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Abstract—In this paper, a nonlinear system identification The autoregressive and moving average (ARMA) modelling
based on support vector machines (SVM) has been addresseds used when the candidate model is linear and time invari-

A family of SVM-ARMA models is presented in order to integrate ant. The explicit consideration of ARMA models in some
the input and the output in the reproducing kernel Hilbert ) ducing k | Hilbert RKHS) b d t
space (RKHS). The performances of the different SVM-ARMA reproducing kernel Hilbert space ( ) based on suppor

formulations for system identification are illustrated with two Vector machines (SVM-ARM4y) presents a new approach
systems and compared with the Least Square method. for identifications applications [9]. An analytical relatiship

between residuals and SVM-ARMA coefficients allows the
linking of the fundamentals of SVM with several classical
SYSTEM identification treats the problem of constructingystem identification methods. Additionally the effect oft-0
mathematical models from observed input and outplikrs can be cancelled [9]. By using the Mercer’s Kernelskiri
data. Three basic entities must be taken into consider&tiong general class of SVM-based nonlinear system identificatio

I. INTRODUCTION

construct a model from data [1]: can improve model flexibility by emphasizing the input-auttp
1) Data: represent the input and the output data of tigeoss information (SVM-ARMA,,), which leads to straight-
system; forward and natural combinations of implicit and explicit
2) Candidate models: are obtained by specifying withiARMA models (SVR-ARMA,;;) and SVR-ARMA,;,) [10].
which collection of models the suitable one exists; In this paper, we present the different SVM-ARMA models
3) Identification method: determining the best modébr the system used in [9] and for Bessel difference equation
guided by the data. We present the sensitivity of the SVM-ARMA models to the

In the literature of system identification, a large variefy draining data and to the noise power. Additionally, we corepa
nonlinear methods were used, such as neural networks, haghr models with the least square method (LS) and we show
order statistic and fuzzy system [2], [3], [4]. However theseach one’s performance and the moment they exhibit the same
models have weaknesses. For example in neural network caissults.
some problems appear, like slow convergence speed and locdlhis work is structured as follows: we present the SVR
minima. Support Vector Machines (SVMs) overcomes thesdgorithm for nonlinear system identification in sectionn.
problems and seems to be a powerful technique for nonlinesgction Il, we summarize the explicit ARMA models in RKHS.
systems where the required model complexity is difficult t8imulations and examples are included in section V. Bnall
estimate. in section V, we conclude the work.

The Support Vector Machines (SVM) was originally pro-
posed as an efficient method for pattern recognition and clas
sification [3]. Then the technique became a general learningConsider a nonlinear system whose input and output are
theory. The Support Vector regressor (SVR) was subsequerdTP {z,} and {y,}. Let up, = [un, un—1,..., un—q+1] and
proposed as the SVM implementation for regression amd-1 = [Yn—1,Yn—2,---,Yn—p| represent the states of input
function approximation [5]. SVM has been widely used t@nd output DTP at instant n. The vectoy = [y} _;,u}]”
solve problems in text recognition, bioinformatics [6] angorrespond to the concatenation of the two DTP at that
bioengineering or image processing [7] and these repres#gtantn.
only a few of the practical applications of support vector Giving a training set{z;, y;}~.; € R with d = P+Q — 1.
machines. The key characteristic of SVM is that it mapEhe linear regression model is:
the input space into a high dimensional feature space or o
a reproducing kernel Hilbert space through some nonlinear Yn = (W, @n(zn)) + €n - @)
mapping, chosen a priori, in which the data can be separatederes(z,) : R xR? — H, represents the high dimensional
by a linear function. feature space, or RKHS, which is nonlinearly mapped from the

II. SVR SYSTEM IDENTIFICATION
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Fig. 1. e-Huber cost Function.

and0 < o) < C, where = a,, — ol
input spacs;, -) represents the dot product amg denotes  The dual problem is obtained by introducing (7) in (6) and
error terms, or residuals, comprehends both measurement &ns expressed as:
model approximation errors.
In SVR, several cost functions for residuals (CFR) have [, = _l(a — oG +I(a—a*) + (a—a®)Ty
been used, such as Vapnik’s loss function [3], Huber’s rbbus 2 T .
cost [8] or the ridge regression approach [6]. However, in [9 tel'(a—a”). (8)

they usedt-Huber CFR, which is a more general cost functiofhare & is gram matrix of dot product or kernel ma-

that has the above-mentioned ones as particular cases. This i Gy = (6:(2),02(%)) = Kai(zi,2;), al® =

cost function is depicted in 1 and it is expressed as: [ag*)7 N ',a%)]T andy = [y1,...,yn]T. Finally the predicted
0 len| < € output for a new observed sample given z,is:
Ip(en) =4 25 (enl — )%, 1 e<lenl <ec  (2) N
C(len| —2) — 37C?%, |en| > ec . 4 = ZﬂnKz(znwzr) ' ©)
n=1

whereec = e+~C. Thee-Huber CFR can deal with different . . .
kinds of noise thanks to the three different intervals. With the kernel functionK(zy,z,), we can deal with
Using thes-Huber CFR cost function, the algorithm of SVRféature space of arbitrary dimension without having to com-

