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 
Abstract—This paper presents development of the hardware 

and software for the low cost avionic system of ultralight 
airplanes.  There are  shown three  levels  of  a  hardware 
and software system design. As far as the software is con-
cerned, we focused on changeover from non real-time operat-
ing system (embedded Linux) to the real-time embedded plat-
form (QNX). We discussed the problems that led to operating 
system change. Various advantages and disadvantages of both 
operating systems are presented in this contribution. Concern-
ing the hardware we concentrated on the development of the 
avionic control, monitoring and display modules that are a com-
ponents  of  the  dash board.  The  paper  has  been focusing  on 
safety and reliability in the ultralight aviation and what can be 
improved or extended by the real-time operating system. 

I. INTRODUCTION

HIS paper shows dependence hardware and software re-
liability.  The control and monitoring system for ultra-

light or sport airplane has to be  stable in an extreme situa-
tion as well as in a daily routine.  When one designs your 
own hardware and software architecture one has to keep in 
mind the hazard states that can occur in many cases. In the 
aviation industry the safety and reliability are very important 
goals. But the other aspect is a product price. It means that 
hardware for double or triple protection is too expensive for 
the customer so we have to presume that hardware will work 
reliably at all times. This is the same case of our system that 
is why we focus on software architecture development in this 
article. The embedded Linux as main operating system has 
been implemented in our embedded system. The basic prob-
lem are drivers that have to be certificated and be very safe 
as  all operating system. On the Linux platform it is difficult 
to ensure that drivers do not corrupt the kernel because both 
run within the same address space as the OS kernel. There-
fore we were looking for a new software architecture solu-
tion. As the ideal answer it resulted in QNX real-time plat-
form with client-server architecture where drivers are inde-
pendent on the kernel (microkernel) that only implements the 
core  services,  like  threads,  signals,  message  passing,  syn-
chronization, scheduling and timer services. There are other 
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possible real-time operating system of course that are very 
often use in the avionic systems, for example VxWorks from 
Wind River or Integrity from Green Hills but the problem for 
the low cost product is license price of the RTOS. When the 
run-time license price of RTOS is over the client limits there 
is no way how to use them. Especially Integrity software is 
very powerful system for developing purpose on the different 
platforms and has a very nice debugging tools. 

II. RTOS SELECTION

The right choice of a software system architecture is im-
portant  for  following development of all  stuff. Due to the 
lack of our experiences and that requirements on the system 
where growing up during developing period, it caused that 
we had to try three different architectures.

A. Embedded uClinux

The first  platform was the embedded uClinux based on 
microprocessor ColdFire MCF5329 from Freescale. This so-
lution had shown us that graphic hardware is not powerful 
enough as we supposed and the lack of MMU was the huge 

problem as well. [3] On the other hand the advantage of this 
solution  is  quick  access  to  memory  and  integrated  CAN 
hardware device on the developing board. The address space 
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Fig 1. Architecture of uClinux - traditional for old RTOS
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is common for the kernel  as well as for the user application 
which decreased safety and reliability of the entire control 
system but it is real-time in nature because there is no over-
head of system calls, message passing, or copying of data. 
The uClinux architecture (flat addressing model) is shown on 
the  Figure 1. 

B. Embedded Linux 

The embedded Linux architecture was chosen as the next 
platform for  avionic system. This architecture is  based on 
monolithic kernel that has distinction between the user and 
kernel space. [5] Any fault in the application will not cause 
system crash. The system has run on ARM processor PXA 
270 from Intel and ARM processor PXA 320 from Marvell. 
The  both processors are very powerful but there is a lack of 
floating  point  instructions  set  that  is  very  important  for 
graphic  operations.  The  next problem that  was mentioned 
above is incorrectly written driver or module that can cause 
the system to crash. [6] The embedded Linux architecture is 
shown on Figure 2. 

