
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 807 – 811 ISSN 1896-7094

 

Abstract—Usually, Intrusion Detection Systems (IDS) work
using two methods of identification of attacks: by signatures
that are specific defined elements of the network traffic possible
to identification and by anomalies being some deviations form
of the network behavior assumed as normal. In the both cases
one must pre-define the form of the signature (in the first case)
and the network’s normal behavior (in the second one). In this
paper we propose application of Neural Networks (NN) as a
tool for application in IDS. Such a method makes possible
utilization of the NN learning property to discover new attacks,
so (after the training phase) we need not deliver attacks’
definitions to the IDS. In the paper, we study usability of
several NN architectures to find the most suitable for the IDS
application purposes.

I.I NTRODUCTION

ECAUSE of their generalization feature, neural net-
works are able to work with imprecise and incomplete

data. It means that they can recognize also patterns not pre-
sented during a learning phase. That is why the neural net-
works could be a good solution for detection of a well-

B

This is the work in progress

known attack, which has been modified by an aggressor in
order to pass through the firewall system. In that case, tradi-
tional Intrusion Detection Systems, based on the signatures
of attacks or expert rules, may not be able to detect the new
version of this attack.

In this paper, we focus on three different network architec-
tures: Backpropagation, Radial Basis Function and Self Or-
ganizing Map. The result of simulation is the information
about the attack detection accuracy, represented as a number
of false attacks and not detected attacks in comparison to
number of validation vectors for each type of used NN. Per-
formed tests allow us to find drawback of usage of each type
of architectures for detection a specific type of the attack. As
the input vector, we used data produced by the KDD99
project.

II.NEURAL NETWORK: A WAY OF WORK

An artificial neural network is a system simulating a work
of the neurons in the human brain. In Fig. 1 it is presented
the diagram of a neuron’s operation.

978-83-60810-14-9/08/$25.00 © 2008 IEEE 807

Przemysław Kukiełka
Institute of Telecommunications
Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
Email: Przemyslaw.Kukielka@telekomunikacja.pl

Zbigniew Kotulski
Institute of Fundamental Technological Research

Polish Academy of Sciences
Swietokrzyska 21, 00-049 Warsaw, Poland

Email: zkotulsk@ippt.gov.pl

Analysis of Different Architectures of Neural Networks
for Application in Intrusion Detection Systems

W
2

W
4

W
3

W
1

SUM
ACTIVATION
FUNCTION F

I
N
P
U
T

O
U
T
P
U
T

X1

X2

X3

X4

)(
1

∑
=

=
n

i
iXFY

WEIGHTS

AXON

DENDRITIES

(SYNAPSES)

Fig. 1. A scheme of an artificial neuron

808 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

The neuron consists of some inputs emulating dendrites of
the biological neuron, a summation module, an activation
function and one output emulating an axon of the biological
neuron. The importance of a particular input can be intensi­
fied by the weights that simulate biological neuron’s
synapses. Then, the input signals are multiplied by the values
of weights and next the results are added in the summation
block. The sum is sent to the activation block where is pro
cessed by the activation function. Thus, we obtained neu­
ron’s answer for the input signals “x”.

A. MLP (Multi Layer Perceptron)

One neuron cannot solve a complex problem that is why
the neural network consisted of many neurons is used. One
of the most often used architecture is the Multi Layer Per-
ceptron. In such a network, all neurons’ outputs of the previ-
ous layer are connected with neurons’ inputs of the next
layer. The MLP architecture consists of one or more hidden
layers. A signal is transmitted in the one direction from the
input to the output and therefore this architecture is called
feedforward. The MLP networks are learned with using the
Backward Propagation algorithm (BP). In order to reach bet-
ter efficient and speed of learning process it arise many types
of BP algorithm. In our research we used following variants
of the BP algorithm:

• Batch Gradient descent (traingd)
• Batch Gradient descent with momentum (traingdm)
• Levenberg-Marquardt (trainln)
• Resilient Backpropagation (trainrp)
• Conjugate Gradient (traincgf)
• Quasi Newton (trainbfg)
• Quasi Newton 2 (trainnoss)

For the simulation procedure, the Matlab toolbox was
used. The variants of BP algorithm are followed by the
names of the learning Matlab’s functions in the bracket.

B. Radial Based Function (RBF) Neural Network

The radial neuron networks in comparison to the MLP
where a global approximation is used are working based on
the local approximation.
Typically have three layers: an input layer, a hidden layer
with a non-linear RBF activation function φ and a linear
output layer.

