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Abstract—Classical convex fuzzy numbers have many disad- questionable if some rigorous and exact data are needed, e.g
vantages. The main one is that every operation on this type in the control or modeling problems. This can be treated

of fuzzy numbers induces the growing fuzziness level. AnolT 45 5 grawback of the properties of classical fuzzy algebraic
drawback is that the arithmetic operations defined for them operations

are not complementary, for instance: addition and subtracion. ) o
Therefore the first author (W. K.) with his coworkers has pro- In the literature, moreover, it is well know that unexpected

posed the extended model called ordered fuzzy numbers (OFN) and uncontrollable results of repeatedly applied opematio
The new model overcomes the above mentioned drawbacks andcaused by the need of making intermediate approximations
at the same time has the algebra of crisp (non-fuzzy) numbers (remarked in [34],[35]) can appear. This rises the heavy-arg
inside. Ordered fuzzy numbers make possible to utilize theuzzy ' . e

arithmetic and to construct the Abelian group of fuzzy numbes ment for tho_se who still cr|t|C|z_e the fuzzy numb_er calculus
and then an algebra. Moreover, in turn out, that four main Fortunately, it was already noticed by both Dubois and Prade
operations introduced are very suitable for their algorithmisation.  in their recent publication [8] that something is missinghe

The new attitudes demand new defuzzification operators. In definition of the fuzzy numbers and the operations on them.
the linear case they are described by the well-know functica In most cases one assumes that a typical membership

representation theorem valid in function Banach spaces. Técase function & of a fuzzv numberA satisfies convexity as
of nonlinear functionals is more complex, however, it is pasible to 1A y y

prove general, uniform approximation formula for nonlinear and ~ sumptions requiring after Nguyen [31] adl-cuts and the
continuous functionals in the Banach space of OFN. Countequts ~ support of A to be convex subsets dR®. At this stage it
of defuzzification functionals kn_own in the Mamdani apprqam seems necessary to recall both notions used:dtfoait of
are also presented,some numerical experimental results agiven 5 is a (classical) setd[a] = {z € R : pa(z) > a}, for
and conclusions for further research are drawn. . .
eacha € [0,1]}, and the support ofd is the (classical) set

supgA) = {z € R: pa(x) > 0}. One additionally assumes
[2], [3], [5], [12], [31], [34] that the convex fuzzy numbet

LASSICAL fuzzy numbers are very special fuzzy sethas itscore, i.e. the (classical) set of thosec R for which its

defined on the universe of all real numbers. Fuzayembership functiom 4 (x) = 1, which is not empty and its
numbers are of great importance in fuzzy systems. In te@pport is bounded. Then the arithmetic of fuzzy numbers can
applications, the triangular and the trapezoidal fuzzy bers be developed using both the Zadeh’s extension principlg [38
are usually used. [39] and thea-cut with interval arithmetic method [12].

There are two commonly accepted methods of dealingAs long as one works with fuzzy numbers that possess
with fuzzy numbers, both basing on the classical concept @bntinuous membership functions, the two procedures: the
fuzzy sets, namely on the membership functions. The firgixtension principle and the — cut and interval arithmetic
more general approach deals with the so-called convex fuamgthod give the same results (cf. [2]). The results of mul-
numbers of Nguyen [31], while the second one deals witiple operations on convex fuzzy numbers are leading to a
shape functions and — R numbers, set up by Dubois andarge growth of the fuzziness, and depend on the order of
Prade [6]. the operations since the distributive law, which involvbe t

When operating on convex fuzzy numbers we have the intémteraction of addition and multiplication, does hold ther
val arithmetic for our disposal. However, the approximasio Moreover, the use of the extension principle in the definitio
of shape functions and operations are needed, if one waotsthe arithmetic operations on fuzzy numbers is generally
to remain within theL. — R numbers while following the numerically inefficient. These operations cannot be ecdpp
Zadehizjs extension principle [38]. In this representation with a linear structure and hence no norm can be defined
(in most cases) calculation results are not exact and ame them. Standard algebraic operations on fuzzy numbers

I. INTRODUCTION
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basing on the Zadehjs extension principle and those for 7

A X
] o g’

fuzzy numbers of L — R type or convex fuzzy numbers popn < I
(see [5]) which are making use of interval analysis have || | | | .
several drawbacks. They are listed in our previous pulitinat ! ‘ ‘ ‘ e
[22],[23], [24],[26], [16]. | U ddedinera PO

