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Abstract—In this paper, a nonlinear system identification
based on support vector machines (SVM) has been addressed.
A family of SVM-ARMA models is presented in order to integrate
the input and the output in the reproducing kernel Hilbert
space (RKHS). The performances of the different SVM-ARMA
formulations for system identification are illustrated with two
systems and compared with the Least Square method.

I. I NTRODUCTION

SYSTEM identification treats the problem of constructing
mathematical models from observed input and output

data. Three basic entities must be taken into considerationto
construct a model from data [1]:

1) Data: represent the input and the output data of the
system;

2) Candidate models: are obtained by specifying within
which collection of models the suitable one exists;

3) Identification method: determining the best model
guided by the data.

In the literature of system identification, a large variety of
nonlinear methods were used, such as neural networks, high
order statistic and fuzzy system [2], [3], [4]. However these
models have weaknesses. For example in neural network case,
some problems appear, like slow convergence speed and local
minima. Support Vector Machines (SVMs) overcomes these
problems and seems to be a powerful technique for nonlinear
systems where the required model complexity is difficult to
estimate.

The Support Vector Machines (SVM) was originally pro-
posed as an efficient method for pattern recognition and clas-
sification [3]. Then the technique became a general learning
theory. The Support Vector regressor (SVR) was subsequently
proposed as the SVM implementation for regression and
function approximation [5]. SVM has been widely used to
solve problems in text recognition, bioinformatics [6] and
bioengineering or image processing [7] and these represent
only a few of the practical applications of support vector
machines. The key characteristic of SVM is that it maps
the input space into a high dimensional feature space or
a reproducing kernel Hilbert space through some nonlinear
mapping, chosen a priori, in which the data can be separated
by a linear function.

The autoregressive and moving average (ARMA) modelling
is used when the candidate model is linear and time invari-
ant. The explicit consideration of ARMA models in some
reproducing kernel Hilbert space (RKHS) based on support
vector machines (SVM-ARMA2k) presents a new approach
for identifications applications [9]. An analytical relationship
between residuals and SVM-ARMA coefficients allows the
linking of the fundamentals of SVM with several classical
system identification methods. Additionally the effect of out-
liers can be cancelled [9]. By using the Mercer’s Kernels trick,
a general class of SVM-based nonlinear system identification
can improve model flexibility by emphasizing the input-output
cross information (SVM-ARMA4k), which leads to straight-
forward and natural combinations of implicit and explicit
ARMA models (SVR-ARMA2k) and SVR-ARMA4k) [10].

In this paper, we present the different SVM-ARMA models
for the system used in [9] and for Bessel difference equation.
We present the sensitivity of the SVM-ARMA models to the
training data and to the noise power. Additionally, we compare
our models with the least square method (LS) and we show
each one’s performance and the moment they exhibit the same
results.

This work is structured as follows: we present the SVR
algorithm for nonlinear system identification in section I.In
section II, we summarize the explicit ARMA models in RKHS.
Simulations and examples are included in section IV. Finally,
in section V, we conclude the work.

II. SVR SYSTEM IDENTIFICATION

Consider a nonlinear system whose input and output are
DTP {xn} and {yn}. Let un = [un, un−1, . . . , un−Q+1] and
yn−1 = [yn−1, yn−2, . . . , yn−P ] represent the states of input
and output DTP at instant n. The vectorzn = [yT

n−1, u
T
n ]T

correspond to the concatenation of the two DTP at that
instantn.

Giving a training set{zi, yi}
N
i=1 ∈ ℜd with d = P +Q−1.

The linear regression model is:

yn = 〈w, φn(zn)〉 + en . (1)

whereφ(zn) : ℜP×ℜQ → Hz represents the high dimensional
feature space, or RKHS, which is nonlinearly mapped from the
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Fig. 1. ε-Huber cost Function.

input space,〈·, ·〉 represents the dot product anden denotes
error terms, or residuals, comprehends both measurement and
model approximation errors.

