Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 459-465

ISBN 978-83-60810-14-9
ISSN 1896-7094

Load balancing in the SOAJA Web Service Platform

Richard Olejnik, lyad Alshabarii, Bernard Toursé| Eryk Laskowski, Marek Tudruj*
*Computer Science Laboratory of Lille (UMR CNRS 8022). Umsity of Sciences and Technologies of Lille, France.
fInstitute of Computer Science Polish Academy of Sciencemsew, Poland
Polish-Japanese Institute of Information Technology, 8&far Poland
{Richard.Olejnik, lyad.Alshabani, Bernard.Tourg@lifl.fr
{laskowsk, tudruj@ipipan.waw.pl

Abstract—The aim of the Service Oriented Adaptative Java
Applications (SOAJA) project is to develop a service-orieted
infrastructure, which enables efficient running of Java appica-
tions in complex, networked computing Grid environments. The
SOAJA environment provides components and services for stia
and dynamic load balancing based on Java object observation

program execution. It is based on three basic operationd: JV
load observation, detection of the load imbalance and load
migration if the imbalance exists. A dynamic agent approach
is used to implement these operations. Some metrics totdetec
and measure the load imbalance of processors have been

SOAJA can be used to design large scale computing tasks to beproposed in the paper. They differ from standard measures

executed based on idle time of processor nodes. Java distrited
applications consist of parallel objects which SOAJA alloates to
Grid nodes at runtime. In this paper, we present mechanismsad
algorithms for automatic placement and adaptation of applcation
objects, in response to evolution of resource availabilityThese
mechanisms enable to control the granularity data processi
and distribution of the application on the Grid platform.

Index Terms—Service Oriented Applications, Adaptative Ap-

known in the literature [2].

This paper describes SOAJA overall architecture and then
deals with its internal concepts. The rest of the paper is
composed of 5 parts. In the first part the general assumptions
for the SOAJA framework are presented. Part 2 explains the
use of web services in SOAJA. Part 3 discusses the relations
between web services and functions of DG-ADAJ. Part 4

plications, Load balancing, Grid Computing Distributed Com-

puting describes the load imbalance detection mechanisms in SOAJA

Part 5 describes the load imbalance correction mechanisms.

I. INTRODUCTION II. SOAJA AND GRID

OAD balancing is one of important procedures applied The SOAJA (Service Oriented Adaptative Java Applica-

to heuristically optimize execution time of parallel protions) infrastructure provides components and services en
grams. A general classification and an overview of loaabling a platform-independent access, sharing and apiplica
balancing methods are presented in [3], [4]. The paper deafspotentially distributed complex data mining workflowq [7
with an asynchronous approach to load balancing, in whielmd resources, including database and information systems
the load balancing activities are performed in parallelhwitand hardware resources. It supports resource discovery and
computations. Load balancing can be further divided irdtist will supply context-aware recommendations for the dynamic
load balancing where an computational load is partitionedmposition of data mining operations and workflows. The
among executive units by an algorithm executed before prenderlying agent-based layer of the SOAJA infrastructuite w
gram execution and dynamic load balancing, where the loptbvide means to orchestrate very large, heterogeneous and
decomposition is adaptively changed during computatiordynamic hardware and software resources across multiple
following the system resources availability. This paper iglatforms. The SOAJA is deployed in a grid infrastructure
concerned equally with static and dynamic load balancingith a JVM on each processor node. The main services
In Java-based computing on Grid static load balancing haek this framework are observation, measuring of the JVM
received relatively small attention. In this paper we pnéseload, measuring of the physical processor load, load badgnc
a two phase approach to load balancing of Java prograsesvice, and data parallel services. The SOAJA environment
execution in Grid. The first phase consists of a static lodd bé the extension of the ADAJ environment to make it scalable
ancing, which determines an initial deployment of appl@at on the Grid and to support service oriented architecture [5]
Java objects over the network of Java Virtual Machines. ThisADAJ is a programming and execution environment for par-
static load balancing algorithm scenario includes exeoutif allel and distributed applications, which facilitates thesign
the application for a representative set of data to be ableand optimizes performance. ADAJ is a Java environment based
detect some static properties concerning computationdl an JavaParty [14], which optimizes the RMI protocol. The
communication aspects and to be able to use this propestiesfavaParty allows execution of distributed Java application
an initial deployment of program elements before executioworkstations connected via a network. JavaParty has intro-
This phase of load balancing is based on tracing of the loaddifced the concept of remote objects that can be distributed
virtual machines and method invocations. The second phasea transparent manner. It compensates for the drawbacks
of the load balancing process is dynamically organizednguriof the RMI protocol because it conceals the addressing and

