
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 745 – 750 ISSN 1896-7094


Abstract—This paper presents development of the hardware

and software for the low cost avionic system of ultralight
airplanes. There are shown three levels of a hardware
and software system design. As far as the software is con-
cerned, we focused on changeover from non real-time operat-
ing system (embedded Linux) to the real-time embedded plat-
form (QNX). We discussed the problems that led to operating
system change. Various advantages and disadvantages of both
operating systems are presented in this contribution. Concern-
ing the hardware we concentrated on the development of the
avionic control, monitoring and display modules that are a com-
ponents of the dash board. The paper has been focusing on
safety and reliability in the ultralight aviation and what can be
improved or extended by the real-time operating system.

I. INTRODUCTION

HIS paper shows dependence hardware and software re-
liability. The control and monitoring system for ultra-

light or sport airplane has to be stable in an extreme situa-
tion as well as in a daily routine. When one designs your
own hardware and software architecture one has to keep in
mind the hazard states that can occur in many cases. In the
aviation industry the safety and reliability are very important
goals. But the other aspect is a product price. It means that
hardware for double or triple protection is too expensive for
the customer so we have to presume that hardware will work
reliably at all times. This is the same case of our system that
is why we focus on software architecture development in this
article. The embedded Linux as main operating system has
been implemented in our embedded system. The basic prob-
lem are drivers that have to be certificated and be very safe
as all operating system. On the Linux platform it is difficult
to ensure that drivers do not corrupt the kernel because both
run within the same address space as the OS kernel. There-
fore we were looking for a new software architecture solu-
tion. As the ideal answer it resulted in QNX real-time plat-
form with client-server architecture where drivers are inde-
pendent on the kernel (microkernel) that only implements the
core services, like threads, signals, message passing, syn-
chronization, scheduling and timer services. There are other

T

This work is supported by grant of the Grant Agency of the Czech Re-
public GA102/08/1429 - Safety and security of networked embedded sys-
tem applications

possible real-time operating system of course that are very
often use in the avionic systems, for example VxWorks from
Wind River or Integrity from Green Hills but the problem for
the low cost product is license price of the RTOS. When the
run-time license price of RTOS is over the client limits there
is no way how to use them. Especially Integrity software is
very powerful system for developing purpose on the different
platforms and has a very nice debugging tools.

II. RTOS SELECTION

The right choice of a software system architecture is im-
portant for following development of all stuff. Due to the
lack of our experiences and that requirements on the system
where growing up during developing period, it caused that
we had to try three different architectures.

A. Embedded uClinux

The first platform was the embedded uClinux based on
microprocessor ColdFire MCF5329 from Freescale. This so-
lution had shown us that graphic hardware is not powerful
enough as we supposed and the lack of MMU was the huge

problem as well. [3] On the other hand the advantage of this
solution is quick access to memory and integrated CAN
hardware device on the developing board. The address space

978-83-60810-14-9/08/$25.00 © 2008 IEEE 745

Fig 1. Architecture of uClinux - traditional for old RTOS

Development of a Flight Control System for an Ultralight Airplane

Vilem Srovnal Jr, Jiri Kotzian
VSB – Technical University of Ostrava

Department of Measurement and Control, FEECS
17. listopadu 15, 708 33, Ostrava – Poruba,

Czech Republic
Email: {vilem.srovnal1, jiri.kotzian}@vsb.cz

746 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

is common for the kernel as well as for the user application
which decreased safety and reliability of the entire control
system but it is real-time in nature because there is no over-
head of system calls, message passing, or copying of data.
The uClinux architecture (flat addressing model) is shown on
the Figure 1.