Activation function for the radial neuron network is:

() 












σ

−
=ϕ

2

2

2
exp

i

icx
x ,

where C- Center of the function σ Spread parameter of the
radial function

The argument of radial function φ is the Euclidean distance
sample x from center c.

In the RBF network, there are three types of parameters
that need to be chosen to adapt the network for a particular
task: the center vectors ci , the output weights wi , and the
RBF spread parameter βi.

C. SOM (Self Organizing Maps)

This kind of network is learned without teacher based on
the competition rules. On the input of such network learning
vector is put and in the next step distance from it to the
weight vector is checked. Neuron for its distance is lowest
becomes the winner and can modify values of his weights.
Depends of the SOM networks architecture the weighs of the
winner neuron can be modified (Winner Takes all) or weigh
of the winner and neurons from his neighbor (Winner Takes
most).

More information about neural network could be found in
[2], [7].

III. KDD99 INPUT DATA

We are using the KDD 99 data set as the input vectors for
training and validation of the tested neural network. It was
created based on the DARPA (Defense Advanced Research
Project Agency) intrusion detection evaluation program.
MIT Lincoln Lab that participates in this program has set up
simulation of typical LAN network in order to acquire raw
TCP dump data [1]. They simulated LAN operated as an
normal environment, which was infected by various types of
attacks. The raw data set was processed into connection
records. For each connection, 41 various features were ex-
tracted. Each connection was labeled as normal or under spe-
cific type of attack. Four main categories of attacks were
simulated:

• DoS (Denial of Service): an attacker tries to prevent
legitimate users from using a service e.g. TCP SYN
Flood, Smurf .

• Probe: an attacker tries to find information about the
target host. For example: scanning victims in order
to get knowledge about available services, using Op-
erating System etc.

• U2R (User to Root): an attacker has local account on
victim’s host and tries to gain the root privileges.

• R2L (Remote to Local): an attacker does not have
local account on the victim host and try to obtain it.

The KDD data sets are divided into tree subsets:
10%KDD, corrected KDD, whole KDD. Basis characteristic
of KDD data sets are shown in Table I. It includes number of

TABLE I.
KDD99 DATA SUBSETS

Dataset DoS Probe U2r U2l Normal
10%KDD 391458 4107 52 1126 97277

Corrected KDD 229853 4166 70 16347 60593
Whole KDD 3883370 41102 52 1126 972780

PRZEMYSŁAW KUKIEŁKA ET. AL.: ANALYSIS OF DIFFERENT ARCHITECTURES OF NEURAL NETWORKS 809

connections assigned to the particular class (DoS, Probe
etc.)..

A. 10%KDD

The 10%KDD data set is used for the training process of
the IDS. It includes connections simulated following 22
types of the attacks: back, buffer_overflow, ftp_write,
guess_passwd, imap, ipsweep, land, loadmodule, multihop,
neptune, nmap, normal, perl, phf, pod, portsweep, rootkit,
satan, smurf, spy, teardrop. The attacks are not represented
by the same number of connections. The most of the
simulated attacks are of DoS group because of the nature of
this type attacks that are using many IP packets in order to
block network services.

B. Corrected KDD

The Corrected KDD data set is used for testing process of
IDS. It includes additional 14 types of new attack not
presented in 10%KDD and Whole KDD. Thanks to them it
is possible to check if tested IDS is able to detect new attack
not presented in the training phase.

In our research only 10 %KDD and corrected KDD data
set was used.

IV. TRAINING PROCESS

A. Process of Selection of the Input Vector

The data set 10% KDD includes the large number of con-
nection. It is influence on the long time of training, high re-
quirements for efficient of using implementation of neural
network and hardware on that it is working. That’s why in
research presented in this publication for training purpose
three randomly selected small date set was used. Table II
shows how many connections are assigned to the particular
training data set.
It was chosen the same number of connections represent
each type of attack. In case when number of connections for
particular type of attack was lower than assumed number all
connections for this group was selected. Because some
features of connection (e.g. protocol, flags) were existed as a
characters string, it was transformed to numerical
representation.

Moreover, for the SOM neural network normalization
process of the input data “xi” was performed.

∑=

=
n

i i

i
i

x

x
x

1

2

'

.

For Radial Neuron network it was noticed that the best
results are obtained when the value of features is decreased
by dividing it by constant number equal 1000.

For the research purpose three type of neural network
architectures were used: MLP (multilayer perceptron), RBF
(Radial Basis Function), SOM (Self Organizing Maps).

