introduce the key management block for thélgorithm (or private key algorithm), depended on chosen ke
stream ciphers defined in [12] via finite automata cofPassword), which has good resistance to attacks of type (i)
responding to the family of directed algebraic graphs ohhigtnd (i), and algorithm for the key exchange (public keys)
girth. The time evaluation of software package implementifvith good resistance to active attacks, when the adversary c
these algorithms compares well with the performance of fa@gnerate each plaintextand get the corresponding plaintext
but not very secure RC4, DES, algorithms based on simpidsee [2], [3], [9] or [10]). The combination of appropriate
graphs (symmetric anti reflexive binary relations) devetbp Private key and public key algorithms can lead to symmetric
during last ten years [4]. algorithm with good resistance even to active attacks. The
In Section 3 we described modified algorithm in term ggxample of such combination will be given in the next section
arithmetical dynamical systems. We add the key managem&hthe paper.
block to our algorithm and consider the heuristic evaluatio I1l. ARITHMETICAL DYNAMICAL SYSTEMS AS
of active attacks by the adversary. ENCRYPTION TOOLS
_ The expl_icit glescription of the dyngmicz_il System is given | ot i be the commutative AngE(K) = K[t, 21,22, ... ]
in last sect|o_n in terms of cqrrespondlng flnlte_ automz_ita. Weithe ring of all polynomials in variablesz:, zs, . . .. We use
give th_e explicit formula for mvz_arlants we use in algorithm _symbolReg(K) for the totality of regular elements i.e not a
. Section 4 de\_/otefj to evalpatpn of speed of the encryptiop, yivisors ¢ Reg(K) impliesa x  # 0 for eachz # 0.
in case of special rings of kinds, s > 8. Let K% = {x = (t,21,2,...)|z; € K,t € K, supp(x), 0}
Il. BASIC CRYPTOGRAPHICAL TERMINOLOGY and K" = {(z1, 22, ..., xn)|z; € K}.

. . Let us consider two polynomial magsand R of K into
Assume that an unencrypted messagaintext which can oo poly ps

be image data, is a string of bytes. It is to be transformeal int
an encrypted string ariphertext by means of a cryptographic (t, ¥1, 72, .. .,) — (t, Pi(t, 21,22, ... ), P2(t, 21, 72,...),...)
algorithm and &ey. so that the recipient can read the messaggyq
encryption must bénvertible

Conventional wisdom holds that in order to defy easy (t,z1,22,...,) — (t, Ri(t,z1,22,...),
decryption, a cryptographic algorithm should produce segm Ro(t,x1,2,...),...),
chaos: that is, ciphertext should look and test random. In _
theory an eavesdropper should not be able to determine Mfreﬂ(t’zl’“’ ...) and Rt a1, 23,...), 0 = 1,2,
significant information from an intercepted ciphertexto&dly r eIemen_ts oF (K). S em n n "
speaking, attacks to a cryptosystem fall into 2 categories:We. consider two families;* and g of K™ onto X
passive attacksin which adversary monitors the communiSending(@1, 22, ..., ) t0
cation channel anective attacksin which the adversary may (P (t,z1,z2,...), Py(t,z1,22,...), PL(t, 21,22, ... 7))
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and from the ciphertexp® corresponds to the pass ¢! defined
y ’ , by sequence of colourst,, —ts_1,...,—t1.

(By(t 21,2, ), Byt 21,02, ), By (821,22, ), Finally, we can consider well defined projective limit
where P/ and R}, i = 1,2,...,n correspond to the special-¢ of automata¢™, n — oo with the transition function
isationsz,+1 = 0,2p42 = 0,... of P, and R; associated P;(z1,x2,...) = P(t,z1,22,...) and Re(x1,22,...) =
with the pair ¢, R). We identify f, andg;, t € K with the R(t,x1,22,...). In case of finite X we can use¢ as a
corresponding map& ™ — K" Turing machine working with the potentially infinite texttine

Letr = (ry,ra,...7) € Reg(K)" be the tuple of length alphabetk. Results of [41] allow to formulate the following
I(r)) = t. We introduceF;, as the composition of mapsstatement.
frisGray---s frae_1s Ore. IN CASE Oft = 25 @nd as composition THEOREM 1
Of frisGrase vy fro—as Gras froo, fOr t=2s+1. For each commutative rind< there are a cubical polyno-
We say that the paiP and R form an arithmetical dynam- mial mapsP and R on K forming arithmetical dynamical
ical system depending on timeif the following conditions system with the constant> 1/2 such that for each string

hold of elements fronReg(K) the polynomial magF; is cubical.

