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   

Abstract—Usually,  Intrusion Detection Systems (IDS) work 
using  two methods of  identification of  attacks:  by signatures 
that are specific defined elements of the network traffic possible 
to identification and by anomalies being some deviations form 
of the network behavior assumed as normal. In the both cases 
one must pre-define the form of the signature (in the first case) 
and the network’s normal behavior (in the second one). In this 
paper we  propose application of  Neural  Networks (NN) as  a 
tool  for  application  in  IDS.  Such  a  method  makes  possible 
utilization of the NN learning property to discover new attacks, 
so  (after  the  training  phase)  we  need  not  deliver  attacks’ 
definitions  to  the  IDS.  In  the  paper,  we  study  usability  of 
several NN architectures to find the most suitable for the IDS 
application purposes. 

I.I NTRODUCTION 

ECAUSE of  their  generalization  feature,  neural  net-
works are able to work with imprecise and incomplete 

data. It means that they can recognize also patterns not pre-
sented during a learning phase. That is why the neural net-
works  could  be  a  good  solution  for  detection  of  a  well-
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known attack, which has been modified by an aggressor in 
order to pass through the firewall system. In that case, tradi-
tional Intrusion Detection Systems, based on the signatures 
of attacks or expert rules, may not be able to detect the new 
version of this attack. 

In this paper, we focus on three different network architec-
tures: Backpropagation, Radial Basis Function and Self Or-
ganizing Map.  The  result  of  simulation is  the information 
about the attack detection accuracy, represented as a number 
of  false attacks and not  detected  attacks  in comparison to 
number of validation vectors for each type of used NN. Per-
formed tests allow us to find drawback of usage of each type 
of architectures for detection a specific type of the attack. As 
the  input  vector,  we  used  data  produced  by  the  KDD99 
project. 

II.NEURAL NETWORK: A WAY OF WORK

An artificial neural network is a system simulating a work 
of the neurons in the human brain. In Fig. 1 it is presented 
the diagram of a neuron’s operation. 
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Fig. 1. A scheme of an artificial neuron 
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The neuron consists of some inputs emulating dendrites of 
the  biological  neuron,   a   summation module,   an  activation 
function and one output emulating an axon of the biological 
neuron. The importance of a particular input can be intensi­
fied   by   the   weights   that   simulate   biological   neuron’s 
synapses. Then, the input signals are multiplied by the values 
of  weights and next the results are added in the summation 
block. The sum is sent to the activation block where is pro 
cessed  by  the activation function.  Thus,  we obtained  neu­
ron’s answer for the input signals “x”. 

A. MLP (Multi Layer Perceptron)

One neuron cannot solve a complex problem that is why 
the neural network consisted of many neurons is used. One 
of the most often used architecture is the Multi Layer Per-
ceptron. In such a network, all neurons’ outputs of the previ-
ous  layer  are  connected  with neurons’  inputs  of  the  next 
layer. The MLP architecture consists of one or more hidden 
layers. A signal is transmitted in the one direction from the 
input to the output and therefore this architecture is called 
feedforward. The MLP networks are learned with using the 
Backward Propagation algorithm (BP). In order to reach bet-
ter efficient and speed of learning process it arise many types 
of BP algorithm. In our research we used following variants 
of the BP algorithm: 

• Batch Gradient descent (traingd)
• Batch Gradient descent with momentum (traingdm)
• Levenberg-Marquardt (trainln)
• Resilient Backpropagation (trainrp)
• Conjugate Gradient (traincgf)
• Quasi Newton (trainbfg)
• Quasi Newton 2  (trainnoss)

For  the  simulation  procedure,  the  Matlab  toolbox  was 
used.  The  variants  of  BP  algorithm are  followed  by  the 
names of the learning Matlab’s functions in the bracket.

B. Radial Based Function (RBF) Neural Network

The  radial  neuron  networks  in  comparison  to  the  MLP 
where a global approximation is used are working based on 
the local approximation.  
Typically have three layers:  an input layer,  a hidden layer 
with a  non-linear  RBF activation  function  φ and  a  linear 
output layer. 

Activation function for the radial neuron network is:
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where C- Center of the function σ  Spread parameter of the 
radial function 

The argument of radial function φ is the Euclidean distance 
sample x from center c. 

In the RBF network, there are three types of parameters 
that need to be chosen to adapt the network for a particular 
task: the center vectors  ci , the output weights  wi , and the 
RBF spread parameter βi. 

