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Abstract—The authors consider the use of the parallel iterative
methods for solving large sparse linear equation systems resulting
from Markov chains—on a computer cluster. A combination
of Jacobi and Gauss-Seidel iterative methods is examined ina
parallel version. Some results of experiments for sparse systems
with over 3× 10

7 equations and about2 × 10
8 nonzeros which

we obtained from a Markovian model of a congestion control
mechanism are reported.

I. I NTRODUCTION AND MOTIVATION

D ISCRETE-STATE models are widely employed for mod-
eling and analysis of communication networks and com-

puter systems. It is often convenient to model such a system
as a continuous time Markov chain, provided probability
distrbutions are assumed to be exponential (or combinations
of exponential ones).

A CTMC (Coninuous-Time Markov Chain) may be rep-
resented by a set of states and a transition rate matrixQ

containing state transition rates as coefficients, and can be
analysed by using probabilistic model checking. Such an anal-
ysis proceeds by specifying desired performance properties
as some temporal logic formulae, and by verifying these
properties automatically, using the appropriate model checking
algorithms. A core component of these algorithms is a com-
putation of the steady-state probabilities of the CTMC. This is
reducible to the classical problem of solving a (homogeneous)
sparse system of linear equations, of the formAx = b, of size
equal to the number of states in the CTMC.

A limitation of the Markovian modeling approach is the
fact that the CTMC models tend to grow extremely large
due to the state space explosion problem. This is caused by
the fact that a system is usually composed of a number of
concurrent subsystems, and that the size of the state space of
the overall system is generally exponential in the number of
subsystems. A realistic system can give rise to a large state
space, typically over106. As a consequence, much research is
focused on the development of techniques, that is, methods and
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Markowa.

data structures, which minimise the computational (space and
time) requirements for analysing large and complex systems.

One of such techniques is parallelization. Problems of
parallel computations for such systems and finding its steady-
state probabilities in parallel is brought up in [3], [8], [13],
[15]. In [2], [4], [7], [17] a manner of distributed generation
of the matrixQ in a network environment is desribed and in
[6] a similar algorithm—on a computer cluster—is presented.
Paper [5] describes solving sparse linear systems with the use
of the GMRES algorithm [18] in a network environment. The
parallel Jacobi method was discussed and a parallel method
for the CTMC steady-state solution is presented in [15]. The
Gauss-Seidel method is used for parallel solving of Markov
chains in [14], [20].

In this paper a combination of two classical iterative
methods for solving linear equation systems, namely Jacobi
method and Gauss-Seidel method is presented. These methods
were chosen because the presented algorithm is intended for
computer clusters and Jacobi method is inherently parallel
(Gauss-Seidel method has not got such a property and its par-
allelization requires a lot of communication), but Gauss-Seidel
method usually converges much faster than Jacobi method [1].
Properties of such a combined method are experimantally
examined in this paper. We try to study relative speedup and
efficiency of the algorithm—as the traditional characteristics
of parallel algorithms.

The rest of the paper is organized as follows. Section II
presents the problem. In Section III classical iterative methods
are reminded. Section IV shows used data distribution. Section
V presents traditional block/parallel iterative methods and (in
Section V-C) an approach employed by the authors. Section
VI describes conducted experiments and Section VII contains
some conclusions.

II. CTMCS AND THE STEADY-STATE SOLUTION

While modeling with Markov chains, in a steady state
(independent of time), we obtain a linear equation system like
follows;

QTx = 0, x ≥ 0, xTe = 1 (1)

whereQ is a transition rate matrix,x is an unknown vector
of states probabilities ande = (1, 1, ...., 1)T . The matrixQ
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is a square one of sizen × n, usually a big one, of rank
n − 1, sparse, with dominant diagonal. It is also a singular
matrix demanding adequate methods to solve the equation.
Markovian models solving demands overcoming both numer-
ical and algorithmic problems. Solving the equation system
(1) generally requires applying iterative methods, projection
methods or decomposition methods but occasionally (for the
need of an accurate solution) direct methods are used as well.
The rich material concerning the methods mentioned above
can be found in [19].

III. I TERATIVE METHODS—JACOBI AND GAUSS-SEIDEL

In this section classical iterative methods are reminded. The
general form of such a method step is

x(k+1)
←M−1Nx(k) (2)

where
M−N = QT . (3)

A. The Method of Jacobi

The method of Jacobi is a classical iterative method with
the coefficient matrixQT split as following:

QT = D− (L + U) (4)

which corresponds to assigning:

M = D, N = L + U (5)

in (3). The matrixD is a diagonal matrix, the matrixL is a
strictly lower triangular matrix (with zeroes on its diagonal)
and the matrixU is a strictly upper triangular matrix (with
zeroes on its diagonal). So in this method the step (2) looks
as following:

x(k+1)
← D−1(L + U)x(k) (6)

and in scalar form (fori = 1, . . . , n):

x
(k+1)
i ←

1

dii





i−1
∑

j=1

lijx
(k)
j +

n
∑

j=i+1

uijx
(k)
j



 . (7)

The method of Jacobi is very convinient to vectorize and
to parallelize. It can also be seen in the Jacobi equation (7)
that the new approximation of the solution vector (x(k+1))
is calculated by using only the old approximation of the
vector (x(k)). This method, therefore, possess a high degree
of natural parallelism. However, Jacobi methods has relatively
slow convergence.

