Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 125-130 ISSN 1896-7094

Coalition formation in multi-agent
systems—an evolutionary approach

Wojciech Gruszczyk Halina Kwasnicka
Wroctaw University of Technology Wroctaw University of Technology
Computer Engineering Computer Engineering
Email: 141044@student.pwr.wroc.pl Email: halina.kwasnicka@pwr.wroc.pl

Abstract—The paper introduces solution of Coalition Forma- short-lived and goal-directed, being a flat structure.idit
tion Problem (CFP) in Multi-Agents Systems (MAS) based on agents are independent and do not cooperate. When they
evolutionary algorithm. The main aim of our study is to devebp 540t complete their tasks individually agents may exghan
an evolutionary based algorithm for creation of coalitionsof agent . f fi dtry to f liti hich ai i best
for solving assumed tasks. We describe the coding schema and" Qr_ma lon and try to form f:(?a' lons whic glvgs e_m €s
genetic operators such as mutation, crossover and seleatighat €fficiency (of course the efficiency must be defined in terms
occurred to be efficient in solution of CFP. Last part of the of solved problem).
document provides a brief comment on our research results. Evaluation of all possible shapes of coalitions depends
Index Terms—Coalition formation, evolutionary algorithm, oy sonentially on the number of agents. For example having
multi—agent systems . .
m agents andh tasks to solve allh™ coalitions (with each
l. INTRODUCTION coalition delegated to a particular task) must be evalutded

uarantee that the best coalition shape was found. Finding

‘ ONCEPT of agents (term agent will be used Withm‘ﬁle optimal partition of agents set by checking the whole

distinction betwgen so_ft.vyare. anql hardware agents) éﬁace may occur too expensive (in terms of time). Short
strongly connected with artificial intelligence (Al). BeS® ieime of coalition may lead to a situation when time of

the te.TIm aggn;_ |§_deff|ped n Ilterat(ljjr.e |n7r.nany differentsa computation is far longer than the time of existence of a
we wi u;e efinition first proposed in [7]: ~ particular coalition. Therefore it may create a bottlenetk
Agentis software or hardware computer system that is/hag:\MAS. Many methods have been proposed to solve CFP.

1) Autonomous: agent takes actions without inteiFurther part of the introductory chapter will give a short
ference of a human and has control over takesummary of them.

actions,)
2) Social ability: agents communicate (betweeR- CFP—a short overview
themselves and/or with people), 1) Any-time solution with worst case guarante@riginal

3) Reactivity: agents have some perception of emvork given by [8] presents any-time solution with worst case
vironment that they are part of and may reaajuarantee. The idea is based on a remark, that searchingt subs
to changes in the environment, of possible coalition shapes that contains all possiblesaish

4) Activity: agents may take actions to changef the set of agents may guarantee quality of the solution.
their environment in order to achieve theifThat is why the best solution must consist of already searche
goals. and evaluated subsets (best solution is not worse than #te be

When the environment contains at least two agents \gelution found so far). To make the idea clear [8] suggested
talk about multi-agent system (MAS). Very often MAS ardgepresenting all partitions as a graph of coalition stresgu
distributed. Many aspects of such systems have been widé&fg. 1):
discussed in literature. In this paper we present a newisalut Level LV; denotes that the structures belonging to this level
of the problem of coalition formation (CFP). consist of i coalitions. Searchingl; and LV, assures that all
subsets have been checked and may provide guarantee on the
result. Then [8] suggests searching bottom up (in the pctur

Many tasks cannot be completed by a single agent becaieeels LV, LV3). Checking all coalition structures leads to
of limited resources or capabilities of agents. Very ofearen brute force search and worst case guarantees are low before
if a task may be completed by a single agent, his performarfugge amount of the space has been searched (as shown in [5]).
may occur too low to be acceptable. In such a situation2) Distributed algorithm: Distributed algorithms for solv-
agents may form groups to solve the problem by cooperatiagng CFP are proposed (among others) in [2] and [5]. The solu-
Many organizational paradigms have been distinguisheldgn tion proposed in [5] (compared to other distributed methods
context of MAS (see [9]). This work is focused on coalitions—significantly minimizes efforts on communication between
groups of cooperative agents, working together on a giveq taagents.