1) existence ofx = (z1,...,2,) € K" such that  The example as above has been defined explicitly in [5] in
fu (@1, 22, 2n) = fi,(x1,22,...,2,) for somet, andtz  graph theoretical terms. The mapsand R will stand further
implies the equalityt; = t,. for that particular example. Corresponding (t8, R) graphs

2) mapsf; andg;, t € K are bijections and’_; andg—;  ¢(n) are strongly connected i.e. from the existence of directed
are inverse maps for them. pass from vertex to w follows thatw andv are connected

3) There is a constant, ¢ > o such that for each pair of py 3 directed pass. So connected componentsf are well
tuplesr, b of regular elements, condition&) < cn, l(r) < c¢n  defined.

and Fy(x) = Fy(x) for somex impliesr = b. We combine the encryption proce$$ corresponding to

_ If (P,R) form an anthm_etlcal dynamical system, then thgite automatony(n) and stringr of elements fronReg(K)

inverse ofF}, I(r) = 2s + 1 is Fy, where with two invertible sparse affine transformatid; and Af,
b = (—Fost1, —T2s, .-, —T1). and use the compositioif; x F, x Afs as encryption map.

We refer to such a map ageformationof F,. In case of
If I(r) = 2s then F,"! is the composition of_,,, and Fu, Af, — Af,~! we use termdesynchronizationin case of
whered = (—ras—1, —T25-2, . o —r1). desynchronization the ciphertext is always distinct frdm t
We c?n treatk™ as the plainspace, refer to the unionof plaintext. We assume thatf; andAf, are parts of the key. De-
Reg(K)', 1 <t < cn as the key space and treat> F,(x) 8 formated or desynchronised encryption is much more secure,
the encryption map corresponding to the keyrhe ciphertext pecayse it prevents adversary to use group automorphigins an
y = Fa(x) can be decrypted by the map" written above. gpecial ordering of variables during his/her attacks.

S_o the algorithm is symmetrical. The property 3 implies that |, the case of deformation with fixedf, and Af, and
different keys of length< cn produce distinct ciphertexts.  fiexiple r the property that the different passwords of kind
We introduce the following directed graph = &(n) | |ead to different ciphertexts is preserved, but the siamti

corresponding to mapg;" and g;" over K". Firstly we \yhere the plaintext and corresponding ciphertext are theesa

consider two copies of” (set of points) and. (set of lines) .5, happen. Anyway the probability of such event j§V/|,
of the free modulex™. We connect poinp € P with the line  \\here = K7 is the plainspace.

I € L by directed arrow if and only if there is € Reg(K)

such thatf;(p) = [. Let t be the colour of such a directedp \yatermarking Equivalence and Hidden Discrete Logarithm

arrow. Additionally we joinl € L andp € P by directed arrow

with the colourt if there ist € Reg(K) such thatg, () =p. ~ THEOREM 2

We can consider as finite automaton for which all states Let¢(n), n > 6 be the directed graph with the vertex set

are accepting states. We have to chose ppifplaintext) as K"*' defined above for the paitP, R).

initial state. It is easy to see thdf andg, are the transiton () There are the tuplea = a(x), x € K"*! of

functions of our automaton. Let, ..., ¢, be the "program" quadratic polynomialsaz,as,...,a;, t = [(n + 2)/4] in

i.e. sequence of colours froleg(K ). Then the computation K [zo, 1, . .., x,] such that for each directed pags= vy —

is the directed passg, fi, (p) = p*, 91, (') = p,.... If sis v1 — v, = v we havea(u) = a(v).