B. The Method of Gauss-Seidel

In this method we have the same splitting of the matrixQT

but with a different grouping of components:

QT = (D− L)−U (8)

(the matricesD, L, U are defined as in the previous section).
Here we haveM = (D− L) andN = U, so the step (2) is:

x(k+1)
← (D− L)−1Ux(k) (9)

Fig. 1. An example of the matrixQT division

and in scalar form (fori = 1, . . . , n):

x
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1

dii
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lijx
(k+1)
j +

n
∑
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j



 . (10)

The method of Gauss-Seidel is not so convinient for vector-
ization or parallelization, but it converges faster—what can be
explained by the fact that although both methods use the same
scalar formulas (7) and (10), but in the method of Gauss-Seidel
the newly computed approximation of a solution component
is used as soon as it is available.

The Gauss-Seidel method typically converges faster than
the Jacobi method by using the most recently available ap-
proximations of the elements of the iteration vector. The other
advantage of the Gauuss-Seidel algorithm is that it can be
implemented using only one iteration vector, which is impor-
tant for large linear equation systems where storage of single
iteration vector alone may require 10GB or more. However,
a consequence of using the most recently available solution
approximation is that the method is inherently sequential—it
does not possess natural parallelism.

IV. DATA DISTRIBUTION

In parallel programming a very crucial issue is a division of
data among computational nodes (machines, processors etc.).
In the algorithm described later (in Section V-C) the matrix
QT is divided among cluster nodes as in Figure 1—that is
the matrix is divided intop rectangular submatricesQT

i , each
stored in theith cluster node.

Each submatrix is a sparse matrix and takes part in the
computations on its node (where it is stored).

V. A PARALLEL METHOD OFJACOBI/GAUSS-SEIDEL

The description of the parallel Jacobi/Gauss-Seidel method
will be started from the presentation of the well-known block
iterative methods, namely block Jacobi method and block
Gauss-Seidel method.

Block-based formulations of the iterative methods which
perform matrix computations on block-by-block basis usually
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turn out to be more efficient and easier to parallelize. Gen-
erally iterative block methods demand more calculations per
iteration, which is recompensed by a faster convergence rate
(and sometimes better cache utilization).

It is possible in Markov chains to divide the transition rate
matrix into blocks (or even generate it in blocks straight away
[4], [7]) and develop iterative methods basing on that division.

In Markov chains problems it is often the case that the state
space can be meaningfully partitioned into subsets and thus,
it is possible to partition the transition rate matrix respectively
and to base the solution method on blocks implied by such a
partition.

The homogeneous equations system (1) is divided intoK2

square blocks of the same size in the following way:









Q11 Q12 . . . Q1K

Q21 Q22 . . . Q2K

. . . . . . . . . . . .
QK1 QK2 . . . QKK



















x1

x2

...
xK











= 0. (11)

We introduce block splitting:

QT = DK − (LK + UK), (12)

whereDK is a block-diagonal matrix,LK is a strictly block
lower triangular matrix,UK is a strictly block upper triangular
matrix with form:

DK =









D11 0 . . . 0
0 D22 . . . 0

. . . . . . . . . . . .
0 0 . . . DKK









, (13)

LK =
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. . . . . . . . . . . .
LK1 LK2 . . . 0
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



, (14)

UK =









0 U12 . . . U1K

0 0 . . . U2K

. . . . . . . . . . . .
0 0 . . . 0









, (15)

whereDii = Qii, Lij = −Qij , Uij = −Qij.

A. A Block Jacobi Algorithm

The iterative method of Jacobi was described in Section
III-A. In this section, a block parallel Jacobi algorithm for the
solution of the linear equation system (1) is presented.

Block Jacobi method is given by (fori = 1, . . . , K):

QT
iix

(k+1)
i = −

∑

j<>i

QT
ijx

(k)
j (16)

where blocks are as in (11).
Having K computational nodes (computers or processors),

every equation of (16) can be solved independently by a
computational node. The equtions (16) can be solved by an
arbitrary method.