In SVR, several cost functions for residuals (CFR) have
been used, such as Vapnik’s loss function [3], Huber’s robust
cost [8] or the ridge regression approach [6]. However, in [9]
they usedε-Huber CFR, which is a more general cost function
that has the above-mentioned ones as particular cases. This
cost function is depicted in 1 and it is expressed as:

lp(en) =







0, |en| < ε
1
2γ

(|en| − ε)2, ε < |en| < eC

C(|en| − ε) − 1
2γC2, |en| > eC .

(2)

whereeC = ε+γC. Theε-Huber CFR can deal with different
kinds of noise thanks to the three different intervals.

Using theε-Huber CFR cost function, the algorithm of SVR
system identification corresponds to the minimization of:

LP =
1

2

Hz
∑

j=1

w2
j +

1

2γ

∑

n∈I1

(ξ2
n + ξ∗2n ) + C

∑

n∈I2

(ξn

+ξ∗n) − C
∑

n∈I2

γC2

2
. (3)

with the constraints:

yn − wT φn(zn) ≤ ε + ξn ∀n = n0, · · · , N . (4)

−yn + wT φn(zn) ≤ ε + ξ∗n ∀n = n0, · · · , N . (5)

whereξn,ξ∗n are the slack variables or losses,ξ
(∗)
n ≥ 0 (ξ(∗)

n

represents bothξnandξ∗n), I1 is set of samples for whichε <

ξ
(∗)
n < eC , I2 is the set of samples for whichξ(∗)

n > eC ,
n0 is given by the initial conditions andN is the number of
available samples.

By introducing a nonnegative coefficient, Lagrange multi-
plier, for each constraint (αn to (4) andα∗

n to (5)), we obtain
the Lagrangian for this problem [6] this way:

LPD =
1

2

Hz
∑

j=1

w2
j +

1

2γ

∑

n∈I1

(ξ2
n + ξ∗2n ) + C

∑

n∈I2

(ξn + ξ∗n)

−C
∑

n∈I2

γC2

2
+

N
∑

n=n0

αn(yn − wT φz(zn) − ε − ξn)

+

N
∑

n=n0

α∗
n(−yn + wT φz(zn) − ε − ξn) . (6)

By minimizing the Lagrangian with respect to the primal
variableswj andξ

(∗)
n we obtain:

w =

N
∑

n=1

(αn − α∗
n)φz(zn) =

N
∑

n=1

βnφz(zn) . (7)

and0 < α
(∗)
n < C, whereβ = αn − α∗

n

The dual problem is obtained by introducing (7) in (6) and
it is expressed as:

LD = −
1

2
(α − α∗)T [G + γI](α − α∗) + (α − α∗)T y

+ ε1T (α − α∗) . (8)

where G is gram matrix of dot product or kernel ma-
trix with Gij = 〈φz(zi), φz(zj)〉 = Kz(zi, zj), α

(∗)
n =

[α
(∗)
1 , . . . , α

(∗)
N ]T andy = [y1, . . . , yN ]T . Finally the predicted

output for a new observed sampleyr given zris:

ŷr =
N

∑

n=1

βnKz(zn, zr) . (9)

With the kernel functionKz(zn, zr), we can deal with
feature space of arbitrary dimension without having to com-
pute the mapφzexplicitly. Any function that satisfies Mercer’s
condition can be used as the kernel function [6]. The widely
used Gaussian Mercer’s kernel is given byKz(zi, zj) =

exp(
−‖zi−zj‖

2

2σ2 ), whereσ2 is the kernel parameter.

III. SVR SYSTEM IDENTIFICATION AND COMPOSITE

KERNELS

A family of composite kernels appears in SVM formulation
by exploiting the direct sum of Hilbert spaces [10], which
allow us to analyse the explicit form of ARMA process in
feature space.