A. Coalition Formation

125

126 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

8) We want to solve as many tasks as possible with the
given set of agents.
According to these assumptions the following model of the
problem has been proposed:
Set of tasks is represented as a vector T:

T=<Ty,....,T,, >T; € (Ny \ {1}),i > 1

Value t at positionT; means that to solve tagkt units of
resource (ability) are needed. We assume ihatl because
for i = 1 the problem is trivial.

Let A be a set of agents:

Fig. 1. Coalition struct h for f t
ig oalition structure graph for four agents A= {Ah ' ,Ak}

v

where each agem; is represented as:

3) Genetic algorithm based methodn [1] the authors .
presents a genetic algorithm where two-dimensional, inar Ai=<Up,...,Un > Ui eNii>1
chromosome coding is used. The method uses so called/alue p at position U; means that agent has abilities
two dimensional “or” crossover operatothat seems to be (resources) op to solve taskj.
troublesome, because after using the operator we have t®et K representing partition of set with properties given
review child chromosome in order to “repair” it when thebelow will be the result of proposed algorithm:
operator breaks the rules of representation assumed in thg gach element; € K will be a coalition,
method. Inspired by [1] we decided to propose an alternative, gach elemen€; will be a set of agents such that C A
chromosome coding and operators to solve CFP. (in particularC; may be empty),

Good introduction to MAS provides [3]. Brief descriptions , For eachC;,Cr € K: C;NC, =0,i # k
of organizational paradigms other than coalition of aganes Ur, Ci = A,n = card(K)
presented in [9]. Environments of self-oriented, confligti , Membership of an agent in a coalitionl. < i < n means
agents are described in [6]. Comprehensive introduction t0 that the agent contributes to solution of task
evolutionary programming is provided in [4]. « K represents partition that achieved the best (the highest)

The main aim of our study is to develop a method of yalue of fitness function (described further).
coalitions formation in multi-agent systems using evanéry \ye gefined total ability of a coalitiori to solve its task
approach. The method should combine good efficiency iy 5 gimple sum of abilities (resources) of its (coalitipn's

solving CFP with natural chromosome coding and genetigempers' apilities to solve the task. Formally total abilit
operators.The paper is structured as follows. Next seetitin

) . o= is given as:
introduce formal representation of agents and coalitidhgd
chapter will cover implementation issue and experimental di= > Ui[A4]
results. The last part of the paper concludes the results and A€l
point further research directions. We say that task,1 < i < n is solved in a given partition
when (for giveni) §; > T;.
[l. THE PROPOSED METHOD Evolutionary algorithm operates on a set of individuals—

rK—each of them representing some partition of detEach

In this section we present a formal model of our problem .~ .
individual is represented as a vectgr

and the proposed evolutionary algorithm.

vy =<di,...,dq >, where:
A. Model d; e NAd; € [1,card(T)],q = card(A)

At the beginning we assumed as follows: All genetic operations are conducted on elements (individu
1) Agents solve a finite number of tasks, als) from set’. Both operators used in our method (crossover
2) Each agent has some ability (resources) to solve eaghd mutation) are presented in next subsection.

task, . .
3) Each task requires some abilities (resources) to Be Evolutionary algorithm

solved, Evolutionary algorithm that we developed usg@s + \)
4) Particular agent may have insufficient abilities (restrategy (for detailed information about evolutionaragtgies

sources) to solve a task, see [4]). We usg: = A. To preserve the best (so far) solution
5) Agents are cooperative, individual with the highest value of fithess function always
6) Agents are altruistic—their own good is less importarsurvives (is added to child population).

than the good of the system as a whole, Figure 2 presents block diagram presenting main loop of

7) Each agent must contribute to exactly one coalition, the algorithm.

WOJCIECH GRUSZCZYK ET. AL: COALITION FORMATION IN MULTI-AGENT SYSTEMS 127

START

all created chromosomes are correct in terms of definitions
T given in previous chapters.
4) Fitness function: A fithess function is essential for
populEtion(D) = genersteBR) the method. As we want to maximize the number of tasks
t=0 solved by coalitions of agents following assumptions about

the function have been made:

« An individual should be punished for non-completion of
return best sTer . a task,
partien « And individual should be punished for exceeding the
required abilities (resources) by a coalitian & T;),
o Punishment for non-completion of a task should be more
chiken - {} harmful than the punishment for exceeding the boundary,
e « Fitness function must be non-negative.

