
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 125–130

ISBN 978-83-60810-14-9
ISSN 1896-7094

Coalition formation in multi-agent
systems—an evolutionary approach

Wojciech Gruszczyk
Wrocław University of Technology

Computer Engineering
Email: 141044@student.pwr.wroc.pl

Halina Kwaśnicka
Wrocław University of Technology

Computer Engineering
Email: halina.kwasnicka@pwr.wroc.pl

Abstract—The paper introduces solution of Coalition Forma-
tion Problem (CFP) in Multi-Agents Systems (MAS) based on
evolutionary algorithm. The main aim of our study is to develop
an evolutionary based algorithm for creation of coalitionsof agent
for solving assumed tasks. We describe the coding schema and
genetic operators such as mutation, crossover and selection that
occurred to be efficient in solution of CFP. Last part of the
document provides a brief comment on our research results.

Index Terms—Coalition formation, evolutionary algorithm,
multi–agent systems

I. I NTRODUCTION

CONCEPT of agents (term agent will be used without
distinction between software and hardware agents) is

strongly connected with artificial intelligence (AI). Because
the term “agent” is defined in literature in many different ways
we will use definition first proposed in [7]:

Agent is software or hardware computer system that is/has:

1) Autonomous: agent takes actions without inter-
ference of a human and has control over taken
actions,

2) Social ability: agents communicate (between
themselves and/or with people),

3) Reactivity: agents have some perception of en-
vironment that they are part of and may react
to changes in the environment,

4) Activity: agents may take actions to change
their environment in order to achieve their
goals.

When the environment contains at least two agents we
talk about multi-agent system (MAS). Very often MAS are
distributed. Many aspects of such systems have been widely
discussed in literature. In this paper we present a new solution
of the problem of coalition formation (CFP).

A. Coalition Formation

Many tasks cannot be completed by a single agent because
of limited resources or capabilities of agents. Very often,even
if a task may be completed by a single agent, his performance
may occur too low to be acceptable. In such a situation
agents may form groups to solve the problem by cooperation.
Many organizational paradigms have been distinguished in the
context of MAS (see [9]). This work is focused on coalitions—
groups of cooperative agents, working together on a given task,

short-lived and goal-directed, being a flat structure. Initially
agents are independent and do not cooperate. When they
cannot complete their tasks individually agents may exchange
information and try to form coalitions which gives them best
efficiency (of course the efficiency must be defined in terms
of solved problem).

Evaluation of all possible shapes of coalitions depends
exponentially on the number of agents. For example having
m agents andn tasks to solve allnm coalitions (with each
coalition delegated to a particular task) must be evaluatedto
guarantee that the best coalition shape was found. Finding
the optimal partition of agents set by checking the whole
space may occur too expensive (in terms of time). Short
lifetime of coalition may lead to a situation when time of
computation is far longer than the time of existence of a
particular coalition. Therefore it may create a bottleneckof
a MAS. Many methods have been proposed to solve CFP.
Further part of the introductory chapter will give a short
summary of them.

B. CFP—a short overview

1) Any-time solution with worst case guarantee:Original
work given by [8] presents any-time solution with worst case
guarantee. The idea is based on a remark, that searching subset
of possible coalition shapes that contains all possible subsets
of the set of agents may guarantee quality of the solution.
That is why the best solution must consist of already searched
and evaluated subsets (best solution is not worse than the best
solution found so far). To make the idea clear [8] suggested
representing all partitions as a graph of coalition structures
(Fig. 1):

Level LVi denotes that the structures belonging to this level
consist of i coalitions. SearchingLV1 andLV2 assures that all
subsets have been checked and may provide guarantee on the
result. Then [8] suggests searching bottom up (in the picture
levels LV4, LV3). Checking all coalition structures leads to
brute force search and worst case guarantees are low before
huge amount of the space has been searched (as shown in [5]).

2) Distributed algorithm: Distributed algorithms for solv-
ing CFP are proposed (among others) in [2] and [5]. The solu-
tion proposed in [5] (compared to other distributed methods)
significantly minimizes efforts on communication between
agents.