Main Assumption for Training Process of MLP
Number of Epochs = 1000.
MSE (Mean Square error) = 0.01.
Learning rate =1.
Momentum = 0.6.
Activation function =log-signoid.
Number of neurons in hidden layer=5.
Number of neurons in output layer =1.
Updates of weighs – batch mode (after presentation of entire
training data set).

Results of the training process show that only the
algorithms: Levenberg-Marquardt and Quasi Newton
achieved to fulfill the above assumption. In other case MLP
network cannot reach assumed MSE =0.1 in 1000 Epochs of
training process. That is why in the next simulation we focus
only on networks that can be trained according our
assumptions.

B. For RBF Network

Implementation from Matlab toolbox was used (newrb).
At the beginning, a network without radial neurons in the
first layer is created. In the next step, the MSE is calculated
and a new radial neuron with weighs equals to input vector
that caused the max value of MSE is added to the first layer.
The last operation is modification of weights of a lineal
neuron in the output layer in direction of minimize MSE. All
steps are repeated until the assumed MSE is reached.

Main Assumption for Training Process
MSE=0.1(because of high calculation power requirements
not possible to achieve MSE =0.01 like for MLP)
Spread parameter σ = 3
MN (Maximum number of neurons) = 250
 DF (Number of neurons to add between displays) = 2
MNE (Number of neurons for that RBF achieved MSE =0.1)
= 178
Number of Epochs = 178

C. For SOM Network

Main Assumption for Training Process
Implementation of SOM in Matlab environment was used

(function newsom).
Number of Epochs = 1000.
Neighbors topology= hextop
Distance function – mean as a number of links between
neurons or steps that must be taken to get neuron under
consideration = matlab linkdist.
Ordering Phase learning rate =0.9.

TABLE II.
DATA SUBSETS FOR TRAINING PROCESS

Data Set name for
training process

Number of normal
connection

Number of connection
labelled as attack .

Learn_set 1000 8653
Learn_set_radial_trad 100 1179

Learn_set_radial 1000 1179

810 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Ordering Phase steps = 1000.
Tuning phase learning rate =0.02.
Tuning phase neighbor distance = 1.

In the ordering phase neighbor distance between two
neurons decreases from maximum values to the Tuning
phase values, the learning rate decreases from the Ordering
phase learning rate to the Tuning phase learning rate.
Neuron’s weights are expected to order themselves in the
input space consistent with the associated neurons position.

In the Tuning phase neighbor distance stay on the same
level equal Tuning phase neighbor distance, the learning rate
continues to decrease but very slowly. Neuron’s weights are
expected to spread out ever the input space relatively evenly

while retaining their topological order obtained during the
ordering phase..

V. RESULTS OF THE TESTS

The neural networks architectures were tested with using
whole date set from the Corrected KDD and with using mod-
ified data set that includes only attacks presented during
training process. Data sets used for the testing phase were
shown in Table III.

In Table IV is presented the comparison of particular neu-
ral network architecture learned with input data from
„Learn_radial_trad” data set. The evaluation focuses on the

TABLE III.
THE DATA SUBSET FOR TESTING PHASE

Data Set name for
testing process

Number of normal
connection

Number of connection
labelled as attack .

Test_set 60593 250436
Test_set_noanomaly 60593 231694

TABLE IV.
COMPARISON OF DIFFERENT NETWORK TOPOLOGY TRAINED WITH “LEARN_SET_RADIAL_TRAD” DATA SET

Neural Network
topology

False alarm Number/
Percent of all normal

connection

Not detected/
Detection rate

Duration of training

MLP learning algorithm
Levenberg-Marquardt

31594
52%

382
98,5%

About 4 seconds

MLP learning algorithm
Quasi Newton

37530
61%

90
99%

About 4 seconds

Radial 21938
36%

61568
76%

About 2 minutes 20 seconds

SOM 19677
32%

40957
84%

About 7 minutes

TABLE V.
RESULTS OF SIMULATION OF MLP NETWORK LEARNED WITH USAGE INPUT DATE SET „LEARN_SET” AND „LEARN_SET_RADIAL”

Variations of BP algorithm used for training MLP Network
False alarm Number/
Percent of all normal

connection

Detection
rate

MLP learning algorithm Levenberg-Marquardt
Input data set: Learn_set, Test_set

5354
8,8%

19207
92%

MLP learning algorithm Levenberg-Marquardt
Input data set: Learn_set, Test_noanomaly

5351
8,9%

4097
98%

MLP learning algorithm Levenberg-Marquardt
Input data set: Learn_set_radial, Test_set