B. A Block Gauss-Seidel Algorithm

Just like the scalar Gauss-Seidel algorithm (see Section
III-B), the block Gauss-Seidel algorithm can be written:

(DK − LK)x(i+1) = UKx(i). (17)

Describing the equation mentioned above in a scalar-like form
we get (forj = 1, . . . , K):

Qjjx
(i+1)
j = −





i−1
∑

l=1

Qjlx
(i+1)
l +

K
∑

l=j+1

Qjlx
(i)
l



 (18)

wherex
(i)
j is the jth (n/K)-element subvector of the vector

x(i) (as in (11)).
As a result of above in every step we must solveK equation

systems ofn/K size each in the following form (forj =
1, . . . , K):

Qjjx
(i+1)
i = z

(i+1)
j (19)

where

z
(i+1)
j = −
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∑
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Qjlx
(i+1)
l +

K
∑
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Qjlx
(i)
l



 . (20)

We can apply different direct and iterative methods to the
solve equation (19). There is a small number of iterations
demanded to obtain convergence for a small number of blocks
(i.e. submatrices are big). The difficulty is that it is very hard
to parallelize effectively—it is caused by the use of the newly
computed values just after their computation.

C. A Modified Block Jacobi Algorithm

In this section we present an algorithm, which takes advan-
tage of the division of the matrixQ between computational
nodes described in Section IV. The algorithm proposed here is
a combination of Jacobi and Gauss-Seidel iterative methods.

To start from a usual Jacobi method, there is

QT = D− (L + U) (21)

(see Section III-A).
Let

H = D−1(L + U). (22)

Thus, the (6) can be written

x(k+1) = Hx(k). (23)

In a block iterative method the linear system (23) is divided
into some subsystems. In this section the matrixH is divided
into p blocks (p is the number of computatinal nodes), each
block Hi (i = 1, . . . , p) of the size of n columns and
n/p rows (last one,Hp can be shorter—as in Figure 1—it
does not influences general considerations). Such a division
corresponds to the division of the matrixQT proposed in
Section IV, because to obtain elements of the matrixHi one
needs only elements of the matrixQT

i .
Similarly, the vectorx (and some auxiliary vectors in the

implementation) is divided intop subvectors, each of the
sizen/p.
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Fig. 2. A Markovian queuing model of the tail-drop mechanism

Now, the (23) can be written:












x
(k+1)
1

x
(k+1)
2

...

x
(k+1)
p













=











H1

H2

...
Hp










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and, in another manner, fori = 1, . . . , p:

x
(k+1)
i = Hix

(k). (25)

(25) is a formula for the block Jacobi method (Section
III-A). All the equations in (25) are solved independently,so
it is very suitable to parallelize forp processors – each of
them solves one equation and then they exchange the resulting
vectorsx(k+1)

i to build its new versionx(k+1).
However, the Jacobi method is rather slowly convergent,

so in the presented algorithm, every computational node
can employ the formula of the Gauss-Seidel algorithm (10)
instead of the Jacobi algorithm (7)—using the newly obtained
elements of the vectorx(k+1)

i (although only those which are
stored in the same computational nodes) and hoping for the
better convergency.

In other words, the algorithm can be described as a block
Jacobi iterative method with solving inner blocks with the
Gauss-Seidel iterative method.

In borderline cases the presented algorithm reduces to the
pure Jacobi algorithm (forp = n) and to the pure Gauss-Seidel
algorithm (forp = 1).

D. Implementation details

We propose an algorithm for homogeneous cluster en-
vironments. This algorithm is based on a message-passing
paradigm and consists of one module for each of nodes. The
algorithm presented below is just a skeleton, and the detailed
implementation, such as data preparation, parameters passing,
and so forth, might be different according to requirements of
various applications.

The algorithm is composed of several steps. First, the start-
ing information is acquired. Next, the matrixQ is generated
in parts so that every node keeps only needed states (as in

Figure 1) Next, in loop, in every node for its block we make
a step of the Gauss-Seidel method.

The algorithm for every node (in pseudo-code) is described
as follows:

Initialization(&MyNumber);

FindBeginAndEnd(MyNumber, &n0, &n1);
/* computes starting index n0 and

ending index n1 for the block of
the node MyNumber */

QT=Generate(n0, n1);
/* generates adequate block */

FillVector(X, 1.0/n);
IterNo=0;

do
{

IterNo++;
InnerGaussSeidel(QT, X);
/* the node computes only its own

part of the vector */
GatherVector(X)
/* every node needes the whole vector

for further computations */
Normalize(X);

} while(Remainder(QT, X)>EPSILON &&
IterNo<MAXITER);

Finalizetion();

VI. EXPERIMENTAL RESULTS

A. Properties of the Used Matrices

The matrices obtained for tests were transition rate matrices
for a very simple model of a tail-drop mechanism (a very
simple congestion control mechanism in a router’s buffer).The
queuing model for such a mechanism is shown in Figure 2. It
is a passive mechanism, that is, it does not make any decision,
as far as the moment of dropping packets is concerned—they
are always dropped when there is no room for new packets.
Moreover, in the tail-drop mechanism the packet that just
arrived, is dropped. A Markovian queuing model for such
a mechanism consists of: a sourceZ (which sends packets
with variable rates), a service stationB (which corresponds
to a router’s buffer) and two auxiliary service stationsA
and N (which correspond to confirmations and rejections,
respectively, returning to the sourceZ).