125



126 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 1. Coalition structure graph for four agents

3) Genetic algorithm based method:In [1] the authors
presents a genetic algorithm where two-dimensional, binary
chromosome coding is used. The method uses so called
two dimensional “or” crossover operatorthat seems to be
troublesome, because after using the operator we have to
review child chromosome in order to “repair” it when the
operator breaks the rules of representation assumed in the
method. Inspired by [1] we decided to propose an alternative
chromosome coding and operators to solve CFP.

Good introduction to MAS provides [3]. Brief descriptions
of organizational paradigms other than coalition of agentsare
presented in [9]. Environments of self-oriented, conflicting
agents are described in [6]. Comprehensive introduction to
evolutionary programming is provided in [4].

The main aim of our study is to develop a method of
coalitions formation in multi-agent systems using evolutionary
approach. The method should combine good efficiency in
solving CFP with natural chromosome coding and genetic
operators.The paper is structured as follows. Next sectionwill
introduce formal representation of agents and coalitions.Third
chapter will cover implementation issue and experimental
results. The last part of the paper concludes the results and
point further research directions.

II. T HE PROPOSED METHOD

In this section we present a formal model of our problem
and the proposed evolutionary algorithm.

A. Model

At the beginning we assumed as follows:

1) Agents solve a finite number of tasks,
2) Each agent has some ability (resources) to solve each

task,
3) Each task requires some abilities (resources) to be

solved,
4) Particular agent may have insufficient abilities (re-

sources) to solve a task,
5) Agents are cooperative,
6) Agents are altruistic—their own good is less important

than the good of the system as a whole,
7) Each agent must contribute to exactly one coalition,

8) We want to solve as many tasks as possible with the
given set of agents.

According to these assumptions the following model of the
problem has been proposed:

Set of tasks is represented as a vector T:

T =< T1, . . . , Tn >, Ti ∈ (N+ \ {1}), i > 1

Value t at positionTi means that to solve taski t units of
resource (ability) are needed. We assume thati > 1 because
for i = 1 the problem is trivial.

Let A be a set of agents:

A = {A1, . . . , Ak}

where each agentAi is represented as:

Ai =< U1, . . . , Un >, Ui ∈ N, i > 1

Value p at position Uj means that agenti has abilities
(resources) ofp to solve taskj.

SetK representing partition of setA with properties given
below will be the result of proposed algorithm:

• Each elementCi ∈ K will be a coalition,
• Each elementCi will be a set of agents such thatCi ⊆ A

(in particularCi may be empty),
• For eachCi, Ck ∈ K: Ci ∩ Ck = ∅, i 6= k
•

⋃n

i=1
Ci = A, n = card(K)

• Membership of an agent in a coalitioni, 1 ≤ i ≤ n means
that the agent contributes to solution of taski.

• K represents partition that achieved the best (the highest)
value of fitness function (described further).

We defined total ability of a coalitioni to solve its task
as a simple sum of abilities (resources) of its (coalition’s)
members’ abilities to solve the task. Formally total ability δi

is given as:

δi =
∑

At∈Ci

Ui[At]

We say that taski, 1 ≤ i ≤ n is solved in a given partition
when (for giveni) δi ≥ Ti.

Evolutionary algorithm operates on a set of individuals—
V —each of them representing some partition of setA. Each
individual is represented as a vectorvi:

vi =< d1, . . . , dq >, where:
di ∈ N ∧ di ∈ [1, card(T )], q = card(A)

All genetic operations are conducted on elements (individu-
als) from setV . Both operators used in our method (crossover
and mutation) are presented in next subsection.

B. Evolutionary algorithm

Evolutionary algorithm that we developed uses(µ + λ)
strategy (for detailed information about evolutionary strategies
see [4]). We useµ = λ. To preserve the best (so far) solution
individual with the highest value of fitness function always
survives (is added to child population).

Figure 2 presents block diagram presenting main loop of
the algorithm.



WOJCIECH GRUSZCZYK ET. AL: COALITION FORMATION IN MULTI-AGENT SYSTEMS 127

Fig. 2. Evolutionary algorithm block diagram

A few elements on the diagram (Fig. 2) need comment:

• Function drawGb(2, population(t)) draws two individuals
from population(t) with returning,

• Function getBestGb(U) gets individual with the highest
fitness function value, suffix Gb means that this operation
is conducted with returning.