C. QNX Neutrino real-time OS V 6.3

The embedded Linux has worked without problems but 
there was demand on system to be high reliable and safe. 
The embedded Linux was sufficient  for  the monitoring of 
avionic values but for the control activity it was worse. We 
had to ensure time death line for the control process activity 
and graphic smooth step to the next frame on LCD display. 
There  were  requirements  to  isolate  graphic  process  from 
control  process  but  in  monolithic  kernel  architecture  the 
graphic driver could corrupt all system. [4] So the next logi-
cal step was to use microkernel to realize mentioned require-
ment. The basic principle of microkernel architecture is that 
each of kernel subsystem (network stack, file system, sched-
uler,  etc.)  has private address space similar to application. 
This way offers complete memory protection, not only for 
user applications, but also for OS components. This architec-
ture provides maximum modularity and relies on robust mes-
sage passing schema. The QNX microkernel architecture is 
shown on Figure 3. [11] 

Due  to  the  lack  of  floating  point  instructions  set  we 
needed to use another processor that supports FPU and QNX 
RTOS.  We  decided  to  use  ARM  microprocessor  iMX31 
from Freescale but parallel solution stop on ARM processor 
PXA 270 with QNX RTOS. Unfortunately for the ARM mi-
croprocessor PXA 320 was not QNX BSP available.

III. SOFTWARE ARCHITECTURE

The reliability is main goal in the process control of the 
most industrial or others systems. As we presented in soft-
ware architecture part,  there are many reasons, why divide 
all control and monitoring system into the smaller software 
distributed units – processes. 

The client-server architecture brings features that  are able 
to guarantee more stability of the whole system. The failure 
of one part of the system (process) causes crash of any other 
one.  The  interprocess  communication  is  based  on  robust 
message passing.  The  processes are  separate  according its 
functionality and hardware requirement. It  means that each 
process  uses  one specific  driver.  Every individual  process 
runs in independent address space.

There are five basic process groups. The first one is the 
motor control group that is responsible for everything what is 
connected with plane control.  We measure avionic sensors 
inputs that are needed for autopilot control,  maximum and 
minimum plane speed, etc.

The second group takes care of communication with other 
hardware parts. We are using CAN communication protocol 
and CAN driver where each hardware device is CAN node.
[2] There is possible to use serial communication RS232 or 
USB as special process as well but for another purpose.

The third big group is SCADA system. The SCADA sys-
tem or  we can  say graphic  tasks  that  are  responsible  for 
monitoring and display avionic values in continuous time (it 
depend on processor  time scheduling).  Graphic  process  is 
very demanding on time of the processor so the priority level 
are low but have to ensure specific frame count per second.

The fourth group is IO device control for other purpose. 
We use GPIO driver for pins states monitoring. Each pin has 
special function where the most of them are used as button, 
trimer or switch. We use GPIO-event handling mechanism 
for pin state tracking.

The fifth group and the last process group is audio device 
group that is responsible for voice transmitting into the cen-
tral communication system. There is audio system for warn-
ing and critical errors as well. The audio system can be used 
for other purpose it is up to client additional extension. The 

Fig 2. Architecture of embedded Linux

Fig 3. Architecture of QNX microkernel
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following schema on the Figure 4 shows process structure. 
The  communication  group  allows  data  for  other  process 
groups from sensors and actuators.  The motor control group 
uses  communication  group  for  engine  values  control.  The 
communication unit has to be one of the most reliable part of 
the control and monitoring system.

IV. CRITICAL SYSTEM CONTROL

The basic critical processes of the aviation control have to 
meet the following criteria. The plane take-off speed as well 
as  landing  speed  has  to  meet  the  required  characteristics. 
These values are measured with sensors which are build-in 
the hardware board. The measurements are completed by the 
pressure difference against the surrounding environment. All 
data which have been gained from the sensors are used for 
the rotation engine process. The measurement of the stalling 
speed is a very important to prevent the uncontrolled plane 
fall  /accident/  and  jet-engine failure  which is  closely con-
nected with this event. The measurement of the vertical and 
horizontal plane heeling is the next critical process. Exceed-
ing the allowed plane heeling can result in stability loss of 
the airplane.  To  make the jet-engine  work sufficiently the 
pressure  in  the  gas  and  oil  tank  must  be  sustained.  
Other  important  flying data are information about  a  plane 
position.  The  position  is  shown through GPS system. All 

above mentioned processes must run in the independent ad-
dress space so that the safety of the system is sustained. 

The  driver  design  is  very important  for  communication 
and stable control of the application. The critical data goes 
through CAN interface which gives or receives information 
for engine control and fly control. The CAN driver is con-
nection between module control node (present in next chap-
ter) and motor control process group. The next sophisticated 
driver  which  is  used  for  SCADA  system  is  framebuffer 
driver. This driver has to be very efficient and quick. The vi-
sualization  system  was  extended  by  OpenGL  ES  2D 
driver [12]

V. HARDWARE ARCHITECTURE FOR AVIONIC SYSTEMS

The  avionic  system is  distributed  into  the  independent 
modules that measure specific values on mechanical parts of 
the airplane. The hardware solution is a configurable accord-
ing type of airplane. The highest layer is graphic user module 
that represents received data on the LCD display. The sense 
of  monitoring system is offer  customers  same facilities  as 
have pilots in the professional  aircrafts  and make aviation 
more easier using low cost embedded electronic system. 