even then the last vertex s, (p°~!), in case of odds we get (i) Foranyt—1ring elements; € K),2 <t < [(k+2)/4],

g:.(p°~t) = p* as the result of the computation (encryption)here exists a vertexof ¢(n) for whicha(v) = (z2,...,z¢) =

The stop of the automata corresponds just to the absencgxf So classes of equivalence relation= {(u,v)|a(u) =

the next colour. a(v)} are in one to one correspondents with the tuplegih
The inverse grapkb(n)’1 can be obtained by reversing of (iii) The equivalence clas§' for the equivalence relation

all arrows ing. We assume that colours of arrowdnand its on the setk™*! U K" *! is isomorphic to the affine variety

reverse ing~! are the same. So we can consigén) ' as K!'UK',t=[4/3n]+1forn =0,2,3 mod 4, t = [4/3n]+2

an automaton as well. Then the decryption procedure sgartiior n = 1 mod 4.
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We refer tor as watermarking equivalence and céllas s-+1 andr + 1. It corresponds to incidence structure with the
above generalised connected component of the graph, point setP, line setL and symmetric incidence relatidn Its
Let| K| = d andn numerating function i.e bijection betweensize can be computed &8|(s + 1) or |L|(t + 1).
K and{0,1,...,d — 1}. For each tuplg = (tg,t1,...ts) € Let F = {(p,l)|p € P,l € L,pll} be the totality of flags for
K*t1 we consider its numbey(t) = n(to) + n(t1)d + --- + the tactical configuration with partition sef3 (point set) and
n(ts)d®. Let Reg(K) = b > 2, u be the bijection between L (line set) and incidence relatioh We define the following
Reg(K) and{0,1,...,b—1}. We obtainreg(t) by taking the irreflexive binary relationy on the setF:
string of digits forn(t) baseb and computing:~* for each Let (P,L,I) be the incidence structure corresponding to
digit. So reg(t) is a string of characters from the alphabetegular tactical configuration of order
Reg(K). Let 4 = {(I,p)|l € L,p € P,lIp} and F» = {[I,p]|l €
THE ALGORITHM: Correspondents Alice and BobL,p € P,lIp} be two copies of the totality of flags for
are taking smallest prime numbep from interval (P,L,I). Brackets and parenthesis allow us to distinguish
(bln+5)/2¢] pl(n+5)/2]) " where ¢ is some constant- 3/2 elements from, and F,. Let DF(I) be thedouble directed
and some numbem, m < p. Alice takes the plainspaceflag graphon the disjoint union oft; with F, defined by the
x computes stringu(x) (see theorem ?), then = n(a(x)) following rules
andu = 2™ mod p. She treats, as integer and takes string (l1,p1) — [l2, p2] if and only if p; = po andiy # I,
d(x) = reg(u) of characters fromReg(K). Her encryption  [l2,p2] — (I1,p1) if and only if [y = [y andp; # po.
is Afy x Fii x Afa. We think that numbers, ¢ and fixed  We will define below the family of graph®(k, K'), where
mapsAf;, i = 1,2 are parts of the key. k > 2 is positive integer and{ is a commutative ring, such
Let ¢ be the ciphertext. Bob computesdefined above az graphs have been considered in [5] for the cASe- F,.
z = n(a(c)), computes stringl(x) and use decryption map let P and L be two copies of Cartesian pow&r”, where
(Afg)"t x FI 1 Afy. K is the commutative ring and is the set of positive integer
LetC,,(x) = C(x) be the encryption function correspondingrumbers. Elements o will be called pointsand those ofL
to deformation of dynamical system. The adversary may tlypes
to find the factorizationC,,(x) = ((Afy)) x Fg(x) x Af,, To distinguish points from lines we use parentheses and
where Af;,;i = 1,2 are unknown and the functiod(x) brackets: Ifx € V, then(z) € P and[z] € L. It will also be
is reg((n(a(x)™)), wherem is unknown also. During his advantageous to adopt the notation for co-ordinates oftpoin
active attack he can compute finite number of valGgs;), and lines introduced in [5] for the case of general commuaati
i € J and use this information for finding the factorizationring K:
The following heuristic argument demonstrate that it can be
difficult task. () = (Po,1,P1,1, 1,2, P2,1, 92,2, D 25 - - - » Divis
Let as assume that affine transformatidfy, i = 1,2 are p;,iapi,i-i-l,pi-s—l,h o)
known for adversary. Notice that finding them can be verm S Y T A A Lol bioets lisr i ]
difficult. Then the adversary can compute = Fj = 1,058,015 71,25 82,15 52,20 52,2« + 0 2t P, MLy B L g - e
(Af1)~1C(x;)(Af2)~L. The pass between vertices of the graph The elements of” and L can be thought as infinite ordered
is unique. The Dijkstra algoritm is not suitable for findiriget tuples of elements frond’, such that only finite number of
pass because the vertex space of the graph is the plainspaamponents are different from zero.