In our opinion the main drawback is the lack of a solution b
X to the most simple fuzzy arithmetic equation up ! )

A+X=C 1)
y

with known fuzzy numbersd and C. If the support ofC is ]
greater than that oft a unique solution in the form of a fuzzy ’ .
number X exists. However, this is the only case, since for — S | | >
A with larger support than that of C the solution does not a) 9
exist. Another drawback is related to the fact that in gelnera
A+ B — A is not equal toB. Fig. 1. a) Example of an ordered fuzzy number; b) constracté the

; embership function; c) the arrow denotes the orientatioth the order of
The goal of the authors of the previous papers [22], [2 hverted functions: firstf and theng.

[24], [25], [27] was to overcome the above mentioned draw-
backs by constructing a revised concept of fuzzy number and
at the same time to have the algebra of crisp (non-fuzzy)
numbers inside the concept.

In our investigations we wanted to omit, to some extendPefinition 1. By an ordered fuzzy numbeA we mean an
the arithmetic based on the-cut of membership functions of ordered pair( f, g) of functions such thaf, g : [0,1] — R are
fuzzy numbers (sets), and to be close to the operations kno@@ntinuous.
from the real line. It was noticed by Dubois and Prade [7] in Notice that in our definition we do not require that two
2005, (and repeated recently in [9]) after our definitionhad t continuous functionsf and g are (partial) inverses of some
ordered fuzzy numbel26] had been given, that the concepmembership function. Moreover, it may happen that member-
of fuzzy number is too close to the concept of interval. Owhip function corresponding td does not exist. We call the
new concept makes it possible to utilize the fuzzy arithmettorresponding elementg—the up-part ang—the down-part
in a simple way and to construct an Abelian group of fuzzgf the fuzzy numberd. To be in agreement with further and
numbers, and then an algebra. At the same time the new moelaksical denotations of fuzzy sets (numbers), the incgen
contains the cone of convex fuzzy numbers. The definitiofariable of the both functiong andy is denoted by, and their
presented here contains all continuous convex fuzzy nusnbetalues byz. The continuity of both parts implies their images
however, its recent enlargement presented in [19] incladles are bounded intervals, say P and DOW N, respectively
convex fuzzy numbers. Moreover, the new model contaifsig. 1). We have used symbols to mark boundaries for
more elements and each convex fuzzy number leads to tWid = [l4, 1] and for DOWN = [17,pa]. In general, the
different new fuzzy numbers, called here thedered fuzzy functions f and g need not to be invertible as functions of
numbers which differ by their orientation. This will becomey, only continuity is required. If we assume, however, that 1)
more evident later. Additionally, in turns out that the fouthey are monotonoug: is increasing, ang is decreasing, and
main operations introduced are very suitable for algorithnsuch that 2)f < g (pointwise), we may define the membership
sation. We should stress, however, that the arithmetic @f tfunction u(z) = f~'(x), if z € [f(0),f(1)] = [la,15],
new model restricted to convex (continuous) fuzzy numbeasd p(z) = g~ '(z), if = € [g(1),9(0)] = [1%,pa] and
gives different results in comparison to that of the intérvéziu(z) = 1 whenz € [15,1%]. In this way we obtain the
arithmetic. This is evident already in the scalar multigtion membership functionziy(z),z € R. When the functionsf
and subtraction. However, this gives us the chance to soled/org are not invertible or the condition 2) is not satisfied
the arithmetic equation (1) for any pair of fuzzy numbelrs then in the plane —y the membership curve (or relation) can
andC. be defined, composed of the graphsfofind ¢ and the line

The organization of the paper is as follows. In Section 2= 1 over the core{x € [f(1),g(1)]}.
we repeat our main definition and basic properties of extnde Notice that in generalf(1) needs not be less thag(1)
model of fuzzy numbers presented in the series of papers [1Which means that we can reach improper intervals, which
[16], [21], [22], [23], [24], [25], [26]. Then defuzzificatih have been already discussed in the framework of the extended
functionals are discussed. First, the linear case, then fheerval arithmetic by Kaucher [11]. In such case Prokomawi
nonlinear one. Then a counterpart of the Mamdani centeas introduced in [33] theorrespondingnembership function
of gravity defuzzification functional is derived. In the finawhich can be defined by the formulae:
section conclusions together with numerical results of som
experiments with implementations of the derived formula ar p(x) = maxarg{f(y) = z,g(y) = =} 2
presented. if x € Rangéf) U Rangéy) ,