The real-time embedded control system is designed with a 
modular structure. [4] This structure supports a flexible con-
figuration. In terms of user requirements, the control system 
can be configured in different sizes and options. [8] The s 
everal  modules  with  different  options  were  designed.  All 
modules are connected to an industrial bus – so each module 
is the bus node. Except the GPS module that is connected di-
rectly to the main control module. 

This architecture supports a future expansion. In terms of 
user requirements it is possible to design new modules. The 
new module node  will  be connected  to  the bus.  The  new 
module  can  work to  satisfy a  user  after  upgrading  of  the 
firmware in the main control mode. This way it is possible to 
connect a maximal 30 modules - nodes.  The block diagram 
of a desk control  and monitoring system with today’s full 
configuration of prototype is shown on the Figure 5.

The  monitoring  and  control  modules  are  connected  to-
gether  by using an  industrial  bus  [2].  This  bus  has  to  be 
highly reliable and have enough speed. Depending on these 
two main requirements a CAN bus was selected. The main 
reason is that the CAN has an extremely low probability of 
non-detected error.  The versatility of the CAN system has 
proven itself useful in other applications, including industrial 
automation as well, anywhere that a network is needed to al-
low controllers to communicate. A CAN bus is given the in-
ternational standard ISO11898 which uses the first two lay-
ers  of  ISO/OSI  model  (CAN-CIA  2005).  The  CAN is  a 
multi-master protocol. When a CAN message is transmitted 
over the network all nodes connected to the network will re-
ceive the message. [7] Any node can begin transmitting at 
any time the bus is free of traffic and all nodes will listen to 
the message. Each node may employ a filtering scheme that 
allows it to process only relevant information. Each message 
has either an 11 bit identifier or 29 bit identifier which will 
define which node will receive the message, error checking 
bits, 8 bytes of data and priority information. If two nodes 
try transmitting a message at the same time, the node with 

Fig 4. Architecture of process control



748 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

the higher identifier (lower priority) loses control of the bus 
as soon as another node exerts a dominant bit on the bus. It 
ensures  that  the message  with the  highest  priority will  be 
transmitted on the first try.
Designed modules are the following:

•       Main control module

•       User interface (LCD display) module 

•       Motor measuring values module

•       Advanced avionic data module

•        Black-Box module 

A. Main control module

The  main  control  node  serves  as  master  for  all  other 
nodes. (Figure 6) [1] The requesting values from other nodes 
are compared with given limits and stored in the local mem-
ory. The main module decides what will be displayed and 
sends information to the user interface module by the CAN 
bus. The main control module contains a real time clock and 
data flash memory for storing measured values and statistics. 
For  a  measuring  of  the  basic  values  the  main  module  is 
equipped by sensors. 

B. Engine monitoring and control module

The engine monitoring and control  module supports the 
complete  monitoring  and  control  of  all  necessary  engine 
data. It collects all possible temperatures, pressures and the 
diagnostics of the engine. The basic motion control values 
and critical avionic data are already connected to the main 
control module. 

C. Avionic monitoring module

The advanced avionic data are supported by this module, 
for example a magnetic compass. This module only increase 
basic monitoring and control data that are supported in the 
main control module. It is up to client requirement.

D. Black-Box module

The black-box module controls all traffic on the CAN bus. 
It reads data from CAN messages and stores data in the local 
memory.  The  black-box module  is  equipped  with its  own 
RTC  timer  and  stores  time  together  with  the  CAN data. 

There is no other connection to this module with such high 
reliability. [10]

E. Development kits

There were three development kits used during the whole 
evolution.  The  first  development  kit  that  has  been  used 
comes  from the  world-wide  known company –  Freescale. 
This  development  kit  is  based  on  32.bit  microprocessors 
ColdFire  family.   This  microprocessor  runs  on  frequency 
240 MHz and integrates display controller and other useful 
interfaces.  [9]  The  second  development  kit  that  has  been 
chosen  comes  from  the  Toradex  company  and  integrates 
ARM microprocessor Intel PXA270 (Marvell PXA320) runs 
on frequency 520MHz respective for PXA320 on frequency 
806MHz.  There  is  an  integrated  display  driver  and  CAN 
driver as well as other interfaces. [10] The third development 
kit  that  has  been  tested  comes  from company Logic  PD. 
There is  Freescale ARM microprocessor i.MX31 as SOM 
module integrated.  This microprocessor runs on frequency 
532MHz and integrates display controller and floating point 
unit as well.