The rate of the sourceZ is not constant but it increases (not
above a given maximum) as confirmations leave the stationA
and it decreases (not below a given minimum) as rejections
leave the stationN (both events represent reaching the source
by the information about the packet’s fate). The states of such
a model can be written as vectors of numbers. In our example
it would be (l, b, a, m), wherel is an integer between1 and
lmax and it means the current relative intensity of the source
Z and b, a and m are integers between0 and bmax, amax,
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TABLE I
TEST MATRICES AND THE ALGORITHM PERFORMANCE

lmax bmax amax mmax n p Tp [s] Sp Ep

40 40 40 40 2 756 840 1 145 — —

10 96 1.51 0.15

50 50 50 50 6 632 550 1 480 — —

10 210 2.29 0.23

60 60 60 60 13 618 860 1 812 — —

10 399 2.04 0.20

70 70 70 70 25 053 770 1 3 373 — —

10 714 4.72 0.47

72 72 72 72 28 009 224 1 4 283 — —

10 829 5.17 0.52

74 74 74 74 31 218 750 1 5 232 — —

10 929 5.63 0.56

Fig. 3. Performance time of the algorithm for three different sizes of matrices

Fig. 4. Relative speedup of the algorithm for three different sizes of matrices

mmax (respectively) and they mean the number of packets
waiting or being processed currently in the stationsB, A, N
(respectively).

B. Computational Environment

Experiments were carried out in a cluster environment (part
of CLUSTERIX – a cluster of Linux machines consisting of

Fig. 5. Efficiency of the algorithm for three different sizesof matrices

Fig. 6. Relative speedup of the algorithm working on 10 processors for
various matrices

more than 800 machines distributed all over Poland and con-
nected with a fast optical network; one of the fastest European
distributed supercomputers [21]) dedicated for computing.

The CLUSTERIX itself is built as a cluster of local clusters.
So up to 10 machines were used—all belonging to a single
local cluster— as we were interested in investigating behavior
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of the algorithm in such an environment. Each of the machines
was equipped with two 64-bit processors Intel Itanium 2
1.4 GHz and 4 GB RAM, but we used only one processor
in every machine, because we were interested in distributed
results. The cluster nodes were used when they were idle—in
order to assure credible performance times.

The algorithm was implemented with the use of the MPI
(message passing interface) standard and MPICH library.

C. Numerical Results

The properties of the models and the matrices used in
tests are shown in Table I. All the matrices have about 5–6
elements in a row (very sparse matrices). There are also some
characteristics of the performance—Tp, Sp andEp presented
there. The distributed run-time of 50 iterations of the algorithm
is measured as the maximum run-time from the start and
we denote it asTp (for p machines). The speedup forp
processors is denoted bySp and is given bySp = T1/Tp. The
efficiency forp processors is denoted byEp and is defined as
Ep = Sp/p.

We can see in Figures 3–6 and in Table I that the relative
speedup and the efficiency grows with the growth of the size
of matrices, so we can expect that for bigger matrices we can
get better results.

VII. C ONCLUSION

The authors have developed a parallel and somewhat scal-
able algorithm that computes the vectorx from the equation
(1) for a very largen; the matrix Q is distributed among
the computational nodes. To findx, a parallel combination
of Jacobi and Gauss-Seidel iterative methods was used. The
numerical experiments on a parallel system have been carried
out in order to assess the effectiveness of the distributed
algorithm on a computer cluster. The numerical tests indicate
that some efficiency is possible if the sufficient amount of
work per processor is provided (for small sizes of the matrix
the scalability is worse). The parallel implementation was
benchmarked using a Markovian model of congestion control.

The results suggest an important area for future research—
writing numerical algorithms (which find probability vectors)
for huge matrices modeling Markov chains distributed in row-
striped manner among many processor (as in our algorithm)
and performance optimization—perhaps using preconditioned
iterative methods [2], [9], [10], [11], [12], [17].

The proposed method is tested on matries connected with
Markov chains, but we can use this method to different
application to other problems with sparse matrices.

In the future we want to examine the combination of
Jacobi and Gauss-Seidel methods theoretically and compare
our approach with others.
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