B. Embedded Linux

The embedded Linux architecture was chosen as the next
platform for avionic system. This architecture is based on
monolithic kernel that has distinction between the user and
kernel space. [5] Any fault in the application will not cause
system crash. The system has run on ARM processor PXA
270 from Intel and ARM processor PXA 320 from Marvell.
The both processors are very powerful but there is a lack of
floating point instructions set that is very important for
graphic operations. The next problem that was mentioned
above is incorrectly written driver or module that can cause
the system to crash. [6] The embedded Linux architecture is
shown on Figure 2.

C. QNX Neutrino real-time OS V 6.3

The embedded Linux has worked without problems but
there was demand on system to be high reliable and safe.
The embedded Linux was sufficient for the monitoring of
avionic values but for the control activity it was worse. We
had to ensure time death line for the control process activity
and graphic smooth step to the next frame on LCD display.
There were requirements to isolate graphic process from
control process but in monolithic kernel architecture the
graphic driver could corrupt all system. [4] So the next logi-
cal step was to use microkernel to realize mentioned require-
ment. The basic principle of microkernel architecture is that
each of kernel subsystem (network stack, file system, sched-
uler, etc.) has private address space similar to application.
This way offers complete memory protection, not only for
user applications, but also for OS components. This architec-
ture provides maximum modularity and relies on robust mes-
sage passing schema. The QNX microkernel architecture is
shown on Figure 3. [11]

Due to the lack of floating point instructions set we
needed to use another processor that supports FPU and QNX
RTOS. We decided to use ARM microprocessor iMX31
from Freescale but parallel solution stop on ARM processor
PXA 270 with QNX RTOS. Unfortunately for the ARM mi-
croprocessor PXA 320 was not QNX BSP available.

III. SOFTWARE ARCHITECTURE

The reliability is main goal in the process control of the
most industrial or others systems. As we presented in soft-
ware architecture part, there are many reasons, why divide
all control and monitoring system into the smaller software
distributed units – processes.

The client-server architecture brings features that are able
to guarantee more stability of the whole system. The failure
of one part of the system (process) causes crash of any other
one. The interprocess communication is based on robust
message passing. The processes are separate according its
functionality and hardware requirement. It means that each
process uses one specific driver. Every individual process
runs in independent address space.

There are five basic process groups. The first one is the
motor control group that is responsible for everything what is
connected with plane control. We measure avionic sensors
inputs that are needed for autopilot control, maximum and
minimum plane speed, etc.

The second group takes care of communication with other
hardware parts. We are using CAN communication protocol
and CAN driver where each hardware device is CAN node.
[2] There is possible to use serial communication RS232 or
USB as special process as well but for another purpose.

The third big group is SCADA system. The SCADA sys-
tem or we can say graphic tasks that are responsible for
monitoring and display avionic values in continuous time (it
depend on processor time scheduling). Graphic process is
very demanding on time of the processor so the priority level
are low but have to ensure specific frame count per second.

The fourth group is IO device control for other purpose.
We use GPIO driver for pins states monitoring. Each pin has
special function where the most of them are used as button,
trimer or switch. We use GPIO-event handling mechanism
for pin state tracking.

The fifth group and the last process group is audio device
group that is responsible for voice transmitting into the cen-
tral communication system. There is audio system for warn-
ing and critical errors as well. The audio system can be used
for other purpose it is up to client additional extension. The

Fig 2. Architecture of embedded Linux

Fig 3. Architecture of QNX microkernel

VILEM SROVNAL ET. AL.: REAL TIME SYSTEM IN AVIATION 747

following schema on the Figure 4 shows process structure.
The communication group allows data for other process
groups from sensors and actuators. The motor control group
uses communication group for engine values control. The
communication unit has to be one of the most reliable part of
the control and monitoring system.

