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Abstract—Classical convex fuzzy numbers have many disad-
vantages. The main one is that every operation on this type
of fuzzy numbers induces the growing fuzziness level. Another
drawback is that the arithmetic operations defined for them
are not complementary, for instance: addition and subtraction.
Therefore the first author (W. K.) with his coworkers has pro-
posed the extended model called ordered fuzzy numbers (OFN).
The new model overcomes the above mentioned drawbacks and
at the same time has the algebra of crisp (non-fuzzy) numbers
inside. Ordered fuzzy numbers make possible to utilize the fuzzy
arithmetic and to construct the Abelian group of fuzzy numbers
and then an algebra. Moreover, in turn out, that four main
operations introduced are very suitable for their algorithmisation.
The new attitudes demand new defuzzification operators. In
the linear case they are described by the well–know functional
representation theorem valid in function Banach spaces. The case
of nonlinear functionals is more complex, however, it is possible to
prove general, uniform approximation formula for nonlinear and
continuous functionals in the Banach space of OFN. Counterparts
of defuzzification functionals known in the Mamdani approach
are also presented, some numerical experimental results are given
and conclusions for further research are drawn.

I. I NTRODUCTION

CLASSICAL fuzzy numbers are very special fuzzy sets
defined on the universe of all real numbers. Fuzzy

numbers are of great importance in fuzzy systems. In the
applications, the triangular and the trapezoidal fuzzy numbers
are usually used.

There are two commonly accepted methods of dealing
with fuzzy numbers, both basing on the classical concept of
fuzzy sets, namely on the membership functions. The first,
more general approach deals with the so-called convex fuzzy
numbers of Nguyen [31], while the second one deals with
shape functions andL − R numbers, set up by Dubois and
Prade [6].

When operating on convex fuzzy numbers we have the inter-
val arithmetic for our disposal. However, the approximations
of shape functions and operations are needed, if one wants
to remain within theL − R numbers while following the
Zadehïż¡s extension principle [38]. In this representation
(in most cases) calculation results are not exact and are

questionable if some rigorous and exact data are needed, e.g.
in the control or modeling problems. This can be treated
as a drawback of the properties of classical fuzzy algebraic
operations.

In the literature, moreover, it is well know that unexpected
and uncontrollable results of repeatedly applied operations,
caused by the need of making intermediate approximations
(remarked in [34],[35]) can appear. This rises the heavy argu-
ment for those who still criticize the fuzzy number calculus.
Fortunately, it was already noticed by both Dubois and Prade
in their recent publication [8] that something is missing inthe
definition of the fuzzy numbers and the operations on them.

In most cases one assumes that a typical membership
function ï̇z¡µA of a fuzzy numberA satisfies convexity as-
sumptions requiring after Nguyen [31] allα-cuts and the
support of A to be convex subsets ofR. At this stage it
seems necessary to recall both notions used: theα-cut of
A is a (classical) setA[α] = {x ∈ R : µA(x) ≥ α}, for
eachα ∈ [0, 1]}, and the support ofA is the (classical) set
supp(A) = {x ∈ R : µA(x) > 0}. One additionally assumes
[2], [3], [5], [12], [31], [34] that the convex fuzzy numberA
has itscore, i.e. the (classical) set of thosex ∈ R for which its
membership functionµA(x) = 1, which is not empty and its
support is bounded. Then the arithmetic of fuzzy numbers can
be developed using both the Zadeh’s extension principle [38],
[39] and theα-cut with interval arithmetic method [12].