F. Prototype hardware development solution

The prototyping is the long process of improvements and 
cost lot of money and time. We have focused on finishing 
development  on  the  ARM processors  (Intel,  Marvell  and 
Freescale). The prototype board is designed for SOM mod-
ule with processor PXA270 and PXA320. We are planning 
to design a new prototype board for SOM module based on 
processor  iMX31.  There  is  possibility  to  use  other  SOM 
modules for our prototype board as PXA300 or PXA255 as 
well. 

These SOM module are intended for graphic processing of 
avionic data. The measurement and control module is based 
on 16.bit processor HCS12 from Freescale. There is not any 
RTOS  integrated  within.  A  lot  of  main  control  functions 
have been moved to SOM module (PXA270, iMX31) with 
RTOS QNX. The prototype implements interfaces as CAN, 
RS232, USB, GPIO.  The standard interfaces like SERIAL 
and USB are supported by QNX BSP package but CAN and 
GPIO drivers have been developed by our software team to 
ensure drivers stability and reliability. We have chosen stan-
dard CAN controller SJA1000 produced by the Philips com-
pany.  The GPIO driver  has been implemented using older 

Fig 5. Block diagram of the control and monitoring system

 

Fig 6. Main control node block diagram
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version where only address mapping had to be modified. The 
avionic system has three level of power supply. The first is 
standard supply from airplane battery that is recharged dur-
ing  a  flight.  When,  due  to  some  reasons  or  troubles  this 
source is out of order, there are two batteries backup system. 
At the moment only one is embedded inside the box. The 
power supply for  this prototype  solution is  12V DC. The 
same power supply is used for LCD TFT display as well. 
The LCD TFT display has external backlight unit for better 
graphics recognition. The most energy from the power con-
ception is consumed by the backlight module and LCD TFT 
display nearly more then 80% by the whole system. An extra 
extension can be reconfigured by the jumpers on the proto-
type board. Following Figure 7 and Figure 8 shows proto-
type realization.

VI. GRAPHIC SYSTEM DESIGN

The graphic  system design for  the embedded  system is 
usually quite difficult to meet optimal parameters for the mo-
bile devices. The prototype solution that we proposed is em-
bedded in the global avionic system and runs continuously 

during the flight. There is a big problem how to ensure low 
power consumption when you have to supply backlight mod-
ule and LCD display. We can control backlight using soft-
ware settings but this is not a cellphone where it is possible 
to switch off display when not used. But there are special 
cases when the backlight  is switch off. For  example when 
main power supply has to be replaced by battery and system 
controls backlight directly.

The PXA processors 270 and 320 lack of floating point 
unit and there is only floating point emulation that is very 
slow.  The  graphic  operations  base  on  emulation  floating 
point are five times slower then on a fixed math primer. The 
fixed mathematics operations have been based on 16.bits in-
teger scale what is sufficient for a precision of our applica-
tion. The graphics rendering process takes a lot of processor 
time. So we decided to integrate graphic acceleration chip 
2700G5 by the Intel company. The graphic acceleration has 
increased  the whole graphic process more then 100 times. 
The new processor PXA320 has integrated 2D graphics ac-
celerator inside but the stable driver is not available yet. On 
the other hand the processor iMX31 by the Freescale com-
pany support 3D acceleration using their integrated chip in-
side and the driver is available for Linux and for QNX as 
well .  The graphic library that has been used is OpenGL for 
embedded systems. There were only 2D graphic operations 
use in our system application. This OpenGL commands have 
to meet the avionic standards according OpenGL SC (Safety 
Critical for Avionics). The special example of 2D object ro-
tation based on OpenGL is the gyro-horizon.[12] 

VI.  CONCLUSION

The main goal of this paper is to show development and 
realization of the low cost  avionic control  and monitoring 
system for ultralight planes. We discussed safety and relia-
bility of the control processes. In the step by step procedure 
we described software development process as well as hard-
ware development process. The whole system was presented 
as distributed control system that consists of a few modules 
interconnected  using  CAN  bus  interface.  We  presented 
makeover from common operating system Linux to real-time 
operating system QNX.
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