system identification corresponds to the minimization of; Pute the map_explicitly. Any function that satisfies Mercer’s
condition can be used as the kernel function [6]. The widely

used Gaussian Mercer's kernel is given By, (z;,z;) =

1 - 2 1 2 *2
Lp=3 > wi+ > DE+EN+CY (G exp(‘”%‘jm), whereo? is the kernel parameter.
j=1 nel nels
. ~C? I11. SVR SYSTEM IDENTIFICATION AND COMPOSITE
+6)=C 5 - KERNELS
nels
A family of composite kernels appears in SVM formulation
with the constraints: by exploiting the direct sum of Hilbert spaces [10], which
- allow us to analyse the explicit form of ARMA process in
Yn — W Pn(2n) <€+&n Vn=mng,---,N. (4) feature space.
—yp +w P (2n) < e+ EF Yn=mng, -+ ,N. (5)

A. Explicit ARMA In Feature Space

where¢,, £ are the slack variables or Iosse{éf) >0 (57(1*) By using two possibly different nonlinear mappings
represents boti,and¢;), I; is set of samples for which< ¢, (u,) : R? — H, and ¢,(y,) : R — H,, the input
&(f) < ec, Iz is the set of samples for Which(f) > ec, and output state vectors, andy, can be separately mapped
ng is given by the initial conditions and/ is the number of to RKHS H, and H,. So, an ARMA difference equation can
available samples. be built using two linear models; MA (moving average)in
By introducing a nonnegative coefficient, Lagrange multend AR (auto regressive) ifi:
plier, for each constrainif, to (4) anda, to (5)), we obtain
the Lagrangian for this problem [6] this way: Yn = 0T dn(Yn_1) + b dp(un) +en . (10)
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wherea = [ay,...,ap,]" andb = [by,...,by,]" are vectors
representing the coefficients MA and AR of the systen b e R
respectively, in RKHS. After formulating the primal probie | |
stating the Lagrangian and making its gradient to zero, r o
moved the primal variables and formulating the dual probler il
the SVM-ARMA;, is obtained by including the kernel matrix
K (zn,2r) = Ky(Yn—1,Yr—1) + Ky(upn,u,) in (9) [10]:

20k

2Dlog, ,(MSE)

N
:’)r = Zﬂn(Ky(ynflayrfl)+Ku(unaur)) . (11)
n=1 L SVRARMA,

where Ky(yi_1,yj_1) _ <¢y(yi—1);¢y(yj—1)> and D5 e Smrecyge RS s N

Ku(ui,u;) = (¢u(ui), du(u;)) are two different Gram o EVRARMA i R

matrices, one for the input and the other for the output. “-““————SW'KR_M%;_H“‘H=~h__'_;';-~_._ﬂ

B. Composite Kernels Fo 2 4 5 8 0 12 14 ® .

The SVM-ARMA,;, model could be limited in some cases ~2llog, (o,
because (11) provides an apparent uncoupling between the
input and the output. This limitation will be come out ex-
plicitly when strong cross information between the two DTP
is present. An SVM-ARMA model considering the input and

outout could simultaneously solve this problem. By usine t To train our models, we use the cross validation method;
P . y P - By Using rhOO data are used as training data and 100 as testing data. For
sum of Hilbert spaces property, the kernel components are;

the first example, the results are averaged over 100 realizat
N ) ) L and for example 2, over 200 realizations.
Kz, 2) = Ky(gi-1,95-1) + Kalti, vg) Examplel: The first example of a system to be identified
+ Kay(ui, y5-1) + Kyo(yiog,uj) - (12) g [9]:
Aéll\\//lrfzk |[nl(i)lij.d|ng this kernel in (9), we obtain the SVM- Y = 0.03yn_1—0.01yn_o-+32n—0.52n_140.22,_5 . (15)
A new algorithm SVR-ARMA;, can be built by considering  The Input DTP is a white Gaussian noise sequence of unit
the combination between SVR and SVM-ARMA variance{xz,, } ~ N(0,1). An additive small variance random
process{e,} ~ N(0,0.1), corrupts the corresponding output
K(zi,2j) = Ky (yi-1,9j-1) + Ko (wi, uj) + K2 (25, 25). (13) pTp and modelling the measurement errors. The observed
or an other one, SVR-ARM#, by combining SVR and : ~ Process is{on} = {yn} + {en}.
Impulsive noise{j,} is generated as a sparse sequence,
K(zi,25) = Ky(yi—1,yj-1) + Kz (us, ujy) for which 30% of the samples, randomly placed, are of
+ Kwy(ué,y},l) +Kyz(y§,1,u}) + K.(z1,2). (14) high-amplitude, having the forrt10 + U(0,1), whereU()
represents the uniform distribution in the given intervithe
IV. EXPERIMENTAL RESULTS remaining are zero samples. The observations consist of DTP
To examine the performance of SVM-ARMA formulationdnput {x,} and the observed output plus impulsive noise;

and to compare it with standard SVR and Least Squafen} + ow{jn}. Values ofo,, go from 18 to 0 dB [9].
method, we use two examples. We focus on radial basisWVe tried various values far, 7, C. For all the SVM-ARMA