BASIC PROPERTIES OFORDEREDFUZzzY NUMBERS
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wa)=1 if xe[f(1),9(1)]Ug(1), f(1)], (3) and continuous functional on the Banach spadg([0, 1]) is
and u(z) = 0, otherwise (4) uniquely determined by a Radon measuren S such that

where one of the intervalg' (1), g(1)] or [g(1), f(1)] may be o(f) = (s)v(ds) where f € C([0,1]) .  (6)
empty, depending on the sign ¢f1) — g(1), (i.e., if the sign [0,1]

is —1 then the second interval is empty). It is useful to remind that a Radon measure is a regular signed

Borel measure (or differently: a difference of two positive

Borel measures). A Boreal measure is a measure defined on
Let R be a universe of all OFN'’s. Notice that this set i€ o-additive family of subsets df), 1] which contains all open

composed of all pairs of continuous functions defined on tissibsets.

closed interval = [0, 1], and is isomorphic to the linear space However, on the intervdD, 1] each Radon measure is repre-

of real 2D-vector valued functions defined on the unit inéérvsented by a Stieltjes integral [29] with respect to a funttd

A. Norm and partial order

1 with the norm ofR as follows a bounded variation. Hence we can say that for any continuous
_ functional ¢ on C(]0,1]) there is a function of bounded
IIA]l = maX(Sul? |fA(5)|,SUI}> lga(s)]) if A= (fa,94) . variation i, such that
ES sE
1
The spaceR is topologically a Banach space. Theutral o(f) = / F(s)dhg(s) where f € C([0,1]) . @)
element of addition inR is a pair of constant functions equal 0

to crisp zero. It is also @8anach algebra with unity: the

multiplication has a neutral element — the pair of two comlSta(7) any linear and bounded functional on the spaceR can

funcﬂons_equal to one, |.e.,_the_ crisp one. be identified with a pair of functions of bounded variation
A relation of partial ordering in R can be introduced by through the following relationship

defining the subset ofpbsitive’ ordered fuzzy numbers: a

Hence we may say that due to the representations (6) and

numberA = (f, g) is not less than zero, and by writing 1 1
o(h.9) = [ $&)ie) + [ gsanals) @
A>0 iff f>0,9>0. (5) 0 0
) ) ) where the pair of continuous functiofig, g) € R represents
In this way the sefR becomes a partially ordered ring. an ordered fuzzy number ankh,h. are two functions of

bounded variation off0, 1].
From the above formula an infinite number of defuzzifica-

Defuzzification is a main operation in fuzzy controllers anton procedures can be defined. The standard defuzzification
fuzzy inference systems where fuzzy inference rules appgiocedure in terms of the area under the membership relation
in the course of which to a membership function representifgn be defined; it is realized by a linear combinations of two
classical fuzzy set a real number is attached. We knowl§Pesgue measures @ 1. In the present case, however, the
number of defuzzification procedures from the literatuiacg @area is calculated in thg-variable, since the ordered fuzzy
classical fuzzy numbers are particular case of fuzzy sets ffumber is represented by a pair of continuous functions in
same problem appears when rule’s consequent part is a fu¥§ v variable (cf. (2)). Moreover, to each point [0,1]
number. Then the problem arises what can be done whe® &irac delta (an atom) measure can be related, and such
generalization of classical fuzzy number in the form of afi Measure represents a linear and bounded functional which
ordered fuzzy number follows? Are the same defuzzificatidR@lizes the corresponding defuzzification procedure skioh
procedures applicable? The answer is partial positivenef t& functional, a sum (or in a more general case — a linear
ordered fuzzy number iproper one, i.e. its membership combinationu f(s)+bg(s)) of their values is attached to a pair
relation is a function, then the same procedure can be applief functions(f, g) at this point.

What to do, however, when the number is improper’ i.e. theFOf example, if we take the Dirac atomic measure concen-
membership relation is by no means of functional type? trated ats = 1, and define

In the case of fuzzy rules in which ordered fuzzy numbers
appear as their consequent part we need to introduce a new
defuzzification procedure. In this case the concept of fun&merﬁ1
tional, even linear, which maps elements of the Banach SPAGG 7 7ifi
into reals, will be useful.