But may be Ia_rge group of gutomorphisms (see [14] and furtherwe now define an incidence structui®, L, I) as follows.
referenes) will allow to find the pass. Then the adversagye say the poinp) is incident with the lingl], and we write

computes numbeb; = n(a(x)™ modulo known big prime. ()], if the following relations between their co-ordinates
Still he is not able to find numben because of the complexity hold:

of discrete logarithm problem. So he has to take for the set
{xi|¢ € J} the totality of representatives from classes of
watermarking equivalence (transversal).|0> O(|K|I}/4])
because of theorem 2. li; = Pii = lii-1Poa (1)

We use ternmhidden discrete logarithrfor the name of mod-
ified algorithm because affine transformation do not allog th
adversary to compute the class of watermarking equivalence livii— pit1i = lop;,
containing the plaintext (base of the logarithm) and pagdkén

finite automaton corresponding to the value of the logarithrfilhis four relations are defined for> 1, p} ; = p1,1, 1 =
l1.1). This incidence structuréP, L, I) we denote ad(K).

IV. EXPLICIT CONSTRUCTION ALGEBRAIC GRAPHS OF e identify it with the bipartiteincidence graplof (P, L, I),
ARITHMETICAL DYNAMICAL SYSTEM which has the vertex s@? U L and edge set consisting of all
Missing graph theoretical definitions the reader can find pairs {(p), [{]} for which (p)I[l].
[1] or [8]. E. Moore [7] used terntactical configurationof For each positive integek > 2 we obtain an incidence
order(s, t) for biregular bipartite simple graphs with bidegreestructure( Py, L, I1;) as follows. First,P; andL;, are obtained

lii —pii = li0pi—1,i

liit1 — Piyiv1 = liibo1



300 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

from P and L, respectively, by simply projecting each vector V. TIME EVALUATION
onto its k initial coordinates with respect to the above order. _ o .
The incidencel, is then defined by imposing the firgt— We have implemented computer application, which uses

1 incidence equations and ignoring all others. The incidenf&mily of graphs RDE(n, K) for private keycryptography.

graph corresponding to the structuig,, L, I;,) is denoted To achieve high speed property, commutative riig= Zy«,

by D(k, K). k € {8,16,32}, with operationst, x modulo 2¥. Parameter
The incidence relation motivated by the linear interpietat 7 stands for the length of plaintext (input data) and the lengt

of Lie geometries in terms their Lie algebrasbelongs to the Of ciphertext. We mark byx1 the algorithm withk = 8, by

root system G2 the algorithm withk = 16, and byG4 the algorithm with
k = 32. S0 Gi,i € 1,2,4 denotes the number of bytes used

Root = {(1,0), (0,1), (1,1),(1,2),(2,1),(2,2),(2,2)"..., in the alphabet (and the size of 1 character in the string).

(i,4), (i,4), (5,0 + 1), (i + 1,4) ... }. The alphabet for password is the sami& as for the

plaintext. For encryption we use the scheme presented in
section (4). The colour of vertex is its first coordinate.
Root = {(1,0),(0,1),(1,1),(1,2),(2,1),(2,2), If u is the vertexp(u) is the colour of this vertex, and is
(2,2) ..., (i,0), (i,3), (i,i + 1), (i + 1,4) ...} the character of password, then next vertex in the encnyptio
ath v have the colourp(v) = p(u) + «. All the next
oordinates ofy are computed from (3) set of equations.
All the test were run on computer with parameters:

The “root system”

contains all real and imaginary roots of the Kac-Moodg
Lie Algebra A; with the symmetric Cartan matrix. We just
doubling imaginary rootsi, <) by introducing(z, :)’.