Fig. 2. The MSE as a function of additive noise of powes.

function (RBF) K, (z;, z;) = ewp(M), wheres? € R

202

represent the width of the kernel.

formulations,e = 0 is used. In SVM-ARMA,;., the values of
SVM parameters that give the minimum MSE in testing set

For the first example, the prediction performance is eval@!® like ¢ =1 and~ = 0.01, but for other SVM-ARMA

ated using the mean square error in test set:

models they are fixed id' = 100 and~ = 0.001. The results

of our first system are shown in Figure 2, 3, 4, 5, 6. In Figure2,
the SVM-ARMA,;, model exhibit better performance, whereas
SVM-ARMA 4 and SVR-ARMAy; provide a poor model in
terms of prediction error, that can be explained by the poor

where N denotes the total number of data points in the tegtf0ss information between the input and output.
v, §; are the actual value and prediction value respectively On the other hand, we compare the performance of SVM-

For the second example, we use the normalized mean squ¥ReVA models with the least square method, in which we use

error in test set:

MSE

nMSE = 1Og10 m

the same expression of the kernel components in each case (fo
example, in the case of SVR-ARMA, the kernel components
are like x = K, + K, + K. for SVYM and LS methods). The
results are shown in Fig.3-a, 4-a, 5-a, 6-a, 7-a, and they sho
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Fig. 3. (a) The MSE as a function of additive noise of power for SYR  Fig. 4. (a) The MSE as a function of additive noise of powses for
model. (b) The MSE as a function of training data for SVR moddiere SVM-ARMA 5, model. (b) The MSE as a function of training data for SVM-
ow = 1. ARMA ;. model, whereo,, = 1.

that the SVM method exhibits a good performance in high

impulsive noise power with a difference of almost 24 dB in AT
. . ) Gt +1) = §@)F(t—1)[§(¢)—2.5]

comparison with LS method. Besides, SVM-ARMA methods Y g2 (O +52(t—1)

show that there is no significant difference between the y(t+1) = Rg(t +1)]

different values of MSE as a function of noise parametgr, (16)

which mean that the SVM-ARMA models, in this example‘{"heregﬁ[-] denotes the real part andis a random variable
are not sensitive to the noise parametgr uniformly distributed in the interval3,4] with the mean

. _ ~E{a} =3.5.

_ Fig.3-b, 4-b, 5-b, 6-b, 7-b show that in the case of high £ 5| the SVM-ARMA formulations, the SVM parameters,
impulsive noise powerfg,, = 1, the minimum MSE of SVM _ _ o ~ _ 1o and~ = 0.01 are used.

and LS methods are stabilized in affixed values even if theFro’m Table 1, we notice that Bessel equation exhibits the

number of training data is augmented. We can say that tﬁgst performance in SVM-ARM#, and that the SVM-ARMA
MSE is saturated. The SVM method needs 160 training d%{ orithms show the same results as the LS method.

to saturate and I.‘S requwe.ments. 100 data, but SVM gives able 2 reports the nMSE of Bessel difference equation cor-
very small MSE in comparison with LS. rupted with additive Gaussian noise. The SVM formulations

Example2 The second system to be identified is describegive the same value of nMSE, 0.003 dB, and the SVM method
by the difference equation of Bessel: exhibits the same results as LS method.

u(t) = 0.6 sin®(nt) 4+ 0.3 sin(37¢t) + 0.1 sin(at)
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Fig. 6. (a) The MSE as a function of additive noise of powses for

SVM-ARMA 4, model. (b) The MSE as a function of training data for SVM-

SVR-ARMA;;, model. (b) The MSE as a function of training data for SVR-ARMA 4;, model, whereo,, = 1.
ARMA 5, model, whereo,, = 1.

TABLE |
THE NMSE OF BESSEL EQUATION

LS method
SVR -0.927 -0.927
SVM-ARMA 5, -0.935 -0.935
SVR-ARMA 5, | -1.045 -1.045
SVM-ARMA 4 | -1.246 -1.045
SVR-ARMA 4 | -1.262 -1.045

TABLE Il
THE NMSE OF BESSEL EQUATION WITHGAUSSIAN NOISE.

LS method
SVR 0.003 0.003
SVM-ARMA 5, 0.003 0.003
SVR-ARMA 5, | 0.003 0.003
SVM-ARMA 4, | 0.003 0.003
SVR-ARMA 4. | 0.003 0.003

Therefore, we may conclude that SVM-ARMA methods
provide as good results for Bessel difference equation as th
best method LS, with and without additive Gaussian noise.

V. CONCLUSION

This paper has presented a full family of SVM-ARMA
methods for nonlinear system identification in RKHS. These
methods are proposed by taking the advantage of composite
kernel, in which dedicated mappings are used for input,@utp
and cross terms. Simulation results show the performance of
the different SVM-ARMA models and compare it with the
least square method.
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