IV. CRITICAL SYSTEM CONTROL

The basic critical processes of the aviation control have to
meet the following criteria. The plane take-off speed as well
as landing speed has to meet the required characteristics.
These values are measured with sensors which are build-in
the hardware board. The measurements are completed by the
pressure difference against the surrounding environment. All
data which have been gained from the sensors are used for
the rotation engine process. The measurement of the stalling
speed is a very important to prevent the uncontrolled plane
fall /accident/ and jet-engine failure which is closely con-
nected with this event. The measurement of the vertical and
horizontal plane heeling is the next critical process. Exceed-
ing the allowed plane heeling can result in stability loss of
the airplane. To make the jet-engine work sufficiently the
pressure in the gas and oil tank must be sustained.
Other important flying data are information about a plane
position. The position is shown through GPS system. All

above mentioned processes must run in the independent ad-
dress space so that the safety of the system is sustained.

The driver design is very important for communication
and stable control of the application. The critical data goes
through CAN interface which gives or receives information
for engine control and fly control. The CAN driver is con-
nection between module control node (present in next chap-
ter) and motor control process group. The next sophisticated
driver which is used for SCADA system is framebuffer
driver. This driver has to be very efficient and quick. The vi-
sualization system was extended by OpenGL ES 2D
driver [12]

V. HARDWARE ARCHITECTURE FOR AVIONIC SYSTEMS

The avionic system is distributed into the independent
modules that measure specific values on mechanical parts of
the airplane. The hardware solution is a configurable accord-
ing type of airplane. The highest layer is graphic user module
that represents received data on the LCD display. The sense
of monitoring system is offer customers same facilities as
have pilots in the professional aircrafts and make aviation
more easier using low cost embedded electronic system.

The real-time embedded control system is designed with a
modular structure. [4] This structure supports a flexible con-
figuration. In terms of user requirements, the control system
can be configured in different sizes and options. [8] The s
everal modules with different options were designed. All
modules are connected to an industrial bus – so each module
is the bus node. Except the GPS module that is connected di-
rectly to the main control module.

This architecture supports a future expansion. In terms of
user requirements it is possible to design new modules. The
new module node will be connected to the bus. The new
module can work to satisfy a user after upgrading of the
firmware in the main control mode. This way it is possible to
connect a maximal 30 modules - nodes. The block diagram
of a desk control and monitoring system with today’s full
configuration of prototype is shown on the Figure 5.

The monitoring and control modules are connected to-
gether by using an industrial bus [2]. This bus has to be
highly reliable and have enough speed. Depending on these
two main requirements a CAN bus was selected. The main
reason is that the CAN has an extremely low probability of
non-detected error. The versatility of the CAN system has
proven itself useful in other applications, including industrial
automation as well, anywhere that a network is needed to al-
low controllers to communicate. A CAN bus is given the in-
ternational standard ISO11898 which uses the first two lay-
ers of ISO/OSI model (CAN-CIA 2005). The CAN is a
multi-master protocol. When a CAN message is transmitted
over the network all nodes connected to the network will re-
ceive the message. [7] Any node can begin transmitting at
any time the bus is free of traffic and all nodes will listen to
the message. Each node may employ a filtering scheme that
allows it to process only relevant information. Each message
has either an 11 bit identifier or 29 bit identifier which will
define which node will receive the message, error checking
bits, 8 bytes of data and priority information. If two nodes
try transmitting a message at the same time, the node with

Fig 4. Architecture of process control

748 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

the higher identifier (lower priority) loses control of the bus
as soon as another node exerts a dominant bit on the bus. It
ensures that the message with the highest priority will be
transmitted on the first try.
Designed modules are the following:

• Main control module

• User interface (LCD display) module

• Motor measuring values module

• Advanced avionic data module

• Black-Box module

A. Main control module

The main control node serves as master for all other
nodes. (Figure 6) [1] The requesting values from other nodes
are compared with given limits and stored in the local mem-
ory. The main module decides what will be displayed and
sends information to the user interface module by the CAN
bus. The main control module contains a real time clock and
data flash memory for storing measured values and statistics.
For a measuring of the basic values the main module is
equipped by sensors.