To facilitate notation in future results, it will be convent o AMD Athlon 1.46 GHz processor
for us to definer_1,0 = lo,—1 = p1,0 =1lo,1 = 0,p00 =loo = « 1 GB RAM memory
—1, ph o = lpo = —1, and to assume that (1) are defined for « Windows XP operating system.

i20. The program was written in Java language. Well known

Notice that fori = 0, the four conditions (1) are SatiSfiedalgorithms RC4 and DES which were used for comparison

by every point and line, and, far= 1, the first two equations ye peen taken from Java standard library for cryptography
coincide and givé; 1 — p1,1 = l1,0p0,1- purposes—javax.crypto
Let DE(n,K) (DE(K)) be the double directed graph of

the bipartite graptD(n, K) (D(K), respectively). Remember, ) _ .
that we have the are of kind (I, p') — [12,p?] if and only A. Comparison our algorithm with RC4
if pt = p? andi! # [2. Let us assume that the colop(e)
of arce is lj , — I7 . Recall, that we have the ar¢ of kind
[12,p?] — (11, p') if and only if I* = /2 andp! # p?.
assume that the coloyi(e’) of arce’ is p1 o — p7 .

It is easy to see that the vertex set of the new graph
isomorphic tok "t1UK ™1, If K is finite, then the cardinality
of the colour set ig|K| — 1). Let RegK be the totality of

RC4 is a well known and widely used stream cipher
algorithm. Protocols SSL (to protect Internet traffic) an&ERV
let s (15 secure wireless networks) uses it as an option. Nowadays
RC4 is not secure enough and not recommended for use in
few system. Anyway we chose it for comparison, because of
its popularity and high speed.
. - RC4 is not dependent on password length in terms of com-
\r/\i?# I(?(r)lf)ljrm\?v?\tiihl.g goztezrzr?ji(\j/'i\gj?r;'el\‘,\?t ?;Sﬁ%%img plexity, and our algorithm is. Longer password makes us do
(RD(K)) V\;ith the induced colourin:q i thegautomat07n i th more steps between vertices of graph. So for fair comparison

fve have used fixed password length equal suggested upper

alphabetReg(K).
bound for RC4 (16 Bytes).
Let Pt(1'170,$071,$11,...) and Rt($170,£17()_’1,£1711,...) are ( y )

the transition function of infinite grapRD(K) of taking the TABLE |
neighbour Of vertex from the firS'[ and Second COpy Of the ﬂag TIME GROW FORATLE(_lA’r_Ll FOR CHOSEN OPERATORA
set for D(K'). The connected components of grapiin, K)

can be given in the following way. File [MB] || G1[s] | G2[s] | G4 s]
Finally we dgflne the tuple of theorem 2. T 004 T 007 T 001
Graph ¢(n) is the double flag graph foD(k, K). We 6.1 012 T 010 | 0.08
assume thatt > 6and t = [(n + 2)/4]. Each flag 387 032 | 024 | 020
f from F; U F, contains the unique pointu u = 62.3 050 | 040 | 0.30
' 121.3 096 | 0.76 | 0.60
(UOI; W11y, Utt, utta ut,t-l—lv ut+1,t7 e ) Of D(”v K) . For 174.2 1.39 0.96 0.74
everyr, 2 <r <t, let
ar(f) = ar(u) = Z (uiiu;'—i,r—i — Ui, it 1 Ur—i r—i—1); The mixing properties and speed comparison with DES the
i=0,r reader can find in [4]. The public key algorithms associated
anda = a(u) = (ag,as, -+ ,a:). So in fact each polynomial with the above dynamical system have been introduced in

a; depends really from variables (see [6]). [11], [13].
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