978-83-60810-14-9/08/$25.00 2008 IEEE 459

460 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

communication mechanisms. Indeed, it is sufficient to ameot SOAJA is based on WSRF [9] and allows instantiation
Java classes with the word “remote” that will give acceasf statefull services for applications. The statefullness

to remote objects from any JavaParty environment withotlte services is exploited in relation with application ot
publishing them explicitly in service names space as RMI. that will allow asynchronous communication with software

Unfortunately, designing distributed programs and optimi components instantiated for the client on different platfs.

ing their performance does not remain as simple. Indeed, avarious middleware components were considered to enable
programmer must consider construction of its application SOA services. In close relation with these components, spe-
the most effective way, while taking account of heteroggneicific technologies were defined and implemented in order to
of the executive environment. This is what the role of ADAJ isachieve interoperability. The Enterprise Service Bus (ESB

Principles of ADAJ: middleware technology providing the necessary charatiesi
« Simplifying the programmer’s work by hiding problemgn order to support SOA. In a typical ESB architecture, the
related to the management of parallelism, ESB layer itself is deployed over the existing infrastruetu

. Facilitating the development of applications and allowin§ased on this infrastructure, the ESB layer offers the rszrgs
their automatic or quasi-automatic deployment in hetergupport for transport interconnections while it exposes th
geneous environments, existing subsystems through a specific set of adapters.

« Ensuring effective implementation of parallelism, by With the help of the ESB, services are exposed in a uniform
mechanisms of inter- and intra-applications load balanganner, based on open standards, so that any client, who
ing. is able to consume web services over a generic or specific

ADAJ includes four major features: transport, is able to access them. For example, the SOAJA
. - ... has been used to implement data mining application in the
« A library containing the necessary tools to fauhtatQN
. ODKA project [11].
parallel programming,

« An observation system which scans the environment dur-
ing its execution and retrieves the information necessary

to optimize the program, SOAJA is a platform developed on top of DG-ADAJ,
« A system that calculates the load of JVM and physicgl, adding the web services layer and gaining SOA-specific
processors using the information gathered by the obsgfpperties. With computing grid as a central target, the $OA
vation system, platform provides a uniform and transparent interface ¢aith
« A system that allows correcting load imbalance by objectfastructure of the DG-ADAJ platform. The SOAJA platform,
migration based on information from the the observatiqﬁrough its orchestration layer, implements an altereativ
and the calculation of loads. facilitate execution in the DG-ADAJ environment [1], [13].
DG-ADAJ is the ADAJ environment implemented forwith DG-ADAJ executions controlled via an ESB, the orches-
Desktop-Grid. Initially, DG-ADAJ was conceived as an extration layer is able to offer both the support for executidn
tension of the ADAJ system (see [10]), built for clustecomplex compositions, as well as elementary executionef th
computing. It has been re-engineered to extend its for targenderlying DG-ADAJ environment.
scale distributed computing and to introduce some specialThe solution is hiding implementation details of different
security mechanisms, which provide reliable applicati@n eGrid environments behind various web service standards and

I1l. ADAJ W EB SERVICES

ecution [12]. technologies, offering the necessary support for intémnat
The Figure 1 illustrates the main web services that beloiigeroperability, and reliable messaging. As a side effbgt
to SOAJA environment. employing the orchestration layer, we enable a programming

in-the-large paradigm necessary to assure the develo@andnt
support of long living, asynchronous processes.

The SOAJA platform is going to help efficient execution of
heterogeneous applications enabled by DG-ADAJ by offering
basic support for workflow deployment and enactment. The
DG-ADAJ environment could thus be freed from some of
the placement, distribution and execution tasks, by moving
significant parts of these to the higher layer of the ESB and
the enactment environment. With SOAJA, the ability to desig
component-based and service oriented applications, ojzve|
over the DG-ADAJ platform is extended with the help of web
services open standards, by offering the possibility teeasc
both local and remote components, eventually deployed on
different DG-ADAJ environments.

We have found no tool to transform packages containing
Fig. 1. SOAJA Environment many classes, directly into a web service package. We had

ADAJ Environment

Load
Physical Machine = calculation

Physical Machine

Physical Machine

Load
calculation

Load
calculation

Application
Parallel 1
programming tools

RICHARD OLEJNIK ET. AL: LOAD BALANCING IN THE SOAJA WEB SERVCE PLATFORM 461

to go through the implementation of interfaces to identifgll classes are distributed classes). Based on the recooted
methods that might be invoked by other web services. trol data, the algorithm decides which classes should nremai

Let us now describe the internal mechanism of DG-ADAdlistributed and how the involved objects should be placed on
a set of JVMs assigned to active nodes on the Grid. We use
the heuristics based on the following principles: the giron

Distribution of the application components (objects) amoriocality of method calls has to be preserved inside eacHlphra
active Grid nodes should guarantee a possibly high effigientiread and the number of inter-thread calls, which cross the
of the overall application execution. Thus, the followivgot boundaries of JVMs has to be reduced. To fulfill such object
aspects of execution optimization have been taken intouatcorequirements we designate all calls inside a single thread t
in the SOAJA environment: the same JVM and optimize distribution of threads across

« initial objects deployment, available sets of JVMs by applying load balancing methods.