A. Explicit ARMA In Feature Space

By using two possibly different nonlinear mappings
φn(un) : ℜQ → Hu and φy(yn) : ℜP → Hy, the input
and output state vectorsun andyn can be separately mapped
to RKHS Hx andHy. So, an ARMA difference equation can
be built using two linear models; MA (moving average) inHx

and AR (auto regressive) inHy:

yn = aT φn(yn−1) + bT φn(un) + en . (10)
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wherea = [a1, . . . , aHu
]T andb = [b1, . . . , bHy

]T are vectors
representing the coefficients MA and AR of the system,
respectively, in RKHS. After formulating the primal problem,
stating the Lagrangian and making its gradient to zero, re-
moved the primal variables and formulating the dual problem,
the SVM-ARMA2k is obtained by including the kernel matrix
K(zn, zr) = Ky(yn−1, yr−1) + Ku(un, ur) in (9) [10]:

ŷr =

N
∑

n=1

βn(Ky(yn−1, yr−1) + Ku(un, ur)) . (11)

where Ky(yi−1, yj−1) = 〈φy(yi−1), φy(yj−1)〉 and
Ku(ui, uj) = 〈φu(ui), φu(uj)〉 are two different Gram
matrices, one for the input and the other for the output.

B. Composite Kernels

The SVM-ARMA2k model could be limited in some cases,
because (11) provides an apparent uncoupling between the
input and the output. This limitation will be come out ex-
plicitly when strong cross information between the two DTP
is present. An SVM-ARMA model considering the input and
output could simultaneously solve this problem. By using the
sum of Hilbert spaces property, the kernel components are:

K(zi, zj) = Ky(yi−1, yj−1) + Kx(ui, uj)

+ Kxy(u
′
i, y

′
j−1) + Kyx(y′

i−1, u
′
j) . (12)

When including this kernel in (9), we obtain the SVM-
ARMA4k [10].

A new algorithm SVR-ARMA2k can be built by considering
the combination between SVR and SVM-ARMA2k

K(zi, zj) = Ky(yi−1, yj−1)+Kx(ui, uj)+Kz(zi, zj). (13)

or an other one, SVR-ARMA4k by combining SVR and :

K(zi, zj) = Ky(yi−1, yj−1) + Kx(ui, uj)

+ Kxy(u
′
i, y

′
j−1) + Kyx(y′

i−1, u
′
j) + Kz(zi, zj). (14)

IV. EXPERIMENTAL RESULTS

To examine the performance of SVM-ARMA formulations
and to compare it with standard SVR and Least Square
method, we use two examples. We focus on radial basis
function (RBF)Kz(zi, zj) = exp(

−‖zi−zj‖
2

2σ2 ), whereσ2 ∈ ℜ
represent the width of the kernel.

For the first example, the prediction performance is evalu-
ated using the mean square error in test set:

MSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2

whereN denotes the total number of data points in the test,
yi, ŷi are the actual value and prediction value respectively

For the second example, we use the normalized mean square
error in test set:

nMSE = log10

√

MSE

var(y)

Fig. 2. The MSE as a function of additive noise of powerσw.

To train our models, we use the cross validation method;
100 data are used as training data and 100 as testing data. For
the first example, the results are averaged over 100 realizations
and for example 2, over 200 realizations.

Example1: The first example of a system to be identified
is [9]:

yn = 0.03yn−1−0.01yn−2+3xn−0.5xn−1+0.2xn−2 . (15)

The Input DTP is a white Gaussian noise sequence of unit
variance{xn} ∼ N(0, 1). An additive small variance random
process,{en} ∼ N(0, 0.1), corrupts the corresponding output
DTP and modelling the measurement errors. The observed
process is{on} = {yn} + {en}.

Impulsive noise{jn} is generated as a sparse sequence,
for which 30% of the samples, randomly placed, are of
high-amplitude, having the form±10 + U(0, 1), whereU()
represents the uniform distribution in the given interval.The
remaining are zero samples. The observations consist of DTP
input {xn} and the observed output plus impulsive noise;
{on} + σw{jn}. Values ofσw go from 18 to 0 dB [9].

We tried various values forε, γ, C. For all the SVM-ARMA
formulations,ε = 0 is used. In SVM-ARMA4k, the values of
SVM parameters that give the minimum MSE in testing set
are like C = 1 and γ = 0.01, but for other SVM-ARMA
models they are fixed inC = 100 andγ = 0.001. The results
of our first system are shown in Figure 2, 3, 4, 5, 6. In Figure2,
the SVM-ARMA2k model exhibit better performance, whereas
SVM-ARMA4k and SVR-ARMA4k provide a poor model in
terms of prediction error, that can be explained by the poor
cross information between the input and output.