Based on the above remarks we designed the following way
of fitness calculation (Algorithm 1):

t = generationsToEvolve

k = hazePopulationSize U := populationit) + children

papuisiionii=1) .= { getBesiGh(l) } Algorithm 1 Calculating fitness function value
fitVal «— numberO fTasks
2: for AllCoalitions : Cido
if 0; < T; then

ch[2] := drawGhi 2, populationgt))
ch[2] := crossover(ch2])

size(populationit+1)
=

z:illiilr;T:Utcathi;rc:rgzl)ch[ﬂ bazePopulationSize 4 thVal — thVa/l - 12 + ma$(0'27 67//T7f)
ko= ke else
6: if T; # 0 then
fitVal — fitVal — min(0.05, (§; — T;)/T;)
nopulation(t+1) = 8: else
ti=t+1 populstiont+1) + drasGhbil L fitVal - fitVal —0.05
1 10: end if

)) .) end if

Fig. 2. Evolutionary algorithm block diagram 12- end for

return fitVal

A few elements on the diagram (Fig. 2) need comment:

« Function drawGb(2, population(t)) draws two individuals Al coefﬁqents In Fhe above algprlthm were chosen by
from population(t) with returning manual testing of various values. Given coefficients oaalirr

« Function getBestGb(U) gets individual with the higheéP be satisfactory in solved problem but should be treated as

fitness function value, suffix Gb means that this operatighnint not as a rule. . . .
is conducted with returning. At this point it is worth mentioning that the given fithess

function is not perfect. It may happen in some situations tha

C. Operators, fitness function, base population some coalition’s structurd solving more tasks than coalition

1) Crossover:We use standard two-point crossover operd3 has lower fitness value. It is caused by the punishment
tor. Chromosomes to cross are drawn (chosen stochas}icalff €xceeding task’s boundary of required resources (ads)i
with giving back with probability proportional to their fit- Such a situation usually does not spoil algorithm’s results
ness (fitness and its function are discussed later). Both pRgvertheless, itis discussed further together with erpental
duced chromosomes are added to child population. Propo&ggullts.
crossover operator preserves the property that each dgemt (
child chromosome) belongs to exactly one coalition. Theneef
we do not need to repair the chromosome. Two-point crossovefoUr implementation language was Java. Neither evolution-
(and many more) are discussed in [4]. ary algorithm nor MAS frameworks were used. Usage of

2) Mutation: Mutation is carried out with a given probabil-Strategy pattern occurred to be useful while trying diffeere
ity p on a single gene. The operator randomly chooses whetR@€rators, population generators, etc. See [10] for cohegpre
to mutate the gene. Mutation randomly changes the coalitisiye information about design patterns.
to which the agent represented by the gene is assigned. Alikdifferent types of test data have been used. We prepared:
crossover, mutation does not break the chromosome therefore 2 types of agent populations (random and predefined),
no repairs are needed. « 2 sizes of agent population,

3) The initial population:Initial population (the first gen- « 2 sizes of task set,
eration) is generated randomly. Its size is given arbliramnd « 2 sizes of base population.

I1l. | MPLEMENTATION, RESULTS OF EXPERIMENTS

128 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Brief comment of test data is provided in the next sectiobe assigned. Of course the generator does not guarantee that
After a series of initial test with different values of mutat only one optimal solution exists, but it ensures existerfcat o
probability and number of generations we decided to use: least one.

« Probability of mutation:1%, We decided to use test data that ensured existence of a

« Number of generationsi00. solution that solved all tasks. Resources were limited &t f
Given values provided good results, nevertheless, (like fiimits were very rigid) and search spaces were huge (for 10
fitness function) they should be treated as a hint. tasks and 30 agents the whole space consistéd®8fpossible

5) Agent populations, tasks requirementdfe used two coalitions!). The choice was suggested by used method which
sizes of agent populations containing respectively: 2nhesgeis worth applying to extremely hard combinatorial problems
(solving 5 tasks) and 30 agents (solving 10 tasks). Eatthat cannot be solved in acceptable amount of time by deter-
population size was tested in two variants: predefined anunistic search of the space (e.g. dynamic programming).

generated. Predefined population of 20 agents was defined a%') The initial population:We tried two sizes of the initial