« dynamic load balancing. The algorithm consists of two phases (see [6] for detaits). |
the first phase the MCG graph is traversed in the DFS (Deep-
First-Search) manner to agglomerate method calls executed

An optimization feature of SOAJA is an initial applicationin single thread. In this step, the algorithm finds the MCG
objects deployment on JVMs, which results in a shortaubgraphs, which are constructed of vertices connected by
execution time. The initial placement of application olgec edges connecting calls inside threads. We assume that each
to JVMs is the service of the orchestrator shown in Fig. Subgraph is executed on a dedicated JVM. Subgraphs are built
The initial object deployment optimization algorithm f@Ns at the level of single objects. In case when an object belongs
the pattern of static parallelization method in multitided to different subgraphs, the new subgraph is constructechand
Java program. It defines decomposition of Java code imuaique JVM number is assigned to it. We expect that, in most
parallel threads distributed on a set of JVMs, so as to redusases, at the end of this phase, the number of found subgraphs
program execution time [13]. The control decisions are riakés far bigger than the number of available JVMs in the system.
to determine which of the classes should be distributed andn the second phase of the algorithm, we clusterize the
what the mapping of objects and data components (fragments)
should be to JVM nodes, to reduce direct inter-object commu-
nication and to balance loads of the JVMs. When applied to an
application run under DG-ADAJ control, it will determine an)
initial distribution of its objects among Java Virtual Maicls
(JVMs) assigned to Grid active nodes, thus leading to a

IV. EXECUTION OPTIMIZATION IN SOAJA

A. Initial object deployment optimization

Program method and thread de-
pendence graphs are created.

reduction of the total execution time.

The proposed optimization algorithm employs an image of
application program, based on an analysis of the byte code
generated by Java compiler. This analysis identifies cbntro
dependencies between byte code instructions. They are rep-
resented in adequate MDG (Method Dependence Graph) and
MCG (Method Call Graph) graphs of the program [6], [13].
The number of mutual method calls and the number of thread
spawns during program execution for representative inpt# d
are measured using observation mechanisms describednlater
the paper. Program behavior, including all created objects
each class, all called methods, as well as all spawned thread
are registered in trace files.

The flow of actions during application execution is shown
in the diagram in Fig. 2. The first three blocks in the diagram
determine an initial optimized placement of applicatiofects
and perform the respective objects distribution over Grid o
JVMs nodes. This part of the algorithm starts with execution
of the application using some representative sample data. F
that, the number of available JVMs nodes on the Grid must be
known. The number of method calls and spawned threads that
have appeared during execution is recorded. Next, the anogr
method and thread dependence graphs are annotated with the
recorded data.

At the beginning of the object deployment optimization
algorithm we treat all objects as remote objects (respelgtiv

Application is executed using a
sample data set. The number of
method calls and thread spawns
is registered.

1

JVM reservation requests are
sent to the Grid. The number
and features of JVMs available
for execution of the application is

obtained.
1

The placement optimization al-
gorithm is performed.

1

The program is deployed among
the reserved Grid nodes. "Log-
ical” JVMs are mapped onto
physical JVMs in the Grid. Ap-
plication objects are placed on
Grid reserved active nodes.

1

The application is started. In
parallel with the application, the
observation and dynamic object
redistribution tool (DG-ADAJ) is

run.
!

end

Fig. 2. The control flow of an application execution.

462 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

object_Test object 0:Master object 0:Comm object 0:Worker object 3:Comm object 3:Worker

R — — T 8 . i . B. Load balancing
: /’O § ‘ The workstations used in the network are heterogeneous,

but they have different and variable computing capabditie
over time. The load imbalance occurs when the differences
in workload between the workstations become too big. An
application execution may not be optimal because some
workstations have too much work and the others have not
enough. Let’s consider that the network works correctly and
that the DG-ADAJ environment is running. We distinguish
meczsconn oexzwener WO MaAIN Steps in load balancing: detection of imbalance and
:) its correction, if necessary. The first step uses measuitemen

tools to know the functional state of workstations. The seco
consists in migrating of the load from overloaded workstasgi
to underloaded workstations in order to balance the wotkloa

The observation mechanism of applications in the DG-
ADAJ environment aims at providing knowledge of the ap-
plications behavior during their execution. This knowledg
gathered by observing activity of constituent objects.