C. Operators, fitness function, base population

1) Crossover:We use standard two-point crossover opera-
tor. Chromosomes to cross are drawn (chosen stochastically)
with giving back with probability proportional to their fit-
ness (fitness and its function are discussed later). Both pro-
duced chromosomes are added to child population. Proposed
crossover operator preserves the property that each agent (in a
child chromosome) belongs to exactly one coalition. Therefore
we do not need to repair the chromosome. Two-point crossover
(and many more) are discussed in [4].

2) Mutation: Mutation is carried out with a given probabil-
ity p on a single gene. The operator randomly chooses whether
to mutate the gene. Mutation randomly changes the coalition
to which the agent represented by the gene is assigned. Alike
crossover, mutation does not break the chromosome therefore
no repairs are needed.

3) The initial population: Initial population (the first gen-
eration) is generated randomly. Its size is given arbitrarily and

all created chromosomes are correct in terms of definitions
given in previous chapters.

4) Fitness function: A fitness function is essential for
the method. As we want to maximize the number of tasks
solved by coalitions of agents following assumptions about
the function have been made:

• An individual should be punished for non-completion of
a task,

• And individual should be punished for exceeding the
required abilities (resources) by a coalition (δi > Ti),

• Punishment for non-completion of a task should be more
harmful than the punishment for exceeding the boundary,

• Fitness function must be non-negative.

Based on the above remarks we designed the following way
of fitness calculation (Algorithm 1):

Algorithm 1 Calculating fitness function value
fitV al ← numberOfTasks

2: for AllCoalitions : Ci do
if δi < Ti then

4: fitV al ← fitV al− 1.2 + max(0.2, δi/Ti)
else

6: if Ti 6= 0 then
fitV al ← fitV al −min(0.05, (δi − Ti)/Ti)

8: else
fitV al ← fitV al − 0.05

10: end if
end if

12: end for
return fitVal

All coefficients in the above algorithm were chosen by
manual testing of various values. Given coefficients occurred
to be satisfactory in solved problem but should be treated as
a hint not as a rule.

At this point it is worth mentioning that the given fitness
function is not perfect. It may happen in some situations that
some coalition’s structureA solving more tasks than coalition
B has lower fitness value. It is caused by the punishment
for exceeding task’s boundary of required resources (abilities).
Such a situation usually does not spoil algorithm’s results,
nevertheless, it is discussed further together with experimental
results.

III. I MPLEMENTATION, RESULTS OF EXPERIMENTS

Our implementation language was Java. Neither evolution-
ary algorithm nor MAS frameworks were used. Usage of
Strategy pattern occurred to be useful while trying different
operators, population generators, etc. See [10] for comprehen-
sive information about design patterns.

Different types of test data have been used. We prepared:

• 2 types of agent populations (random and predefined),
• 2 sizes of agent population,
• 2 sizes of task set,
• 2 sizes of base population.



128 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Brief comment of test data is provided in the next section.
After a series of initial test with different values of mutation
probability and number of generations we decided to use:

• Probability of mutation:1%,
• Number of generations:500.

Given values provided good results, nevertheless, (like for
fitness function) they should be treated as a hint.

5) Agent populations, tasks requirements:We used two
sizes of agent populations containing respectively: 20 agents
(solving 5 tasks) and 30 agents (solving 10 tasks). Each
population size was tested in two variants: predefined and
generated. Predefined population of 20 agents was defined as:

A20 = {
< 2, 1, 1, 1, 1 >, < 2, 1, 1, 1, 1 >,
< 2, 1, 1, 1, 1 >, < 2, 1, 1, 1, 1 >,
< 1, 2, 1, 1, 1 >, < 1, 2, 1, 1, 1 >,
< 1, 2, 1, 1, 1 >, < 1, 2, 1, 1, 1 >,
< 1, 1, 2, 1, 1 >, < 1, 1, 2, 1, 1 >,
< 1, 1, 2, 1, 1 >, < 1, 1, 2, 1, 1 >,
< 1, 1, 1, 2, 1 >, < 1, 1, 1, 2, 1 >,
< 1, 1, 1, 2, 1 >, < 1, 1, 1, 2, 1 >,
< 1, 1, 1, 1, 2 >, < 1, 1, 1, 1, 2 >,
< 1, 1, 1, 1, 2 >, < 1, 1, 1, 1, 2 >

}

Set of 30 agents was defined as:

A30 = {
< 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >, < 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >, < 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >, < 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 >, < 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >, < 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >, < 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >, < 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 >,
< 1, 1, 4, 1, 1, 1, 1, 1, 1, 1 >, < 1, 1, 4, 1, 1, 1, 1, 1, 1, 1 >,
< 1, 1, 1, 4, 1, 1, 1, 1, 1, 1 >, < 1, 1, 1, 4, 1, 1, 1, 1, 1, 1 >,
< 1, 1, 1, 1, 4, 1, 1, 1, 1, 1 >, < 1, 1, 1, 1, 4, 1, 1, 1, 1, 1 >,
< 1, 1, 1, 1, 1, 4, 1, 1, 1, 1 >, < 1, 1, 1, 1, 1, 4, 1, 1, 1, 1 >,
< 1, 1, 1, 1, 1, 1, 4, 1, 1, 1 >, < 1, 1, 1, 1, 1, 1, 4, 1, 1, 1 >,
< 1, 1, 1, 1, 1, 1, 1, 4, 1, 1 >, < 1, 1, 1, 1, 1, 1, 1, 4, 1, 1 >,
< 1, 1, 1, 1, 1, 1, 1, 1, 4, 1 >, < 1, 1, 1, 1, 1, 1, 1, 1, 4, 1 >,
< 1, 1, 1, 1, 1, 1, 1, 1, 1, 4 >, < 1, 1, 1, 1, 1, 1, 1, 1, 1, 4 >

}

T vectors for 20 and 30 predefined agents were given as
(respectively):

T20 =< 8, 8, 8, 8, 8 >

T30 =< 14, 14, 8, 8, 8, 8, 8, 8, 8, 8 >

In the case of generated sets of agents we used a generator
that (having predefinedT vector) prepared such a set that
could solve all tasks without a punishment (in terms of fitness
function) for exceeding the threshold of needed resources.
Each agent in a generated set has positive value of ability to
solve any task so it is not obvious to which coalition it should

be assigned. Of course the generator does not guarantee that
only one optimal solution exists, but it ensures existence of at
least one.

We decided to use test data that ensured existence of a
solution that solved all tasks. Resources were limited (in fact
limits were very rigid) and search spaces were huge (for 10
tasks and 30 agents the whole space consisted of1030 possible
coalitions!). The choice was suggested by used method which
is worth applying to extremely hard combinatorial problems
that cannot be solved in acceptable amount of time by deter-
ministic search of the space (e.g. dynamic programming).

6) The initial population:We tried two sizes of the initial
population for the evolutionary algorithm: 25 and 50 individ-
uals.

7) Experimental results:To find optimal parameters for the
algorithm we compared four cases:

• Generated test data, base population size: 25/50, number
of tasks: 5, number of agents: 20,

• Generated test data, base population size: 25/50, number
of tasks: 10, number of agents: 30,

• Predefined test data, base population size: 25/50, number
of tasks: 5, number of agents: 20,

• Predefined test data, base population size: 25/50, number
of tasks: 10, number of agents: 30.

Results of our experiments are listed in tables I, II, III
and IV:

TABLE I
EXPERIMENT I: GENERATED TEST DATA, BASE POPULATION SIZE: 25/50,

NUMBER OF TASKS: 5, NUMBER OF AGENTS: 20

No
Population Tasks solved Fitness function

In generation
size (best) (best)

1

25

5 4.95 16

2 5 4.95 35

3 5 5.00 22

4 5 4.95 17

5 5 5.00 17

6 5 5.00 (4.95)1 146 (61)2

7 5 5.00 (4.90) 269 (13)

8 5 5.00 (4.90) 46 (8)

9 5 5.00 (4.95) 14 (4)

10 5 5.00 (4.85) 371 (7)

11

50

5 5.00 18

12 5 5.00 (4.85) 55 (6)

13 5 5.00 (4.85) 127 (12)

14 5 5.00 (4.80) 25 (11)

15 5 5.00 (4.85) 54 (13)

16 5 5.00 (4.95) 24 (10)

17 5 5.00 (4.90) 388 (7)

18 5 5.00 16

19 5 5.00 18

20 5 5.00 (4.80) 35 (8)