B. Engine monitoring and control module

The engine monitoring and control module supports the
complete monitoring and control of all necessary engine
data. It collects all possible temperatures, pressures and the
diagnostics of the engine. The basic motion control values
and critical avionic data are already connected to the main
control module.

C. Avionic monitoring module

The advanced avionic data are supported by this module,
for example a magnetic compass. This module only increase
basic monitoring and control data that are supported in the
main control module. It is up to client requirement.

D. Black-Box module

The black-box module controls all traffic on the CAN bus.
It reads data from CAN messages and stores data in the local
memory. The black-box module is equipped with its own
RTC timer and stores time together with the CAN data.

There is no other connection to this module with such high
reliability. [10]

E. Development kits

There were three development kits used during the whole
evolution. The first development kit that has been used
comes from the world-wide known company – Freescale.
This development kit is based on 32.bit microprocessors
ColdFire family. This microprocessor runs on frequency
240 MHz and integrates display controller and other useful
interfaces. [9] The second development kit that has been
chosen comes from the Toradex company and integrates
ARM microprocessor Intel PXA270 (Marvell PXA320) runs
on frequency 520MHz respective for PXA320 on frequency
806MHz. There is an integrated display driver and CAN
driver as well as other interfaces. [10] The third development
kit that has been tested comes from company Logic PD.
There is Freescale ARM microprocessor i.MX31 as SOM
module integrated. This microprocessor runs on frequency
532MHz and integrates display controller and floating point
unit as well.

F. Prototype hardware development solution

The prototyping is the long process of improvements and
cost lot of money and time. We have focused on finishing
development on the ARM processors (Intel, Marvell and
Freescale). The prototype board is designed for SOM mod-
ule with processor PXA270 and PXA320. We are planning
to design a new prototype board for SOM module based on
processor iMX31. There is possibility to use other SOM
modules for our prototype board as PXA300 or PXA255 as
well.

These SOM module are intended for graphic processing of
avionic data. The measurement and control module is based
on 16.bit processor HCS12 from Freescale. There is not any
RTOS integrated within. A lot of main control functions
have been moved to SOM module (PXA270, iMX31) with
RTOS QNX. The prototype implements interfaces as CAN,
RS232, USB, GPIO. The standard interfaces like SERIAL
and USB are supported by QNX BSP package but CAN and
GPIO drivers have been developed by our software team to
ensure drivers stability and reliability. We have chosen stan-
dard CAN controller SJA1000 produced by the Philips com-
pany. The GPIO driver has been implemented using older

Fig 5. Block diagram of the control and monitoring system

Fig 6. Main control node block diagram

VILEM SROVNAL ET. AL.: REAL TIME SYSTEM IN AVIATION 749

version where only address mapping had to be modified. The
avionic system has three level of power supply. The first is
standard supply from airplane battery that is recharged dur-
ing a flight. When, due to some reasons or troubles this
source is out of order, there are two batteries backup system.
At the moment only one is embedded inside the box. The
power supply for this prototype solution is 12V DC. The
same power supply is used for LCD TFT display as well.
The LCD TFT display has external backlight unit for better
graphics recognition. The most energy from the power con-
ception is consumed by the backlight module and LCD TFT
display nearly more then 80% by the whole system. An extra
extension can be reconfigured by the jumpers on the proto-
type board. Following Figure 7 and Figure 8 shows proto-
type realization.

VI. GRAPHIC SYSTEM DESIGN

The graphic system design for the embedded system is
usually quite difficult to meet optimal parameters for the mo-
bile devices. The prototype solution that we proposed is em-
bedded in the global avionic system and runs continuously

during the flight. There is a big problem how to ensure low
power consumption when you have to supply backlight mod-
ule and LCD display. We can control backlight using soft-
ware settings but this is not a cellphone where it is possible
to switch off display when not used. But there are special
cases when the backlight is switch off. For example when
main power supply has to be replaced by battery and system
controls backlight directly.