As long as one works with fuzzy numbers that possess
continuous membership functions, the two procedures: the
extension principle and theα − cut and interval arithmetic
method give the same results (cf. [2]). The results of mul-
tiple operations on convex fuzzy numbers are leading to a
large growth of the fuzziness, and depend on the order of
the operations since the distributive law, which involves the
interaction of addition and multiplication, does hold there.
Moreover, the use of the extension principle in the definition
of the arithmetic operations on fuzzy numbers is generally
numerically inefficient. These operations cannot be equipped
with a linear structure and hence no norm can be defined
on them. Standard algebraic operations on fuzzy numbers
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basing on the Zadehïż¡s extension principle and those for
fuzzy numbers ofL − R type or convex fuzzy numbers
(see [5]) which are making use of interval analysis have
several drawbacks. They are listed in our previous publications
[22],[23], [24],[26], [16].

In our opinion the main drawback is the lack of a solution
X to the most simple fuzzy arithmetic equation

A + X = C (1)

with known fuzzy numbersA and C. If the support ofC is
greater than that ofA a unique solution in the form of a fuzzy
numberX exists. However, this is the only case, since for
A with larger support than that of C the solution does not
exist. Another drawback is related to the fact that in general
A + B − A is not equal toB.

The goal of the authors of the previous papers [22], [23],
[24], [25], [27] was to overcome the above mentioned draw-
backs by constructing a revised concept of fuzzy number and
at the same time to have the algebra of crisp (non-fuzzy)
numbers inside the concept.

In our investigations we wanted to omit, to some extend,
the arithmetic based on theα–cut of membership functions of
fuzzy numbers (sets), and to be close to the operations known
from the real line. It was noticed by Dubois and Prade [7] in
2005, (and repeated recently in [9]) after our definition of the
ordered fuzzy number[26] had been given, that the concept
of fuzzy number is too close to the concept of interval. Our
new concept makes it possible to utilize the fuzzy arithmetic
in a simple way and to construct an Abelian group of fuzzy
numbers, and then an algebra. At the same time the new model
contains the cone of convex fuzzy numbers. The definition
presented here contains all continuous convex fuzzy numbers,
however, its recent enlargement presented in [19] includesall
convex fuzzy numbers. Moreover, the new model contains
more elements and each convex fuzzy number leads to two
different new fuzzy numbers, called here theordered fuzzy
numbers, which differ by their orientation. This will become
more evident later. Additionally, in turns out that the four
main operations introduced are very suitable for algorithmi-
sation. We should stress, however, that the arithmetic of the
new model restricted to convex (continuous) fuzzy numbers
gives different results in comparison to that of the interval
arithmetic. This is evident already in the scalar multiplication
and subtraction. However, this gives us the chance to solve
the arithmetic equation (1) for any pair of fuzzy numbersA
andC.

The organization of the paper is as follows. In Section 2
we repeat our main definition and basic properties of extended
model of fuzzy numbers presented in the series of papers [15],
[16], [21], [22], [23], [24], [25], [26]. Then defuzzification
functionals are discussed. First, the linear case, then the
nonlinear one. Then a counterpart of the Mamdani center
of gravity defuzzification functional is derived. In the final
section conclusions together with numerical results of some
experiments with implementations of the derived formula are
presented.

Fig. 1. a) Example of an ordered fuzzy number; b) construction of the
membership function; c) the arrow denotes the orientation and the order of
inverted functions: firstf and theng.

II. BASIC PROPERTIES OFORDEREDFUZZY NUMBERS

Definition 1. By an ordered fuzzy numberA we mean an
ordered pair(f, g) of functions such thatf, g : [0, 1] → R are
continuous.

Notice that in our definition we do not require that two
continuous functionsf and g are (partial) inverses of some
membership function. Moreover, it may happen that member-
ship function corresponding toA does not exist. We call the
corresponding elements:f—the up-part andg—the down-part
of the fuzzy numberA. To be in agreement with further and
classical denotations of fuzzy sets (numbers), the independent
variable of the both functionsf andg is denoted byy, and their
values byx. The continuity of both parts implies their images
are bounded intervals, sayUP and DOWN , respectively
(Fig. 1). We have used symbols to mark boundaries for
UP = [lA, 1−A] and for DOWN = [1+

