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Abstract—The authors consider the use of the parallel iterative data structures, which minimise the computational (spacke a
methods for solving large sparse linear equation systemsselting  time) requirements for analysing large and complex systems
from Markov chains—on a computer cluster. A combination  gpe of such techniques is parallelization. Problems of

of Jacobi and Gauss-Seidel iterative methods is examined ia llel tati f h t d finding it d
parallel version. Some results of experiments for sparse sems Parallel computations for such systems and finding its stea

with over 3 x 107 equations and about2 x 10% nonzeros which State probabilities in parallel is brought up in [3], [8],3]1

we obtained from a Markovian model of a congestion control [15]. In [2], [4], [7], [17] a manner of distributed generari

mechanism are reported. of the matrixQ in a network environment is desribed and in

[6] a similar algorithm—on a computer cluster—is presented

Paper [5] describes solving sparse linear systems with ke u

D ISCRETE-STATE models are widely employed for modof the GMRES algorithm [18] in a network environment. The

eling and analysis of communication networks and confrarallel Jacobi method was discussed and a parallel method

puter systems. It is often convenient to model such a systgs the CTMC steady-state solution is presented in [15]. The

as a continuous time Markov chain, provided probabilitgauss-Seidel method is used for parallel solving of Markov

distrbutions are assumed to be exponential (or combirgtiQthains in [14], [20].

of exponential ones). In this paper a combination of two classical iterative
A CTMC (Coninuous-Time Markov Chain) may be repmethods for solving linear equation systems, namely Jacobi

resented by a set of states and a transition rate m&iX method and Gauss-Seidel method is presented. These methods

containing state transition rates as coefficients, and @n Were chosen because the presented algorithm is intended for

analysed by using probabilistic model checking. Such aitt angomputer clusters and Jacobi method is inherently parallel

ysis proceeds by specifying desired performance progert{@auss-Seidel method has not got such a property and its par-

as some temporal logic formulae, and by verifying thesglelization requires a lot of communication), but Gausidsl

properties automatically, using the appropriate modetking method usually converges much faster than Jacobi method [1]

algorithms. A core component of these algorithms is a comroperties of such a combined method are experimantally

putation of the Steady'state prObabilitieS of the CTMC sTiki examined in this paper. We try to Study relative Speedup and

reducible to the classical problem of solving a (homogesgolfficiency of the algorithm—as the traditional charactéss

sparse system of linear equations, of the fokm = b, of size  of parallel algorithms.

equal to the number of states in the CTMC. The rest of the paper is organized as follows. Section II
A limitation of the Markovian modeling approach is thepresents the problem. In Section IlI classical iterativehmods

fact that the CTMC models tend to grow extremely larggre reminded. Section IV shows used data distribution.iGect

due to the state space explosion problem. This is caused\byresents traditional block/parallel iterative methodsl &in

the fact that a system is usually composed of a number Séction V-C) an approach employed by the authors. Section

concurrent subsystems, and that the size of the state spacg|describes conducted experiments and Section VII costain

the overall system is generally exponential in the number §§me conclusions.

subsystems. A realistic system can give rise to a large state

space, typically ovet0f. As a consequence, much researchis ~ !l: CTMCS AND THE STEADY-STATE SOLUTION

focused on the development of techniques, that is, methatls a While modeling with Markov chains, in a steady state

(independent of time), we obtain a linear equation systé&m li
This work was partially supported within the projebtetody i modele

dla kontroli zattoczenia i oceny efektywno5ci mechanenjdko5sci ustug follows;

w Internecie nastepnej generadiN517 025 31/2997). This work was also QT ~0
partially supported by Marie Curie-Sklodowska UniversityLublin within x=1,
the projectRéwnolegte algorytmy generacji i rozwiazywania mechadia . " L
kontroli przecigenia w protokole TCP modelowanych przyciu tahcuchow whereQ is a transition rate matrixx is an unknown vector

Markowa of states probabilities and = (1,1, ....,1)7. The matrixQ

I. INTRODUCTION AND MOTIVATION

x > 0, xTe=1 (1)
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is a square one of size x n, usually a big one, of rank [ % . . ° o 1
n — 1, sparse, with dominant diagonal. It is also a singular QT * . .
matrix demanding adequate methods to solve the equation. * * .
Markovian models solving demands overcoming both numer- . * . i
ical and algorithmic problems. Solving the equation system Q7 * ¢
2 L] * L]