The PXA processors 270 and 320 lack of floating point
unit and there is only floating point emulation that is very
slow. The graphic operations base on emulation floating
point are five times slower then on a fixed math primer. The
fixed mathematics operations have been based on 16.bits in-
teger scale what is sufficient for a precision of our applica-
tion. The graphics rendering process takes a lot of processor
time. So we decided to integrate graphic acceleration chip
2700G5 by the Intel company. The graphic acceleration has
increased the whole graphic process more then 100 times.
The new processor PXA320 has integrated 2D graphics ac-
celerator inside but the stable driver is not available yet. On
the other hand the processor iMX31 by the Freescale com-
pany support 3D acceleration using their integrated chip in-
side and the driver is available for Linux and for QNX as
well . The graphic library that has been used is OpenGL for
embedded systems. There were only 2D graphic operations
use in our system application. This OpenGL commands have
to meet the avionic standards according OpenGL SC (Safety
Critical for Avionics). The special example of 2D object ro-
tation based on OpenGL is the gyro-horizon.[12]

VI. CONCLUSION

The main goal of this paper is to show development and
realization of the low cost avionic control and monitoring
system for ultralight planes. We discussed safety and relia-
bility of the control processes. In the step by step procedure
we described software development process as well as hard-
ware development process. The whole system was presented
as distributed control system that consists of a few modules
interconnected using CAN bus interface. We presented
makeover from common operating system Linux to real-time
operating system QNX.

REFERENCES

[1] Arnold K.: Embedded Controller Hardware Design. LLH Technology
Publishing, USA, 2001, ISBN 1-878707-52-3.

[2] Sridhar T.: Design Embedded Communications Software . CMP
Books, San Francisco, USA, 2003, ISBN 1-57820-125-X.

[3] Raghavan P., Lad A., Neelakandan S.: Embedded Linux System De-
sign and Development . Auerbach Publication, New York, USA,
2006, ISBN 0-8493-4058-6.

[4] Li Q., Yao C.: Real-Time Concepts for Embedded Systems , CMP
Books, San Francisco, USA, 2003, ISBN 1-57820-124-1.

[5] Hollabaugh, Craig.: Embedded Linux, Pearson Education, Indianapo-
lis, USA, 2002, ISBN 0-672-32226-9.

[6] Yaghmour, Karim.: Building embedded Linux systems, O’Really &
Assocites, Sebastopol, 2003, ISBN 0-596-00222-X.

[7] Kotzian J., Srovnal V.: Can Based Distributed Control System Mod-
elling Using UML. In: Proceeding International Conference IEEE
ICIT 2003, Maribor, Slovenia, ISBN 0-7803-7853-9, p.1012-1017.

[8] Kotzian J., Srovnal V.: Development of Embedded Control System
for Mobile Objects Using UML. In : Programmable Devices and Sys-
tems 2004-IFAC Workshop, Krakow, Poland, IFAC WS 2004 0008
PL, ISBN 83-908409-8-7, p.293-298.

Fig 8. Prototype hardware realization with development kit

Fig 7. Prototype hardware realization

750 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

[9] Srovnal, V., Kotzian, J.: FLYSYS–Flight Embedded Control System
for Ultra-Light Airplane . In proceeding 4th IFAC Symposium on
Mechatronic Systems 2006, Duesseldorf, Germany, 2006, IFAC,
p.998-1001.

[10] Kotzian J., Srovnal V. Jr,: Distributed embedded system for ultralight
airplane monitoring , ICINCO 2007, Intelligent Control Systems and
Optimization, Anger, France, 2007, ISBN 978-972-8865-82-5,
p. 448-451.

[11] ONX Software Systems International Corporation: QNX Neutrino
RTOS–System Architecture , Release V6.3 or later, Kanata, Ontario,
Canada, 2007.

[12] Astle D., Durnil D.: OpenGL ES Game Development, Thomson
Course Technology, Boston, MA, USA, 2006, ISBN 1-59200-370-2.