WOJCIECH GRUSZCZYK ET. AL: COALITION FORMATION IN MULTI-AGENT SYSTEMS 129

TABLE II
EXPERIMENT II: GENERATED TEST DATA, BASE POPULATION SIZE: 25/50,

NUMBER OF TASKS: 10, NUMBER OF AGENTS: 30

No
Population Tasks solved Fitness function

In generation
size (best) (best)

1

25

10 9.85 (9.80) 272 (207)

2 10 9.90 (9.80) 298 (94)

3 9 9.65 55

4 9 9.70 (9.15) 429 (37)

5 10 9.95 (9.85) 481 (113)

6 10 10.00 49

7 9 9.55 (9.45) 142 (107)

8 10 10.00 (9.90) 325 (269)

9 10 9.80 (9.75) 447 (245)

10 9 9.45 167

11

50

10 9.90 (9.85) 203 (184)

12 10 9.90 89

13 10 9.90 356

14 10 10.00 (9.95) 210 (139)

15 10 9.95 (9.90) 382 (132)

16 10 9.95 (9.85) 190 (96)

17 10 9.95 (9.65) 90 (34)

18 9 9.65 (9.35) 350 (196)

19 10 9.90 313

20 10 9.85 129

As we can see after 500 generations of algorithm’s work in
every test case I-IV we obtained solution no worse than80% of
optimal one. Tests I and III in most cases were solved returning
optimal partition. For generated test data we obtained100%
accuracy. Average quality of solution in these cases exceeded
90% Two factors had impact on our results:

1) Search space was relatively small (520 compared to1030

makes220· 1010 ≈ 1016 times smaller search space),
2) In the case of generated data it was not so rigid as

predefined so more than one optimal solution might have
existed.

In both cases the amount of 500 generations was to big
number. For generated data optimal solutions were found in
less than 100 generations. For predefined data in most cases
200 generations were enough to obtain comparable results.

In test cases number II and IV we achieved accuracy no
worse than80% of optimal solution. Again generated data
occurred to be less rigid and gave better results (exceeding
90% of the best solution). For generated data 250 generations
of evolutionary algorithm’s work occurred to be enough to
provide comparable results. Even after 500 generations our
algorithm in most cases did not exceeded 8 solved tasks (only
3 times we achieved 9 tasks solved and it took over270
generations).

1Value in brackets shows the value of fitness function which provided the
same number of solved tasks. The value was achieved in a generation which
number is shown in brackets in column “In generation“. See2. The value is
given only when the difference between generations is significant.

2Situation symmetric to described in1.

TABLE III
EXPERIMENT III: PREDEFINED TEST DATA, BASE POPULATION SIZE:

25/50,NUMBER OF TASKS: 5, NUMBER OF AGENTS: 20

No
Population Tasks solved Fitness function

In generation
size (best) (best)

1

25

4 4.05 (4.00) 101 (18)

2 5 5.00 98

3 5 5.00 178

4 4 4.00 38

5 5 5.00 124

6 5 5.00 80

7 5 5.00 73

8 5 5.00 126

9 5 5.00 86

10 5 5.00 82

11

50

5 5.00 189

12 5 5.00 94

13 4 4.00 27

14 5 5.00 42

15 5 5.00 315

16 5 5.00 107

17 5 5.00 37

18 5 5.00 114

19 5 5.00 33

20 5 5.00 41

Figures 3 and 4 show algorithm’s progress. In both cases we
put the number of generation on OX and the value of a given
function on OY (3 functions are presented and described on
the plots). Both plots show a case where despite the growth
of fitness of the best individual the number of tasks solved
by (current) best solution is lower (on figure 3 we see this
situation between 20-th and 200-th generation; on figure 4
about 50-th generation). As mentioned earlier, this situation
is caused by punishment used in fitness function. Despite the
fact that such a situation is not frequent it may happen that
solution with the highest value of fitness function does not
provide partition that solves most tasks (even if such partitions
were checked).

IV. CONCLUSIONS AND FURTHER RESEARCH

Our approach occurred to be efficient in solving CFP. Its
power is remarkable especially in huge spaces where brute
force search and other regular and deterministic search meth-
ods cannot be applied because of limited resources (especially
time).