On the other hand, we compare the performance of SVM-
ARMA models with the least square method, in which we use
the same expression of the kernel components in each case (for
example, in the case of SVR-ARMA2k, the kernel components
are likeK = Kx + Ky + Kz for SVM and LS methods). The
results are shown in Fig.3-a, 4-a, 5-a, 6-a, 7-a, and they show
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Fig. 3. (a) The MSE as a function of additive noise of powerσw for SVR
model. (b) The MSE as a function of training data for SVR model, where
σw = 1.

that the SVM method exhibits a good performance in high
impulsive noise power with a difference of almost 24 dB in
comparison with LS method. Besides, SVM-ARMA methods
show that there is no significant difference between the
different values of MSE as a function of noise parameter,σw ,
which mean that the SVM-ARMA models, in this example,
are not sensitive to the noise parameterσw.

Fig.3-b, 4-b, 5-b, 6-b, 7-b show that in the case of high
impulsive noise power,σw = 1, the minimum MSE of SVM
and LS methods are stabilized in affixed values even if the
number of training data is augmented. We can say that the
MSE is saturated. The SVM method needs 160 training data
to saturate and LS requirements 100 data, but SVM gives a
very small MSE in comparison with LS.

Example2: The second system to be identified is described
by the difference equation of Bessel:

Fig. 4. (a) The MSE as a function of additive noise of powerσw for
SVM-ARMA2k model. (b) The MSE as a function of training data for SVM-
ARMA2k model, whereσw = 1.







u(t) = 0.6 sinα(πt) + 0.3 sin(3πt) + 0.1 sin(αt)

ỹ(t + 1) = ỹ(t)ỹ(t−1)[ỹ(t)−2.5]
1+ỹ2(t)+ỹ2(t−1)

y(t + 1) = ℜ[ỹ(t + 1)]

.

(16)
whereℜ[.] denotes the real part andα is a random variable
uniformly distributed in the interval[3, 4] with the mean
E{α} = 3.5.

For all the SVM-ARMA formulations, the SVM parameters,
ε = 0, C = 100 andγ = 0.01 are used.

From Table 1, we notice that Bessel equation exhibits the
best performance in SVM-ARMA2k and that the SVM-ARMA
algorithms show the same results as the LS method.

Table 2 reports the nMSE of Bessel difference equation cor-
rupted with additive Gaussian noise. The SVM formulations
give the same value of nMSE, 0.003 dB, and the SVM method
exhibits the same results as LS method.
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Fig. 5. (a) The MSE as a function of additive noise of powerσw for
SVR-ARMA2k model. (b) The MSE as a function of training data for SVR-
ARMA2k model, whereσw = 1.

TABLE I
THE NMSE OF BESSEL EQUATION.

LS method
SVR -0.927 -0.927

SVM-ARMA2k -0.935 -0.935
SVR-ARMA 2k -1.045 -1.045
SVM-ARMA 4k -1.246 -1.045
SVR-ARMA 4k -1.262 -1.045

TABLE II
THE NMSE OF BESSEL EQUATION WITHGAUSSIAN NOISE.

LS method
SVR 0.003 0.003

SVM-ARMA2k 0.003 0.003
SVR-ARMA 2k 0.003 0.003
SVM-ARMA 4k 0.003 0.003
SVR-ARMA 4k 0.003 0.003

Fig. 6. (a) The MSE as a function of additive noise of powerσw for
SVM-ARMA4k model. (b) The MSE as a function of training data for SVM-
ARMA4k model, whereσw = 1.

Therefore, we may conclude that SVM-ARMA methods
provide as good results for Bessel difference equation as the
best method LS, with and without additive Gaussian noise.

V. CONCLUSION

This paper has presented a full family of SVM-ARMA
methods for nonlinear system identification in RKHS. These
methods are proposed by taking the advantage of composite
kernel, in which dedicated mappings are used for input, output
and cross terms. Simulation results show the performance of
the different SVM-ARMA models and compare it with the
least square method.
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