C. SOM (Self Organizing Maps)

This kind of network is learned without teacher based on 
the competition rules. On the input of such network learning 
vector  is  put  and  in  the  next step  distance  from it  to  the 
weight vector is checked. Neuron for its distance is lowest 
becomes the winner and can modify values of his weights. 
Depends of the SOM networks architecture the weighs of the 
winner neuron can be modified (Winner Takes all) or weigh 
of the winner and neurons from his neighbor (Winner Takes 
most). 

More information about neural network could be found in 
[2], [7]. 

III. KDD99 INPUT DATA

We are using the KDD 99 data set as the input vectors for 
training and validation of the tested neural network. It  was 
created based on the DARPA (Defense Advanced Research 
Project  Agency)  intrusion  detection  evaluation  program. 
MIT Lincoln Lab that participates in this program has set up 
simulation of typical LAN network in order to acquire raw 
TCP dump data  [1].  They simulated LAN operated  as  an 
normal environment, which was infected by various types of 
attacks.  The  raw  data  set  was  processed  into  connection 
records. For each connection, 41 various features were ex-
tracted. Each connection was labeled as normal or under spe-
cific  type  of  attack.  Four  main categories  of  attacks  were 
simulated:  

• DoS (Denial of Service): an attacker tries to prevent 
legitimate users from using a service e.g. TCP SYN 
Flood, Smurf .

• Probe: an attacker tries to find information about the 
target host. For example: scanning victims in order 
to get knowledge about available services, using Op-
erating System etc.  

• U2R (User to Root): an attacker has local account on 
victim’s host and tries to gain the root privileges. 

• R2L (Remote to Local): an attacker does not have 
local account on the victim host and try to obtain it.  

The  KDD  data  sets  are  divided  into  tree  subsets: 
10%KDD, corrected KDD, whole KDD. Basis characteristic 
of KDD data sets are shown in Table I. It includes number of 

TABLE I.
KDD99 DATA SUBSETS

Dataset DoS Probe U2r U2l Normal
10%KDD 391458 4107 52 1126 97277

Corrected KDD 229853 4166 70 16347 60593
Whole KDD 3883370 41102 52 1126 972780
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connections  assigned  to  the  particular  class  (DoS,  Probe 
etc.)..

A. 10%KDD

The 10%KDD data set is used for the training process of 
the  IDS.  It  includes  connections  simulated  following  22 
types  of  the  attacks:  back,  buffer_overflow,  ftp_write, 
guess_passwd, imap, ipsweep, land, loadmodule,  multihop, 
neptune,  nmap, normal,  perl,  phf,  pod,  portsweep,  rootkit, 
satan, smurf, spy, teardrop. The attacks are not represented 
by  the  same  number  of  connections.  The  most  of  the 
simulated attacks are of DoS group because of the nature of 
this type attacks that are using many IP packets in order to 
block network services. 

B. Corrected KDD

The Corrected KDD data set is used for testing process of 
IDS.  It  includes  additional  14  types  of  new  attack  not 
presented in 10%KDD and Whole KDD. Thanks to them it 
is possible to check if tested IDS is able to detect new attack 
not presented in the training phase.  

In our research only 10 %KDD and corrected KDD data 
set was used.

IV. TRAINING PROCESS

A. Process of Selection of the Input Vector

The data set 10% KDD includes the large number of con-
nection. It is influence on the long time of training, high re-
quirements  for  efficient  of using implementation of neural 
network and hardware on that it is working. That’s why in 
research  presented  in this  publication for  training purpose 
three randomly selected  small date  set  was used.  Table  II 
shows how many connections are assigned to the particular 
training data set. 
It  was  chosen  the  same  number  of  connections  represent 
each type of attack. In case when number of connections for 
particular type of attack was lower than assumed number all 
connections  for  this  group  was  selected.   Because  some 
features of connection (e.g. protocol, flags) were existed as a 
characters  string,  it  was  transformed  to  numerical 
representation. 

Moreover,  for  the  SOM  neural  network  normalization 
process of the input data “xi” was performed. 
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For  Radial  Neuron  network  it  was  noticed  that  the  best 
results are obtained when the value of features is decreased 
by dividing it by constant number equal 1000. 