A, pA]. In general, the
functionsf and g need not to be invertible as functions of
y, only continuity is required. If we assume, however, that 1)
they are monotonous:f is increasing, andg is decreasing, and
such that 2)f ≤ g (pointwise), we may define the membership
function µ(x) = f−1(x), if x ∈ [f(0), f(1)] = [lA, 1−A],
and µ(x) = g−1(x), if x ∈ [g(1), g(0)] = [1+

A, pA] and
ïż¡µ(x) = 1 when x ∈ [1−A, 1+

A]. In this way we obtain the
membership function ïż¡µ(x), x ∈ R. When the functionsf
and/org are not invertible or the condition 2) is not satisfied
then in the planex−y the membership curve (or relation) can
be defined, composed of the graphs off and g and the line
y = 1 over the core{x ∈ [f(1), g(1)]}.

Notice that in generalf(1) needs not be less thang(1)
which means that we can reach improper intervals, which
have been already discussed in the framework of the extended
interval arithmetic by Kaucher [11]. In such case Prokopowicz
has introduced in [33] thecorrespondingmembership function
which can be defined by the formulae:

µ(x) = max arg{f(y) = x, g(y) = x} (2)

if x ∈ Range(f) ∪ Range(g) ,
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µ(x) = 1 if x ∈ [f(1), g(1)] ∪ [g(1), f(1)], (3)

andµ(x) = 0, otherwise, (4)

where one of the intervals[f(1), g(1)] or [g(1), f(1)] may be
empty, depending on the sign off(1)− g(1), (i.e., if the sign
is −1 then the second interval is empty).

A. Norm and partial order

Let R be a universe of all OFN’s. Notice that this set is
composed of all pairs of continuous functions defined on the
closed intervalI = [0, 1], and is isomorphic to the linear space
of real 2D-vector valued functions defined on the unit interval
I with the norm ofR as follows

||A|| = max(sup
s∈I

|fA(s)|, sup
s∈I

|gA(s)|) if A = (fA, gA) .

The spaceR is topologically a Banach space. Theneutral
element of addition inR is a pair of constant functions equal
to crisp zero. It is also aBanach algebra with unity: the
multiplication has a neutral element – the pair of two constant
functions equal to one, i.e., the crisp one.

A relation of partial ordering in R can be introduced by
defining the subset of ‘positive’ ordered fuzzy numbers: a
numberA = (f, g) is not less than zero, and by writing

A ≥ 0 iff f ≥ 0, g ≥ 0 . (5)

In this way the setR becomes a partially ordered ring.

III. R EPRESENTATION OFDEFUZZIFICATION FUNCTIONAL

Defuzzification is a main operation in fuzzy controllers and
fuzzy inference systems where fuzzy inference rules appear,
in the course of which to a membership function representing
classical fuzzy set a real number is attached. We know a
number of defuzzification procedures from the literature. Since
classical fuzzy numbers are particular case of fuzzy sets the
same problem appears when rule’s consequent part is a fuzzy
number. Then the problem arises what can be done when a
generalization of classical fuzzy number in the form of an
ordered fuzzy number follows? Are the same defuzzification
procedures applicable? The answer is partial positive: if the
ordered fuzzy number isproper one, i.e. its membership
relation is a function, then the same procedure can be applied.
What to do, however, when the number is improper, i.e. the
membership relation is by no means of functional type?

In the case of fuzzy rules in which ordered fuzzy numbers
appear as their consequent part we need to introduce a new
defuzzification procedure. In this case the concept of func-
tional, even linear, which maps elements of the Banach space
into reals, will be useful.

The Banach spaceR with its Tichonov product topology
of C([0, 1]) × C([0, 1]), with C([0, 1]) the Banach space of
continuous functions on[0, 1], may lead to a general represen-
tation of linear and continuous functional onR. According to
the Banach-Kakutami-Riesz representation theorem any linear

and continuous functional̄φ on the Banach spaceC([0, 1]) is
uniquely determined by a Radon measureν on S such that

φ̄(f) =

∫
[0,1]

f(s)ν(ds) where f ∈ C([0, 1]) . (6)

It is useful to remind that a Radon measure is a regular signed
Borel measure (or differently: a difference of two positive
Borel measures). A Boreal measure is a measure defined on
a σ-additive family of subsets of[0, 1] which contains all open
subsets.