The Banach spac® with its Tichonov product topology
of Q([O, 1]) x C’(_[O, 1]), with C(]0, 1]) the Banach space of dm(A) = afa(l) +bga(1) 9)
continuous functions of0, 1], may lead to a general represen-
tation of linear and continuous functional @ According to and ifa + b = 1/2, then it is a mean value of both functions
the Banach-Kakutami-Riesz representation theorem aggiin (from the core off4 andg,).

IIl. REPRESENTATION OFDEFUZZIFICATION FUNCTIONAL

vy = a51 i Vo = b61

is the atomic measure dfl}, then the value of the
cation operator (functional) in (8), denoted hése
om and calculated atl = (fa,g4) will be
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A different choice of the measures may lead to the surfaisea defuzzification operator, nonlinear in general. To nthke
area under the graph of the function, and the first moment métation short we will write
inertia. For example, if
Fo(p1,02, ., 0k) = Fp1, 02, ..., ). (13)
v1 = a(s)A andrs = b(s)A
Theorem. Let A C R be a compact subset of the space of all
where )\ is the Lebesgue measure of the interfeall] of the ordered fuzzy numbefg, and letD be the set of all linear and
real line, andi(s), b(s) are integrable functions on the intervalcontinuous functionals defined oy and letG be the set of all
then in the case of a positive oriented number= (f4,94) multivariant continuous functions defined on the approtaria
with f4 < ga and Cartesian product of the set of real numbers. Then thelset
composed of all possible compositions (superpositionf)ef
b(s) = —a(s) =1 (10)  type (12) whereF is from G and o1, s, ..., o are fromD,
the defuzzification functional (8) calculated At= (f4,g4) With arbitrary k, is dense in the spacR® of all continuous

will give the surface area contained between graphgsoéind  functionals fromR into realsR. _
ga. If, however, in (10) we put The proof based on the classical Stone—\Weierstrass theorem

will be published in another paper.
b(s) = —a(s) =s (11)
V. CENTER OFGRAVITY

we will get the first moment of inertia of this area. ) ) ) )
Let us stay with the case of nonlinear functionals. It will

IV. NONLINEAR DEFUZZIFICATION FUNCTIONALS be a functional corresponding to that know for convex fuzzy

It is evident that nonlinear and multivariant function com[]umbers and representing the center of gravity of the area un

" . . . ) .~ der the graph of the membership function. In the case of OFN
positions of linear functionals will lead to nonlinear defi . . o
o . . . . _the membership function does not exist, in general, however
fication functionals. For example, a ratio being a nonlinear ; .
- : . ) we may follow to some extend the previous construction.
composition of two linear functionals, where the first one is Let consider an ordered fuzzv numbér— ven in
the first moment and the second . the surface area, discus'gle 4. sincef(g) > g(s) for anysye 0,1] tgergféfl)a%ding an
in the previous subsection, may lead to the center of gravity?" ™ . ot T :
) . terval (perpendicular to the-axis) which joints the points
known from the Mamdani approach, however, with respect t? f(l))(gndp(l g(1)) we get a figLre (an f’;\rea) bour?ded by
= y variable. ’ ’ . L
) Néjw we can state a uniform approximation theorem cort1r—]e graphs off(s) and g(s), and thet-axis. Our aim is to
X e PP . determine theg—th coordinate of the center of gravity of this
cerning the defuzzification operators (functionals). Tie #nd .
let us use the following denotation. Let € R be a subset figure.
) : . Assuming, as it is natural, that the density of each point
of all ordered fuzzy number® formed of pairs of functions of the fi ur?a is the same and equal to one f?/rst we cakF:)uIate
which are equi-continuous and equi-bounded. Notice thoam fr 9 q ’

the theorem of Ascoli-Arzela [36] it follows that a subset o%h(? moment of inertia of this figure with respect to the

C([0,1]) is compact if its elements are equi-continuous anzfr?sr' Hmerrtlaf ?en?t?nszn\g”a?tle' tL?jt T)S tc\:/s)ns:]det[]a d|fferr§ir;]tlatll
equi-bounded. ByG we denote the set of all multivariant cremental) elementls situated betwee € coordinate

continuous functions defined on the appropriate CarteSi\éﬁlg\?jiis?:gnizn?[distrlﬁecorr(;?jiz?ggltﬂg g:g;ear?; :L‘S lz%u;ﬁ
product of the set of real numbers. In other worlse G ' y P 9

if there is a natural number such that? : R* — R and F' is of the arm with respect the-axis, which is the local center of

continuous in the natural norm &". By D we denote the set grqvity. The (incremental).area Is gqual [‘ﬁs.l) - 9(51.)]d5’
of all linear and continuous functionals defined dnc R while the center of gravity of this area (its-coordinate)