(1) generally requires applying iterative methods, prijec
methods or decomposition methods but occasionally (for the

need of an accurate solution) direct methods are used as well . x " * :
The rich material concerning the methods mentioned above QI o . .
can be found in [19]. . " o o
I1l. | TERATIVE METHODS—JACOBI AND GAUSS-SEIDEL —
In this section classical iterative methods are remindéa. T QZ o o o . *
general form of such a method step is L . . * |
k+1 —1 k
X( ) — M NX( ) (2) Fig. 1. An example of the matriQ” division
where
o —_ T
M-N=Q". (3) and in scalar form (foi = 1,...,n):
A. The Method of Jacobi i1 n
The method of Jacobi is a classical iterative method with  **) S Sl 3w ) o)
the coefficient matrixQ™ split as following: di; j=1 j=it+1
Q"=D - (L+U) (4) The method of Gauss-Seidel is not so convinient for vector-
) o ization or parallelization, but it converges faster—whai de
which corresponds to assigning: explained by the fact that although both methods use the same
M=D N=L+U (5) scalar formulas (7) and (10), but in the method of Gaussebeid

the newly computed approximation of a solution component
in (3). The matrixD is a diagonal matrix, the matrik is a s used as soon as it is available.
strictly lower triangular matrix (with zeroes on its diagdh  The Gauss-Seidel method typically converges faster than
and the matrixU is a strictly upper triangular matrix (with the Jacobi method by using the most recently available ap-
zeroes on its diagonal). So in this method the step (2) loogfoximations of the elements of the iteration vector. Theeot
as following: advantage of the Gauuss-Seidel algorithm is that it can be
LD Dfl(L i U)x(k) (6) implemented gsing only one iteration vector, which is impor
tant for large linear equation systems where storage olesing
and in scalar form (foi = 1,...,n): iteration vector alone may require 10GB or more. However,
[ . a consequence ofhusir;]g the rT(ZjSt' rgcr?ntly flivailable s_ollution
(k+1) (k) (k) approximation is that the method is inherently sequential—
T jz_;lijxj +j§1uijxﬂ' - (D Goes not possess natural parallelism.

The method of Jacobi is very convinient to vectorize and IV. DATA DISTRIBUTION

to parallelize. It can also be seen in the Jacobi equation (7)n parallel programming a very crucial issue is a division of

that the new approximation of the solution vecter’(t!)) data among computational nodes (machines, processo)s etc.
is calculated by using only the old approximation of th& the algorithm described later (in Section V-C) the matrix

vector &(®)). This method, therefore, possess a high degrggT is divided among cluster nodes as in Figure 1—that is
of natural parallelism. However, Jacobi methods has welti the matrix is divided intg rectangular submatriceg; , each

slow convergence. stored in theith cluster node.
) Each submatrix is a sparse matrix and takes part in the
B. The Method of Gauss-Seidel computations on its node (where it is stored).

In this method we have the same splitting of the ma@ix

. . . . V. A PARALLEL METHOD OFJACOBI/GAUSS-SEIDEL
but with a different grouping of components:

. The description of the parallel Jacobi/Gauss-Seidel ntetho
Q =MDb-L)-U (8)  will be started from the presentation of the well-known tioc

(the matriced, L, U are defined as in the previous sectionj?eraﬁve methods, namely block Jacobi method and block

.. ‘Gauss-Seidel method.
H haveM = (D — L dN =1, the st 2) is: . ) . .
ere we hav ( ) an so the step (2) is Block-based formulations of the iterative methods which

x*+D) (D — L)~ t'Uux® (9) perform matrix computations on block-by-block basis ulual
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turn out to be more efficient and easier to parallelize. GeB- A Block Gauss-Seidel Algorithm
erally iterative block methods demand more calculations pe j st like the scalar Gauss-Seidel algorithm (see Section

iteration, which is recompensed by a faster convergenee ri.g), the block Gauss-Seidel algorithm can be written:
(and sometimes better cache utilization).

It is possible in Markov chains to divide the transition rate (Dg — L)zt = Uga®, 17)
matrix into blocks (or even generate it in blocks straight@w pegcriping the equation mentioned above in a scalar-like fo
[4], [7]) and develop iterative methods basing on that ddns \ye get (forj = 1, ..., K):

In Markov chains problems it is often the case that the state

space can be meaningfully partitioned into subsets and thus (i+1) =l (i4+1) K ()

it is possible to partition the transition rate matrix respeely 33 %; - Z Qjix; + Z Qjix; (18)
and to base the solution method on blocks implied by such a =1 =5+l

partition.