For  the  research  purpose  three  type  of  neural  network 
architectures were used: MLP (multilayer perceptron), RBF 
(Radial Basis Function), SOM (Self Organizing Maps). 

Main Assumption for Training Process of MLP
Number of Epochs =  1000.
MSE (Mean Square error) = 0.01.
Learning rate =1.  
Momentum = 0.6.
Activation function =log-signoid.
Number of neurons in hidden layer=5.
Number of neurons in output layer =1. 
Updates of weighs – batch mode (after presentation of entire 
training data set).  

Results  of  the  training  process  show  that  only  the 
algorithms: Levenberg-Marquardt  and  Quasi  Newton 
achieved to fulfill the above assumption. In other case MLP 
network cannot reach assumed MSE =0.1 in 1000 Epochs of 
training process. That is why in the next simulation we focus 
only  on  networks  that  can  be  trained  according  our 
assumptions.  

B. For RBF Network 

Implementation from Matlab toolbox was used (newrb). 
At the beginning, a  network without radial  neurons in the 
first layer is created. In the next step, the MSE is calculated 
and a new radial neuron with weighs equals to input vector 
that caused the max value of MSE is added to the first layer. 
The  last  operation  is  modification  of  weights  of  a  lineal 
neuron in the output layer in direction of minimize MSE. All 
steps are repeated until the assumed MSE is reached.  

Main Assumption for Training Process
MSE=0.1(because  of  high  calculation  power  requirements 
not possible to achieve MSE =0.01 like for MLP)
Spread parameter σ =  3  
MN  (Maximum number of neurons) = 250 
 DF (Number of neurons to add between displays) = 2  
MNE (Number of neurons for that RBF achieved MSE =0.1) 
= 178 
Number of Epochs = 178

C. For SOM Network 

Main Assumption for Training Process
Implementation of SOM in Matlab environment was used 

(function newsom). 
Number of Epochs = 1000.
Neighbors topology= hextop
Distance  function  –  mean  as  a  number  of  links  between 
neurons  or  steps  that  must  be  taken  to  get  neuron  under 
consideration = matlab linkdist.  
Ordering Phase learning rate  =0.9.

TABLE II.
DATA SUBSETS FOR TRAINING PROCESS

Data Set name for 
training process

Number of  normal 
connection

Number of connection 
labelled as attack . 

Learn_set 1000 8653
Learn_set_radial_trad 100 1179

Learn_set_radial 1000 1179
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Ordering Phase steps = 1000.
Tuning phase learning rate =0.02.
Tuning phase neighbor distance = 1.

In  the  ordering  phase  neighbor  distance  between  two 
neurons  decreases  from  maximum  values  to  the  Tuning 
phase values, the learning rate decreases from the Ordering 
phase  learning  rate  to  the  Tuning  phase  learning  rate. 
Neuron’s  weights are  expected  to  order  themselves  in the 
input space consistent with the associated neurons position.  

In the Tuning phase neighbor distance stay on the same 
level equal Tuning phase neighbor distance, the learning rate 
continues to decrease but very slowly.  Neuron’s weights are 
expected to spread out ever the input space relatively evenly 

while retaining their topological  order  obtained during the 
ordering phase..

V. RESULTS OF THE TESTS

The neural networks architectures were tested with using 
whole date set from the Corrected KDD and with using mod-
ified  data  set  that  includes  only  attacks  presented  during 
training process. Data sets used for the testing phase were 
shown in Table III. 

In Table IV is presented the comparison of particular neu-
ral  network  architecture  learned  with  input  data  from 
„Learn_radial_trad” data set. The evaluation focuses on the 

TABLE III.
THE DATA SUBSET FOR TESTING PHASE

Data Set name for 
testing  process

Number of  normal 
connection

Number of connection 
labelled as attack . 