(compare (8)). Here we could identify the sBt with the can be approxw??;e;j_by(tsh()a middle po?(tso)fihe(;n;[erval of

adjoint spaceR* since each continuous (bounded) and lineag(s1), f(s1)] as 18— 9% g(s1) = )T 9%

functional on the whole spac® is a also continuous, linear Hence we have for the moment of inertia of this differential

functional on each subspace, hence on the sulbbskltoreover, (incremental) area element the expression

each continuous, linear functional on a subspdce R can

be extended to the whole spaRe thanks to the Hahn-Banach M[f(sl) — g(s1))ds.

theorem [36]. Let us use the denotati@? for the space of 2

all continuous (not necessarily linear) functionals fr&rnnto  Since the points; has been chosen quite arbitrarily, the

realsR. Notice thatR® D R*. moment of inertia of the whole figure bounded by the graphs
If a function F' of k variables is fronG andy1, ¢, ..., o €  0of the functionsf andg, t—axis and the interval bounding the

D then their superpositio’ o (¢1, 2, ..., pr) is a function points(1, f(1)) and (1, g(1)), will be the integral

from D into R, i.e., the functional

1
Fo(p1,92,....0r) : D—= R, with F € G, v1,02,....,0r €D M :/M[ﬂs) —g(9)]ds (24)
(12) 0
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Let P be the mass of the figure equal to the area of tt " ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
whole figure, due to our assumption about the homogenec ol 7
. . . g(s)=—10s+33
distribution of the mass, |

30

1 28l

P= [15) - glo)ds. as) =

0 241

Now we use the classical balance equation of inertial mome sl
tum which states that the moment of inerfid is equal to C0G=19.98 |
the product of the mass of the figure and the armr (of

the figure, which is theé coordinate of the global center of

gravity),

141
12}

M=P-r. (16)

) . o % 01 02 03 04 05 06 o7 08 08 1
The coordinater is wanted value of the defuzzification s
functional representing the center of gravity. Having the

expressions (14) and (15) we end up with the f0||owin§ig. 2. Ordered fuzzy numbers with affine functiofisg and its center of

expression for the center of gravity defuzzification fuoctl 9%
¢¢ calculated at OFNf, g)
15 T T T T
1 1 14 f(s):853—652+1 — 1
satfog) = [ HEIN f)—g(onast [170)-g(olasy 2 “/ o
0 0 11f b
(17) 0—— ,
We can see that the functionak;, denoted on the figures o

below by COG, is nonlinear. Our derivation is based onthe E___ = ;|

(16) and the assumption that the functiffs) > ¢(s) which 6r

may not be fulfilled in any case. However, if the opposit i: |
inequality holds the value does not change. The case wt 3l

the none of them is true is more complex, we are goin i\//
however, to adapt this representation for any ordered fuz o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
number(f, g) 0 0.1 0.2 0.3 0.4 055 0.6 0.7 0.8 0.9 1

VI. CONCLUSIONS Fig. 3. Ordered fuzzy numbers with polynomial functiohs; and its center

The ordered fuzzy numbers are tool for describing arffigravity.
processing vague information. They expand existing ideas.

Their "good"zj algebra opens new areas for calculations. . , .
. : . uzzy modeling, control and finance have been presented in
Beside that, new propertyefientationcan open new areas for ;o
the recent publications [17],[19].

using fuzzy numbers. Important fact (in authors’ opinios) i . . . .
g Y P ( P ) Numerical results of implementations of the derived foranul

that thanks to OFNs we can supply without complication tq%r the center of gravity functionab; —:COG from Eq. (17)
classical field of fuzzy numbers with new ideas. We can USE 6 ordered fuzzy numbers wifh tHe functioﬁsand.g of

; . 0
the OFNSs instead of convex fuzzy numbers, and if we ne g o : ) .
. . & affine type (Fig. 2) and of the polynomial type (Fig. 3),
to use extended properties we can use them easily. One O . : ;
. . : . respectively, are presented below. On the figures the variab
directions of the future work with the OFNs is the constroicti . I
i o . t corresponds ta;, and the variable to y, in Fig.1.
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