Agp =1 population for the evolutionary algorithm: 25 and 50 indivi

<2,1,1,1,1>,<2,1,1,1,1 >, uals.
<2,1,LL1><2111,1>, 7) Experimental resultsTo find optimal parameters for the
<L2LL1><121L11>, Igorithm we compared four cases:
<1,2,1,1,1>,<1,2,1,1,1 >, al P '
<1,1,2,1,1>,<1,1,2,1,1>, « Generated test data, base population size: 25/50, number
<1,1,2,1,1>,<1,1,2,1,1>, of tasks: 5, number of agents: 20,
<1,1,1,2,1>,<1,1,1,2,1 >, « Generated test data, base population size: 25/50, number
<L,L1,2,1><L1,1,2,1>, of tasks: 10, number of agents: 30,
<LL1,1,2><1,1,1,1,2 >, « Predefined test data, base population size: 25/50, nhumber
<1LL,L1,2><11,1,1,2> of tasks: 5, number of agents: 20,

} « Predefined test data, base population size: 25/50, number

Set of 30 agents was defined as: of tasks: 10, number of agents: 30.

Azo = { Results of our experiments are listed in tables I, II, llI
<2,1,1,1,1,1,1,1,1,1>,<2,1,1,1,1,1,1,1,1,1 >, and 1V-
<2,1,1,1,1,1,1,1,1,1>,<2,1,1,1,1,1,1,1,1,1 >,
<2,1,1,1,1,1,1,1,1,1>,<2,1,1,1,1,1,1,1,1,1 >,
<2LLLL11LLLT>,<1,2,1,1,1,1, L L1, 1>, EXPERIMENT|: GENERATED TE-IS-AI'BDLAEAI BASE POPULATION SIZE 25/50
<1,211,1,1,1,1,1,1>,<1,2,1,1,1,1,1,1,1,1 >, NUMBER OF TASKS 5, NUMBER OF AGENTS 20 ’
<1,2,1,1,1,1,1,1,1,1>,< 1,2,1,1,1,1,1,1,1,1 >,
< 1,2, i, 1,1,1,1,1,1,1 >, < 1,2, 4117 1,1,1,1,1,1,1 >, No Population | Tasks solved | Fitness function In generation
<1,1,41,1,1,1,1,1,1>,<1,1,4,1,1,1,1,1,1,1 >, size (best) (best)
<1,1,1,4,1,1,1,1,1,1>,<1,1,1,4,1,1,1,1,1,1 >, 1 5 4.95 16
<1,1,1,1,4,1,1,1,1,1>,< 1,1,1,1,4,1,1,1,1,1 >, 2 5 4.95 35
<1,1,1,1,1,4,1,1,1,1>,< 1,1,1,1,1,4,1,1,1,1 >, 3 5 5.00 22
<1,1,1,1,1,1,4,1,1,1>,< 1,1,1,1,1,1,4,1,1,1 >, 4 5 4.95 17
<1,1,1,1,1,1,1,4,1,1>,< 1,1,1,1,1,1,1,4,1,1 >, 5 25 5 5.00 17
<1,1,1,1,1,1,1,1,4 1>, <1,1,1,1,1,1,1,1,4,1 >, 6 5 5.00 (4.95} 146 (61%
<1,1,1,1,1,1,1,1,1,4 >, < 1,1,1,1,1,1,1,1,1,4 > 7 5 5.00 (4.90) 269 (13)

} 8 5 5.00 (4.90) 46 (8)
T vectors for 20 and 30 predefined agents were given a§90 2 2:88 3::3 31741(?7))
(respectively): 1 s 500 m
Tao =< 8,8,8,8,8 > 12 5 5.00 (4.85) 55 (6)
13 5 5.00 (4.85) 127 (12)
T30 =< 14,14,8,8,8,8,8,8,8,8 > 14 5 5.00 (4.80) 25 (11)

In the case of generated sets of agents we used a generaidr 50 5 5.00 (4.85) 54 (13)
that (having predefined’ vector) prepared such a set that 16 5 5.00 (4.95) 24 (10)
could solve all tasks without a punishment (in terms of fignes 17 5 5.00 (4.90) 388 (7)
function) for exceeding the threshold of needed resources8 5 5.00 16
Each agent in a generated set has positive value of ability] t&° 5 5.00 18
solve any task so it is not obvious to which coalition it stbul_2° 5 5.00 (4.80) 35(8)