However, on the interval[0, 1] each Radon measure is repre-
sented by a Stieltjes integral [29] with respect to a function of
a bounded variation. Hence we can say that for any continuous
functional φ̄ on C([0, 1]) there is a function of bounded
variationhφ such that

φ̄(f) =

∫ 1

0

f(s)dhφ(s) where f ∈ C([0, 1]) . (7)

Hence we may say that due to the representations (6) and
(7) any linear and bounded functionalφ on the spaceR can
be identified with a pair of functions of bounded variation
through the following relationship

φ(f, g) =

∫ 1

0

f(s)dh1(s) +

∫ 1

0

g(s)dh2(s) (8)

where the pair of continuous functions(f, g) ∈ R represents
an ordered fuzzy number andh1, h2 are two functions of
bounded variation on[0, 1].

From the above formula an infinite number of defuzzifica-
tion procedures can be defined. The standard defuzzification
procedure in terms of the area under the membership relation
can be defined; it is realized by a linear combinations of two
Lebesgue measures of[0, 1]. In the present case, however, the
area is calculated in they-variable, since the ordered fuzzy
number is represented by a pair of continuous functions in
the y variable (cf. (2)). Moreover, to each points ∈ [0, 1]
a Dirac delta (an atom) measure can be related, and such
a measure represents a linear and bounded functional which
realizes the corresponding defuzzification procedure. Forsuch
a functional, a sum (or in a more general case – a linear
combinationaf(s)+bg(s)) of their values is attached to a pair
of functions(f, g) at this point.

For example, if we take the Dirac atomic measure concen-
trated ats = 1, and define

ν1 = aδ1 i ν2 = bδ1

whereδ1 is the atomic measure of{1}, then the value of the
defuzzification operator (functional) in (8), denoted hereby
φm and calculated atA = (fA, gA) will be

φm(A) = afA(1) + bgA(1) (9)

and if a + b = 1/2, then it is a mean value of both functions
(from the core offA andgA).
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A different choice of the measures may lead to the surface
area under the graph of the function, and the first moment of
inertia. For example, if

ν1 = a(s)λ andν2 = b(s)λ

whereλ is the Lebesgue measure of the interval[0, 1] of the
real line, anda(s), b(s) are integrable functions on the interval,
then in the case of a positive oriented numberA = (fA, gA)
with fA ≤ gA and

b(s) = −a(s) = 1 (10)

the defuzzification functional (8) calculated atA = (fA, gA)
will give the surface area contained between graphs offA and
gA. If, however, in (10) we put

b(s) = −a(s) = s (11)

we will get the first moment of inertia of this area.

IV. N ONLINEAR DEFUZZIFICATION FUNCTIONALS

It is evident that nonlinear and multivariant function com-
positions of linear functionals will lead to nonlinear defuzzi-
fication functionals. For example, a ratio being a nonlinear
composition of two linear functionals, where the first one is
the first moment and the second . the surface area, discussed
in the previous subsection, may lead to the center of gravity
known from the Mamdani approach, however, with respect to
s = y variable.