10068
16,6%

17139
93%

MLP learning algorithm Quasi Newton
Input data set: Learn_set, Test_set

4790
7,9%

10294
94%

MLP learning algorithm Quasi Newton
Input data set: Learn_set, Test_set_noanomaly

4790
7,9%

87
99,9%

MLP learning algorithm Quasi Newton
Input data set: Learn_set_radial, Test_set

31894
52%

1556
99%

MLP learning algorithm Resilient Backpropagation
Input data set: Learn_set, Test_set

4453
7,3%

12877
95%

MLP learning algorithm Resilient Backpropagation
Input data set: Learn_set, Test_set_noanomaly

4454
7,35%

2714
99%

MLP learning algorithm Resilient Backpropagation
Input data set: Learn_set_radial, Test_set

3564
5,9%

29805
88%

PRZEMYSŁAW KUKIEŁKA ET. AL.: ANALYSIS OF DIFFERENT ARCHITECTURES OF NEURAL NETWORKS 811

value of the detection rate and the false alarm rate for
“Test_set” data set. For analysis of neural network answer, it
was assumption that value from 0 to 0.5 concerning
“normal” and from 0.5 to 1 “attack”. The Corrected Data Set
used for testing phase includes 311 029 vectors.

High number of false alarms is a result of small number of
“normal” connections in the trained data set. It was reduced
because of a problem of efficiency of SOM and RBF NN im-
plementation in the Matlab environment.

The MLP network was the most efficient during compari-
son of different network architecture. That is why in the fur-
ther research we plan to focus on it. For the training of the
MLP network we used an input data set with bigger number
of connection (Learn_set, Learn_set_radial). The experiment
should show if increasing the number of input patterns im-
proves detection rate and false alarms rate. The results of this
test are presented in Table V.

VI. CONCLUSIONS

Usage of neural networks for intrusion detection with the
input data from DARPA project was presented in many
publication. Unfortunately, in description of simulation
process very often is lack of information about assumptions
that were made in before. For instance there is no
information if the whole tests data set was used in the
simulation or only some its subset.

The goal of this research was the comparison of different
neural network architectures working with the same assumed
parameters and tested with with usage of the whole DARPA
tests data set (Corrected KDD). Our research made it
possible to formulate precisely general assumptions for
making benchmark simulations as well as gave us some
conclusions concerning particular NN architectures applied
to IDS. The main conclusions are:

• Selection of the input data is a very important issue.
Representation of all types of attacks and normal
activity should be included in the learning date set.

• Results of simulation show that detection rate was
the best for MLP network learned with Backward
Propagation Levenberg-Marquardt algorithm

• In the second phase of simulation MLP network
number of input vectors are increased because of
that summary amount of errors decreases. In
particular number of false alarms decreases and
numbers of non detected attack a little increases. The
reason is that representation of more different type of
normal activity was added to input vectors in
learning phase.

• The long time is required for the learning phase of
SOM and Redial neural network. Moreover, these
two neural network architectures need very high
CPU performance and Operational Memory (RAM).
During tests phase input date set had to be divided
into smaller subsets in order to avoid “lack of
memory swap” Matlab error.

• MLP required less CPU performance and
Operational Memory (RAM). That is why could be
tested with using the whole tests data set not divided
into smaller subsets.

REFERENCES

[1] W. Lee, S. J. Stolfo, “A Framework for Constructing Features and
Models for Intrusion Detection Systems”, ACM Transactions on
Information and System Security (TISSEC), 3(4): 227-261, 2000.

[2] L. Rutkowski, Metody i techniki sztucznej inteligencji , PWN,
Warszawa 2005. (In Polish)

[3] W. Lee, S. J. Stolfo, “Data Mining Approaches for Intrusion
Detection”, Proceedings of the Seventh USENIX security Symposium
(SECURITY '98), San Antonio, TX,1998.

[4] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, K. Das, “The 1999
Darpa Off-Line Intrusion Detection Evaluation”, Computer
Networks: The International Journal of Computer and Telecommuni-
cations Networking 34 (2000) 579-595, 2000.

[5] V. Paxson,” Bro: A system for Detecting Network Intruder in Real
Time” In Proceedings of the 7th USENiX Security Symposium, San
Antonio 1998.

[6] Ch. Elkan, “Results of the KDD’99 Classifier-learning contest”, In
`http://www-cse.ucsd.edu/#elkan/clresults.html', September 1999.

[7] S. Osowski, Sieci neuronowe do przetwarzania informacji , Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa 2000, ISBN
83-7207-187-X. (In Polish)