WOJCIECH GRUSZCZYK ET. AL: COALITION FORMATION IN MULTI-AGENT SYSTEMS 129

TABLE Il TABLE IlI
EXPERIMENTI|: GENERATED TEST DATA BASE POPULATION SIZE 25/50, EXPERIMENTIII: PREDEFINED TEST DATA BASE POPULATION SIZE
NUMBER OF TASKS 10, NUMBER OF AGENTS 30 25/50,NUMBER OF TASKS 5, NUMBER OF AGENTS 20
Population | Tasks solved | Fitness function . Population | Tasks solved | Fitness function .
No . In generation No ; In generation
size (best) (best) size (best) (best)
1 10 9.85 (9.80) 272 (207) 1 4 4.05 (4.00) 101 (18)
2 10 9.90 (9.80) 298 (94) 2 5 5.00 98
3 9 9.65 55 3 5 5.00 178
4 9 9.70 (9.15) 429 (37) 4 4 4.00 38
5 25 10 9.95 (9.85) 481 (113) 5 25 5 5.00 124
6 10 10.00 49 6 5 5.00 80
7 9 9.55 (9.45) 142 (107) 7 5 5.00 73
8 10 10.00 (9.90) 325 (269) 8 5 5.00 126
9 10 9.80 (9.75) 447 (245) 9 5 5.00 86
10 9 9.45 167 10 5 5.00 82
11 10 9.90 (9.85) 203 (184) 11 5 5.00 189
12 10 9.90 89 12 5 5.00 94
13 10 9.90 356 13 4 4.00 27
14 10 10.00 (9.95) 210 (139) 14 5 5.00 42
15 50 10 9.95 (9.90) 382 (132) 15 50 5 5.00 315
16 10 9.95 (9.85) 190 (96) 16 5 5.00 107
17 10 9.95 (9.65) 90 (34) 17 5 5.00 37
18 9 9.65 (9.35) 350 (196) 18 5 5.00 114
19 10 9.90 313 19 5 5.00 33
20 10 9.85 129 20 5 5.00 41

As we can see after 500 generations of algorithm’s work in _. S
every test case I-IV we obtained solution no worse #1@#% of Figures 3 and 4 show algorlthm s progress. In both cases we
optimal one. Tests | and Ill in most cases were solved reugrnipUt the number of gener_atlon on OX and the value of agien
optimal partition. For generated test data we obtaibelt function on OY (3 functions are presented and_descnbed on
accuracy. Average quality of solution in these cases eme&he_plots). Both plots S.hO.W. a case where despite the growth
90% Two factors had impact on our results: of fithess of the best |.nd|v_|dual the number of tasks solvgd
by (current) best solution is lower (on figure 3 we see this
1) Search space was relatively smafi{compared td0* sjtuation between 20-th and 200-th generation; on figure 4
makes2- 10'° ~ 10'° times smaller search space), apout 50-th generation). As mentioned earlier, this sitnat
2) In the case of generated data it was not so rigid @scaused by punishment used in fitness function. Despite the
predefined so more than one optimal solution might hayget that such a situation is not frequent it may happen that
existed. solution with the highest value of fitness function does not
In both cases the amount of 500 generations was to kigovide partition that solves most tasks (even if such pants
number. For generated data optimal solutions were foundwere checked).
less than 100 generations. For predefined data in most cases
200 generations were enough to obtain comparable results. IV. CONCLUSIONS AND FURTHER RESEARCH

In test cases number Il and IV we achieved accuracy noQur approach occurred to be efficient in solving CFP. Its
worse than80% of optimal solution. Again generated datgyower is remarkable especially in huge spaces where brute
occurred to be less rigid and gave better results (exceedfggce search and other regular and deterministic search-met
90% of the best solution). For generated data 250 generatiafis cannot be applied because of limited resources (edipecia
of evolutionary algorithm’s work occurred to be enough t@me).
provide comparable results. Even after 500 generations oucomparing to [1], implementation of GA presented in this
algorithm in most cases did not exceeded 8 solved tasks (Oplyper uses natural coding of chromosome (simple vector
3 times we achieved 9 tasks solved and it took o¥ed rather than complex 2D structure) which makes it easier
generations). to use and preserves classic flow of genetic (evolutionary)

algorithm. Simple chromosome coding made it possible to
1Value in brackets shows the value of fitness function whiatvidied the use standard mutation and crossover operators. Both of them
same number of solved tasks. The value was achieved in aagemewhich craate individuals that do not break domain constrainte (on
number is shown in brackets in column “In generation*. $e&he value is L. . . .
given only when the difference between generations is figni. agent belongs to exactly one coalition) whiveo dimensional
2Sjtuation symmetric to described i “or” crossover operatorproposed in [1] enforced checking of