Test_set 60593 250436
Test_set_noanomaly 60593 231694

TABLE IV.
COMPARISON OF DIFFERENT NETWORK TOPOLOGY TRAINED WITH “LEARN_SET_RADIAL_TRAD” DATA SET

Neural Network 
topology

False alarm Number/
Percent of all normal 

connection

Not detected/
Detection rate 

Duration of training 

MLP learning algorithm 
Levenberg-Marquardt

31594
52%

382
98,5% 

About 4 seconds

MLP learning algorithm 
Quasi Newton

37530
61%

90
99%

About 4 seconds 

Radial 21938
36%

61568
76%

About 2 minutes 20 seconds

SOM 19677
32%

40957
84%

About 7 minutes 

TABLE V.
RESULTS OF SIMULATION OF MLP NETWORK LEARNED WITH USAGE INPUT DATE SET  „LEARN_SET” AND „LEARN_SET_RADIAL”

Variations of BP algorithm used for training MLP Network
False alarm  Number/
Percent of all normal 

connection 

Detection 
rate

MLP learning algorithm  Levenberg-Marquardt
Input data set: Learn_set, Test_set

5354
8,8%

19207
92%

MLP learning algorithm  Levenberg-Marquardt
Input data set: Learn_set, Test_noanomaly

5351
8,9%

4097
98%

MLP learning algorithm Levenberg-Marquardt
Input data set: Learn_set_radial, Test_set

10068
16,6%

17139
93%

MLP learning algorithm Quasi Newton
Input data set: Learn_set, Test_set

4790
7,9%

10294
94%

MLP learning algorithm Quasi Newton
Input data set: Learn_set, Test_set_noanomaly

4790
7,9%

87
99,9%

MLP learning algorithm Quasi Newton
Input data set: Learn_set_radial, Test_set

31894
52%

1556
99%

MLP learning algorithm Resilient Backpropagation
Input data set: Learn_set, Test_set

4453
7,3%

12877
95%

MLP learning algorithm Resilient Backpropagation
Input data set: Learn_set, Test_set_noanomaly

4454
7,35%

2714
99%

MLP learning algorithm Resilient Backpropagation
Input data set: Learn_set_radial, Test_set

3564
5,9%

29805
88%
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value  of  the  detection  rate  and  the  false  alarm  rate  for 
“Test_set” data set. For analysis of neural network answer, it 
was  assumption  that  value  from  0  to  0.5  concerning 
“normal” and from 0.5 to 1 “attack”. The Corrected Data Set 
used for testing phase includes 311 029 vectors. 

High number of false alarms is a result of small number of 
“normal” connections in the trained data set. It was reduced 
because of a problem of efficiency of SOM and RBF NN im-
plementation in the Matlab environment. 

The MLP network was the most efficient during compari-
son of different network architecture. That is why in the fur-
ther research we plan to focus on it. For the training of the 
MLP network we used an input data set with bigger number 
of connection (Learn_set, Learn_set_radial). The experiment 
should show if increasing the number of input patterns im-
proves detection rate and false alarms rate. The results of this 
test are presented in Table V.

VI. CONCLUSIONS 

Usage of neural networks for intrusion detection with the 
input  data  from DARPA project   was presented  in  many 
publication.  Unfortunately,  in  description  of  simulation 
process very often is lack of information about assumptions 
that  were  made  in  before.  For  instance  there  is  no 
information  if  the  whole  tests  data  set  was  used  in  the 
simulation or only some its subset.   

The goal of this research was the comparison of different 
neural network architectures working with the same assumed 
parameters and tested with with usage of the whole DARPA 
tests  data  set  (Corrected  KDD).  Our  research  made  it 
possible  to  formulate  precisely  general  assumptions  for 
making  benchmark  simulations  as  well  as  gave  us  some 
conclusions concerning particular NN architectures applied 
to IDS. The main conclusions are:  

• Selection of the input data is a very important issue. 
Representation  of  all  types  of  attacks  and  normal 
activity should be included in the learning date set.  

• Results of simulation show that  detection rate  was 
the best  for  MLP network  learned  with Backward 
Propagation Levenberg-Marquardt algorithm 

• In  the  second  phase  of  simulation  MLP  network 
number  of  input  vectors  are  increased  because  of 
that  summary  amount  of  errors  decreases.  In 
particular  number  of  false  alarms  decreases  and 
numbers of non detected attack a little increases. The 
reason is that representation of more different type of 
normal  activity  was  added  to  input  vectors  in 
learning phase.

• The long time is required for the learning phase of 
SOM and Redial  neural  network.  Moreover,  these 
two  neural  network  architectures  need  very  high 
CPU performance and Operational Memory (RAM). 
During tests phase input date set had to be divided 
into  smaller  subsets  in  order  to  avoid  “lack  of 
memory swap” Matlab error. 

• MLP  required  less  CPU  performance  and 
Operational Memory (RAM). That is why could be 
tested with using the whole tests data set not divided 
into smaller subsets.  
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