Now we can state a uniform approximation theorem con-
cerning the defuzzification operators (functionals). To this end
let us use the following denotation. LetA ⊂ R be a subset
of all ordered fuzzy numbersR formed of pairs of functions
which are equi-continuous and equi-bounded. Notice that from
the theorem of Ascoli-Arzelà [36] it follows that a subset of
C([0, 1]) is compact if its elements are equi-continuous and
equi-bounded. ByG we denote the set of all multivariant
continuous functions defined on the appropriate Cartesian
product of the set of real numbers. In other wordsF ∈ G
if there is a natural numberk such thatF : Rk → R andF is
continuous in the natural norm ofRk. By D we denote the set
of all linear and continuous functionals defined onA ⊂ R
(compare (8)). Here we could identify the setD with the
adjoint spaceR∗ since each continuous (bounded) and linear
functional on the whole spaceR is a also continuous, linear
functional on each subspace, hence on the subsetA. Moreover,
each continuous, linear functional on a subspaceA ⊂ R can
be extended to the whole spaceR, thanks to the Hahn-Banach
theorem [36]. Let us use the denotationR⋄ for the space of
all continuous (not necessarily linear) functionals fromR into
realsR. Notice thatR⋄ ⊃ R∗.

If a functionF of k variables is fromG andϕ1, ϕ2, ..., ϕk ∈
D then their superpositionF ◦ (ϕ1, ϕ2, ..., ϕk) is a function
from D into R, i.e., the functional

F ◦(ϕ1, ϕ2, ..., ϕk) : D → R, with F ∈ G, ϕ1, ϕ2, ..., ϕk ∈ D
(12)

is a defuzzification operator, nonlinear in general. To makethe
notation short we will write

F ◦ (ϕ1, ϕ2, ..., ϕk) =: F (ϕ1, ϕ2, ..., ϕk). (13)

Theorem. LetA ⊂ R be a compact subset of the space of all
ordered fuzzy numbersR, and letD be the set of all linear and
continuous functionals defined onA, and letG be the set of all
multivariant continuous functions defined on the appropriate
Cartesian product of the set of real numbers. Then the setH
composed of all possible compositions (superpositions) ofthe
type (12) whereF is from G and ϕ1, ϕ2, ..., ϕk are fromD,
with arbitrary k, is dense in the spaceR⋄ of all continuous
functionals fromR into realsR.
The proof based on the classical Stone–Weierstrass theorem
will be published in another paper.

V. CENTER OFGRAVITY

Let us stay with the case of nonlinear functionals. It will
be a functional corresponding to that know for convex fuzzy
numbers and representing the center of gravity of the area un-
der the graph of the membership function. In the case of OFN
the membership function does not exist, in general, however,
we may follow to some extend the previous construction.

Let consider an ordered fuzzy numberA = (f, g) given in
Fig.4. Sincef(g) > g(s) for any s ∈ [0, 1] then by adding an
interval (perpendicular to thes-axis) which joints the points
(1, f(1)) and (1, g(1)) we get a figure (an area) bounded by
the graphs off(s) and g(s), and thet–axis. Our aim is to
determine thet–th coordinate of the center of gravity of this
figure.

Assuming, as it is natural, that the density of each point
of the figure is the same and equal to one, first we calculate
the moment of inertia of this figure with respect to thet–
axis. Heret denotesx variable. Let us consider a differential
(incremental) elementds situated between the coordinate
valuess1 and s2 and the corresponding piece of the figure
above. Its momentMs is the product of the area and the length
of the arm with respect thet–axis, which is the local center of
gravity. The (incremental) area is equal to[f(s1) − g(s1)]ds,
while the center of gravity of this area (itst–coordinate)
can be approximated by the middle point of the interval of

[g(s1), f(s1)] as
f(s1) − g(s1)

2
+ g(s1) =

f(s1) + g(s1)

2
.

Hence we have for the moment of inertia of this differential
(incremental) area element the expression

f(s1) + g(s1)

2
[f(s1) − g(s1)]ds .