130

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

TABLE IV .
EXPERIMENTIV: PREDEFINED TEST DATA BASE POPULATION SIZE
25/50,NUMBER OF TASKS 10,NUMBER OF AGENTS 30 8
Population | Tasks solved | Fitness function .
No . In generation
size (best) (best)

1 8 8.45 215

2 8 8.09 (7.95) 154 (68) 4
3 9 9.00 273

4 8 8.09 (7.90) 260 (154))
5 25 8 8.73 (8.30) 463 (87) .
6 8 8.44 (7.94) 87 (24)

7 8 8.51 (7.96) 252 (76)

8 8 8.09 (7.95) 260 (47)

9 8 8.09 (7.95) 391 (57)
10 8 8.09 (7.95) 140 (37)
11 8 8.09 (7.90) 314 (68)
12 8 8.44 (7.95) 252 (77)
13 8 8.09 (7.95) 162 (61)
14 8 8.01 (7.85) 495 (393)
15 50 8 8.44 (7.95) 383 (44)
16 8 8.09 405
17 8 8.09 (7.95) 190 (72)
18 9 9.00 275
19 8 8.09 (7.90) 402 (87)
20 9 9.00 407
12
10 S P s ——

[l mw‘“\ww\w

a 100

Average fitness

200

300

----- Best fitness

400

500

600

Tasks solved (best)

Fig. 3. Algorithm’s progress: plot for test Il (row number)18

a 100 200 300 400 500 600

Average fitness ----- Best fitness Tasks solved (best)

Fig. 4. Algorithm’s progress: plot for test IV (row number 4)

Main optimization target of our method is the number of
solved tasks which seems to be very important in real-time,
strongly constrained domains.

The main limitation of our method is its centralization.
As we mentioned in the first section, MAS are often dis-
tributed (or are at least independent processes or threads)
Centralized control must assume that agents are cooperativ
not competitive. Such an assumption may be acceptable in
MAS environments composed of agents belonging to one
company. It may be, however, too strong in the case of
distributed environments accessible for agents belonging
different companies and having contradictory aims. Tloreef
we are going to develop a method of coalition formation based
on the search of consensus (equilibrium) through negotiati
In such a system the only requirement for agents would be
to understand the protocol of communication. Thereforeethe
are no obstacles to make the system fully decentralized and
distributed.

REFERENCES
[1

Jingan Yang and Zhenghu Lu@olaition formation mechanism in multi-
agent systems based on genetic algorithipplied Computing Soft
(Elsevier), 2006.

O. Sheory and S. Krau§jask allocation via coalition formation among
autonomous agent$roceedings of the 14th International Joint Confer-
ence on Artificial Intelligence, Montreal, Canada, pp. 655k

G. Weiss—editorMultiagent Systems: A Modern Approach to Distributed
Artificial Intelligence The MIT Press, 2000.

J. Arabas Wyktady z algorytmw ewolucyjnyckiVNT, 2004.

[2]

(3]

child chromosomes because they might break the constrfain@
one-to-one agent to coalition assignment.

Another thing worth mentioning is the initial population.[G]
In [1] every coalition structure that does not solve all sk
is assigned fitness of 0. Initial population is generated wit
revisions whether all tasks are solved and only total effirye (8]
of a whole system (solving all tasks) is being optimizedg)

T. Rahwan,Algorithms for Coalition Formation in Multi-Agent Systems
University Of Southampton (PhD), 2007.

C. Tessier—editor,Conflicting Agents: Conflict Management in Multi-
Agent SystemKluwer Academic Publishers, 2001.

M. Wooldridge and N.R. Jenning#ntelligent Agents: Theory and Prac-
tice, Knowledge Engineering Review, 1995, vol. 10/2, pp. 112:15

T. Sandholm et al,Coalition Structure Generation with Worst Case
Guarantees Artificial Intelligence, vol. 111/(1-2), pp. 209-238, 199

B. Horling and V. Lesser,A survey of multi-agent organizational

Such assumption enforces low bounds on available resourcesparadigms The Knowledge Engineering Review, vol. 19/4. pp. 281316,

(agents may solve all tasks). Our approach does not aSSLglra

that all tasks must be solved (we do not know whether
even a single one can be solved at all). Therefore our initial
population is generated randomly, without further revisio

FzE. Gamma and J. Vlissides and R. Johnson and R. HBlesjgn Pat-

terns: Elements of Reusable Object-Oriented SoftwAddison-Wesley
Longman Publishing Co., 1995.