Comparing to [1], implementation of GA presented in this
paper uses natural coding of chromosome (simple vector
rather than complex 2D structure) which makes it easier
to use and preserves classic flow of genetic (evolutionary)
algorithm. Simple chromosome coding made it possible to
use standard mutation and crossover operators. Both of them
create individuals that do not break domain constraints (one
agent belongs to exactly one coalition) whiletwo dimensional
“or” crossover operatorproposed in [1] enforced checking of



130 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

TABLE IV
EXPERIMENT IV: PREDEFINED TEST DATA, BASE POPULATION SIZE:

25/50,NUMBER OF TASKS: 10, NUMBER OF AGENTS: 30

No
Population Tasks solved Fitness function

In generation
size (best) (best)

1

25

8 8.45 215

2 8 8.09 (7.95) 154 (68)

3 9 9.00 273

4 8 8.09 (7.90) 260 (154)

5 8 8.73 (8.30) 463 (87)

6 8 8.44 (7.94) 87 (24)

7 8 8.51 (7.96) 252 (76)

8 8 8.09 (7.95) 260 (47)

9 8 8.09 (7.95) 391 (57)

10 8 8.09 (7.95) 140 (37)

11

50

8 8.09 (7.90) 314 (68)

12 8 8.44 (7.95) 252 (77)

13 8 8.09 (7.95 ) 162 (61)

14 8 8.01 (7.85) 495 (393)

15 8 8.44 (7.95) 383 (44)

16 8 8.09 405

17 8 8.09 (7.95) 190 (72)

18 9 9.00 275

19 8 8.09 (7.90) 402 (87)

20 9 9.00 407

Fig. 3. Algorithm’s progress: plot for test II (row number 18)

child chromosomes because they might break the constraint of
one-to-one agent to coalition assignment.

Another thing worth mentioning is the initial population.
In [1] every coalition structure that does not solve all tasks
is assigned fitness of 0. Initial population is generated with
revisions whether all tasks are solved and only total efficiency
of a whole system (solving all tasks) is being optimized.
Such assumption enforces low bounds on available resources
(agents may solve all tasks). Our approach does not assume
that all tasks must be solved (we do not know whether
even a single one can be solved at all). Therefore our initial
population is generated randomly, without further revisions.

Fig. 4. Algorithm’s progress: plot for test IV (row number 4)

Main optimization target of our method is the number of
solved tasks which seems to be very important in real-time,
strongly constrained domains.

The main limitation of our method is its centralization.
As we mentioned in the first section, MAS are often dis-
tributed (or are at least independent processes or threads).
Centralized control must assume that agents are cooperative
not competitive. Such an assumption may be acceptable in
MAS environments composed of agents belonging to one
company. It may be, however, too strong in the case of
distributed environments accessible for agents belongingto
different companies and having contradictory aims. Therefore
we are going to develop a method of coalition formation based
on the search of consensus (equilibrium) through negotiation.
In such a system the only requirement for agents would be
to understand the protocol of communication. Therefore there
are no obstacles to make the system fully decentralized and
distributed.

REFERENCES

[1] Jingan Yang and Zhenghu Luo,Colaition formation mechanism in multi-
agent systems based on genetic algorithms, Applied Computing Soft
(Elsevier), 2006.

[2] O. Sheory and S. Kraus,Task allocation via coalition formation among
autonomous agents, Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence, Montreal, Canada, pp. 655–661.

[3] G. Weiss—editor,Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence, The MIT Press, 2000.

[4] J. Arabas,Wykłady z algorytmw ewolucyjnych, WNT, 2004.
[5] T. Rahwan,Algorithms for Coalition Formation in Multi-Agent Systems,

University Of Southampton (PhD), 2007.
[6] C. Tessier—editor,Conflicting Agents: Conflict Management in Multi-

Agent Systems, Kluwer Academic Publishers, 2001.
[7] M. Wooldridge and N.R. Jennings,Intelligent Agents: Theory and Prac-

tice, Knowledge Engineering Review, 1995, vol. 10/2, pp. 115–152.
[8] T. Sandholm et al,Coalition Structure Generation with Worst Case

Guarantees, Artificial Intelligence, vol. 111/(1-2), pp. 209-238, 1999.
[9] B. Horling and V. Lesser,A survey of multi-agent organizational

paradigms, The Knowledge Engineering Review, vol. 19/4. pp. 281–316,
2005

[10] E. Gamma and J. Vlissides and R. Johnson and R. Helm,Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-Wesley
Longman Publishing Co., 1995.