) o wherex'” is the jth (n/K)-element subvector of the vector
The homogeneous equations system (1) is divided ifto o) (asjin (11))

square blocks of the same size in the following way: As a result of above in every step we must salvequation

Qi1 Qu» Qix X1 systems ofn/K size each in the following form (foj =
Qa1 Q22 ... Qox X2 | Loy K (i4+1) (i41)
. =0. (11) i X = Z]- (19)
Qr1 Qr2 ... Qrx X.K where
i ittina: ) i—1 _ K .
We introduce block splitting: Zyﬂ) _ Z Qﬂxl(”l) N Z lexll) | 0)
Q" =Dk — (Lg + Uk), (12) =1 1=j+1

We can apply different direct and iterative methods to the
solve equation (19). There is a small number of iterations
demanded to obtain convergence for a small number of blocks
(i.e. submatrices are big). The difficulty is that it is vergrdh

whereDy is a block-diagonal matrixlLx is a strictly block
lower triangular matrixU g is a strictly block upper triangular
matrix with form:

Dn 0 ... 0 to parallelize effectively—it is caused by the use of the iyew
Dy — 0 D2 ... 0 , (13) computed values just after their computation.
0 o0 DKK C. A Modified Block Jacobi Algorithm
) In this section we present an algorithm, which takes advan-
0 o ... 0 tage of the division of the matri@) between computational
Ly = Loy 0 ... 0 (14) nodes described in Section IV. The algorithm proposed Isere i
e cee e ’ a combination of Jacobi and Gauss-Seidel iterative methods
| Lkr Lg2 ... 0 To start from a usual Jacobi method, there is
[0 Ui ... Ui QT:D_(L+U) (21)
Uy = 0 0 ... Ux , (15) (see Section IlI-A).
e ... e DRI Let
whereD;; = Qii, Lij = —Qij, Uij = —Qij- Thus, the (6) can be written
A. A Block Jacobi Algorithm xFHD) = gx ), (23)

The iterative method of Jacobi was described in Section|n 4 block iterative method the linear system (23) is divided

solution of the linear equation system (1) is presented. into ;) blocks ¢ is the number of computatinal nodes), each
Block Jacobi method is given by (far=1,..., K): block H; (i = 1,...,p) of the size ofn columns and
To(kt1) _ T (k) n/p rows (last oneH, can be shorter—as in Figure 1—it
QiiX; - Z QijX; (16) does not influences general considerations). Such a divisio

Iz corresponds to the division of the matrQ” proposed in

where blocks are as in (11). Section IV, because to obtain elements of the mdixone
Having K computational nodes (computers or processorsjeeds only elements of the mati@ .

every equation of (16) can be solved independently by aSimilarly, the vectorx (and some auxiliary vectors in the

computational node. The equtions (16) can be solved by mmplementation) is divided intgp subvectors, each of the

arbitrary method. sizen/p.
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Figure 1) Next, in loop, in every node for its block we make
= E— a step of the Gauss-Seidel method.

z The algorithm for every node (in pseudo-code) is described
as follows:

Initialization(&WRNunber);

Fi ndBegi nAndEnd( MyNunber, &n0, &nl);
/* conmputes starting i ndex n0 and
endi ng i ndex nl1 for the block of
N A t he node MyNumber =/
Qr=Cenerate(n0, nl);
/* generates adequate bl ock =/
FillVector(X, 1.0/n);

Fig. 2. A Markovian queuing model of the tail-drop mechanism | t er No=0:
. do
Now, the (23) can be written: {

x{FFY H, I t er No++;

ng+1) H, . | nner GaussSei del (QT, X); _
= . | x® (24) /+ the node conputes only its own

: : part of the vector =/
x{Fry H, Gat her Vect or ( X)

[+ every node needes the whol e vector
for further conputations */
x T = Fx (¥ (25)  Normalize(X);
h whi | e( Remai nder (QT, X)>EPSI LON &&
I t er No<MAXI TER) ;

and, in another manner, for=1, ..., p:

(25) is a formula for the block Jacobi method (Sectio
[1I-A). All the equations in (25) are solved independenty,
it is very suitable to parallelize fop processors — each of . . . :
. Fi nal i zetion();
them solves one equation and then they exchange the rgsultin
vectorsx* ™) to build its new versionc(*+1). VI. EXPERIMENTAL RESULTS
However, the Jacobi method is rather slowly convergerAt,
so in the presented algorithm, every computational nodé
can employ the formula of the Gauss-Seidel algorithm (10) The matrices obtained for tests were transition rate nestric
instead of the Jacobi algorithm (7)—using the newly obtindor & very simple model of a tail-drop mechanism (a very
elements of the vectae!" ") (although only those which are Simple congestion control mechanism in a router’s buffeng
stored in the same computational nodes) and hoping for figeuing model for such a mechanism is shown in Figure 2. It
better convergency. is a passive mechanism, that is, it does not make any degision
In other words, the algorithm can be described as a blo@R far as the moment of dropping packets is concerned—they
Jacobi iterative method with solving inner blocks with th@re always dropped when there is no room for new packets.
Gauss-Seidel iterative method. Moreover, in the tail-drop mechanism the packet that just
In borderline cases the presented algorithm reduces to @f&ved, is dropped. A Markovian queuing model for such
pure Jacobi algorithm (fgr = ») and to the pure Gauss-SeideR Mechanism consists of: a sourZe(which sends packets

Properties of the Used Matrices

algorithm (forp = 1). with variable rates), a service stati@ (which corresponds
) ) to a router's buffer) and two auxiliary service statioAs
D. Implementation details and N (which correspond to confirmations and rejections,

We propose an algorithm for homogeneous cluster erespectively, returning to the sourzs.
vironments. This algorithm is based on a message-passinghe rate of the sourcg is not constant but it increases (not
paradigm and consists of one module for each of nodes. Tal®ove a given maximum) as confirmations leave the station
algorithm presented below is just a skeleton, and the @etailand it decreases (not below a given minimum) as rejections
implementation, such as data preparation, parameterfgasdeave the statiofN (both events represent reaching the source
and so forth, might be different according to requiremeriits by the information about the packet’s fate). The states ofisu
various applications. a model can be written as vectors of numbers. In our example
The algorithm is composed of several steps. First, the-stattwould be (I, b, a, m), wherel is an integer betweeh and
ing information is acquired. Next, the matrQQ is generated 1,,,, and it means the current relative intensity of the source
in parts so that every node keeps only needed states (aZiand b, a andm are integers betweed and b4, Gmaz,
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TABLE |
TEST MATRICES AND THE ALGORITHM PERFORMANCE

Ilmaz | bmaz | @maz | Mmazx n p | Tp [s] Sp Ep
40 40 40 40 2 756 840 1 145 — —
10 96 | 1.51 | 0.15

50 50 50 50 6 632 550 1 480 — —
10 210 | 2.29 | 0.23

60 60 60 60 | 13 618 860 1 812 — —
10 399 | 2.04 | 0.20

70 70 70 70 | 25053 770 1| 3373 — —
10 714 | 4.72 | 0.47

72 72 72 72 | 28009 224 1 | 4283 — —
10 829 | 5.17 | 0.52

74 74 74 74 | 31218 750 1| 5232 — —
10 929 | 5.63 | 0.56

8500 25 053 770 2 25 053 770
13 618 860 —*— 13 618 860 —*—
3000 6 632550 —=— 6 632550 —%—
1.5
2500
E 2000 fz
()
g s ¢
s 1500 5
1000
0.5
500
(o] [+]
(o] 2 4 6 8 10
number of processors number of processors

Fig. 3. Performance time of the algorithm for three différemes of matrices  Fig. 5. Efficiency of the algorithm for three different sizeEmatrices

6 25 053 770 6
13618860 —*—
6 632550 —*—
5 5
a
E §
9 4 o 4
& g
:l, 0]
2 H
5 3 5 3
$ v
2 2
1 1 . R . . . .
5 10 15 20 25 30 35
number of processors size of matrices millions1

Fig. 4. Relative speedup of the algorithm for three différgimes of matrices Fig. 6. Relative speedup of the algorithm working on 10 pssoes for
various matrices

mmae (respectively) and they mean the number of packets
waiting or being processed currently in the stati@sA, N more than 800 machines distributed all over Poland and con-

(respectively). nected with a fast optical network; one of the fastest Euaape
) _ distributed supercomputers [21]) dedicated for computing
B. Computational Environment The CLUSTERIX itself is built as a cluster of local clusters.

Experiments were carried out in a cluster environment (p&8b up to 10 machines were used—all belonging to a single
of CLUSTERIX — a cluster of Linux machines consisting ofocal cluster— as we were interested in investigating binav
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