Since the points1 has been chosen quite arbitrarily, the
moment of inertia of the whole figure bounded by the graphs
of the functionsf andg, t–axis and the interval bounding the
points(1, f(1)) and (1, g(1)), will be the integral

M =

1∫

0

f(s) + g(s)

2
[f(s) − g(s)]ds (14)
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Let P be the mass of the figure equal to the area of the
whole figure, due to our assumption about the homogeneous
distribution of the mass,

P =

1∫

0

[f(s) − g(s)]ds . (15)

Now we use the classical balance equation of inertial momen-
tum which states that the moment of inertiaM is equal to
the product of the mass of the figureP and the armr (of
the figure, which is thet coordinate of the global center of
gravity),

M = P · r . (16)

The coordinater is wanted value of the defuzzification
functional representing the center of gravity. Having the
expressions (14) and (15) we end up with the following
expression for the center of gravity defuzzification functional
φG calculated at OFN(f, g)

φG(f, g) =

1∫

0

f(s) + g(s)

2
[f(s)−g(s)]ds{

1∫

0

[f(s)−g(s)]ds}−1 .

(17)
We can see that the functionalφG, denoted on the figures

below by COG, is nonlinear. Our derivation is based on the Eq.
(16) and the assumption that the functionf(s) ≥ g(s) which
may not be fulfilled in any case. However, if the opposite
inequality holds the value does not change. The case when
the none of them is true is more complex, we are going,
however, to adapt this representation for any ordered fuzzy
number(f, g).

VI. CONCLUSIONS

The ordered fuzzy numbers are tool for describing and
processing vague information. They expand existing ideas.
Their "good"ï̇z¡ algebra opens new areas for calculations.
Beside that, new property –orientationcan open new areas for
using fuzzy numbers. Important fact (in authors’ opinion) is
that thanks to OFNs we can supply without complication the
classical field of fuzzy numbers with new ideas. We can use
the OFNs instead of convex fuzzy numbers, and if we need
to use extended properties we can use them easily. One of
directions of the future work with the OFNs is the construction
of new class of nonlinear defuzzification functionals based
on required properties. The above problem may have several
solutions; however, one can look for one of them with the help
of Theorem . Since the Weierstrass theorem states that each
continuous function (of many variables) defined on a compact
set can be approximated with a given accuracy by a polynomial
(of many variables) of an appropriate, i.e., sufficiently high
order, then with the use of our final result the familyH
may be taken as a set of polynomials of many variables. In
the recent papers [18], [20] propositions concerning specially
dedicated evolutionary algorithms for the determination of the
approximate form of the functional have been discussed. Some
interpretations and applications of the present approach to
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Fig. 2. Ordered fuzzy numbers with affine functionsf, g and its center of
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Fig. 3. Ordered fuzzy numbers with polynomial functionsf, g and its center
of gravity.

fuzzy modeling, control and finance have been presented in
the recent publications [17],[19].

Numerical results of implementations of the derived formula
for the center of gravity functionalφG =:COG from Eq. (17)
for two ordered fuzzy numbers, with the functionsf andg of
the affine type (Fig. 2) and of the polynomial type (Fig. 3),
respectively, are presented below. On the figures the variable
t corresponds tox, and the variables to y, in Fig.1.

REFERENCES

[1] Buckley James J. (1992), Solving fuzzy equations in economics and
finance,Fuzzy Sets and Systems, 48, 289–296.

[2] Buckley James J. and Eslami E. (2005),An Introduction to Fuzzy Logic
and Fuzzy Sets, Physica-Verlag, A Springer-Verlag Company, Heidelberg.

[3] Chen Guanrong, Pham Trung Tat, (2001),Fuzzy Sets, Fuzzy Logic, and
Fuzzy Control Systems, CRS Press, Boca Raton, London, New York,
Washington, D.C.

[4] Czogała E., Pedrycz W. (1985),Elements and Methods of Fuzzy Set
Theory(in Polish), PWN, Warszawa, Poland.

[5] Drewniak J.(2001), Fuzzy numbers (In Polish), in:Fuzzy Sets and their
Applications(In Polish),J. Chojcan, J. Łęski (Eds.), WPŚ, Gliwice, Poland,
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[27] Kosiński W., Słysz P.(1993), Fuzzy numbers and their quotient space
with algebraic operations,Bull. Polish Acad. Scien., 41/3 285—295.
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