There are two types of objects in DG-ADAJ (Fig. 5):

« global objects: These are global objects that can be
created remotely in any JVM. They are remote acces-
sible. There is only one copy of a global object in all
environment. The global objects are also migratable, i.e.
they can be moved from one JVM to another.

« local objects: These objects are traditional Java objects.
They can be used in only one JVM at the place where
they reside. If another JVM needs such object, it will
create of a new copy of the object concerned. Obviously,
local objects cannot be migrated.

We decide to observe only global objects as the observation
and migration of all objects would generate a considerable

work overhead compared to the profit brought by load balanc-
subgraphs obtained in the previous phase until the numbergj.

clusters is equal to the number of JVMs. The general outline

of this phase is similar to Sarkar’s [15] edge-zeroing @tiaty
heuristics. At each clustering step, the algorithm finds the
subgraphs, which are connected by edges with the biggest
weight value and which connect nodes placed on different
JVMs. All nodes of those subgraphs are assigned to the sapigiions 7
JVM while the total number of remote calls decreases. The between™ ™ /-
algorithm stops when the number of clusters is equal to th@biects
assumed number of JVMs.

Fig. 4. Final distribution of application objects acrossMi/

An exemplary result of the first phase of the algorithm is /
shown in Fig. 3. A MCG has been partitioned into sub-graphs \

and objects, which belong to more than one sub-graph, are
assigned to unique JVM. During clustering phase, objees th i1l - Local objects

frequently invoke methods in different objects are moved to g., g;)]

the called object’'s JVM. Final distribution of program otife i - Global Objects

r VMs is shown in Fig. 4.
across J SIS sho 9 Fig. 5. Relations between Objects

The first phase of the algorithm makes that method calls
inside programmer-declared threads are local to the JVN& Th
allows exploiting thread level parallelism without intuozing V. DETECTION OF LOAD IMBALANCE
large inter-JVM communication overheads. The gain of theIn this first phase, the purpose is to obtain knowledge
second step of the heuristics comes from reduction of RMbout of the functional state of workstations composing the
calls to remote objects. cluster. As the environment is heterogeneous, it is nepgssa

RICHARD OLEJNIK ET. AL: LOAD BALANCING IN THE SOAJA WEB SERVCE PLATFORM 463

to know not only the load of workstations but also theionly a small difference between loads of workstations. This
working capabilities. Such capability is directly relaténl can be seen as a guarantee of the quality of the balancing re-
the workstation computing power, so we have to estimaselts. However, a low tolerance of the imbalance leads toomuc
it. This measurement needs to be made only once when there frequent detection of the imbalance. The consequence i
workstation joins the system. We calltite calibrationin this to activate the mechanism of load balancing more frequently
paper. and therefore make it more expensive in time. Not only the

We then need the workstations workload measurementnaigrated objects can not do their computing, but they can
a given time. For this purpose, we observe this part of tlso block the execution of others objects, which are angiti
CPU time that is used by DG-ADAJ applications. Howevergsults. In addition, the coefficientis to be chosen according
such measurement is not normalized and cannot serve timthe number of machines in the network. When this number
comparisons between different workstations. It is thusesec is big, the coefficient must be increased and vise versa.
sary to balance it against different computing power of the
workstations. After a series of measures, we compare the
values found on different machines and we determine if thefe Classification of workstations
is a load imbalance. In this phase, we are in the state in which a load imbalance

The heterogeneity disallows us to compare measuremends been detected. To correct this imbalance, we have to
taken on workstations whose computing powers are differeplassify the workstations into three categories according
Before we are able to compare the workstations load, weir availability index:
have to normalize the measurements. The normalizatioreof th , Overloaded workstations: ava”abi”ty indices are low,
workloads is made by means of the power indications. After, Normally loaded workstations: availability indices are
experiments to determine the workstation power, we fouatl th medium,
the formula, which allows us to compare the workstationslloa , Underloaded workstations: availability indices are high.
is the product of the power index and the CPU time use ratethe purpose of the load balancing is to transform the
by a thread, which gives the availability index of a CPU: \yorkstations categories: overloaded and underloadedtireo
category normally loaded. To do it, we need to migrate the
]] S workstations load from the first category to the third one.

At this point, we have availability indices of all work- \ye yse the K-Means algorithm [8] to build the categories
stations. By comparing these indices, we will be able t workstations based on the computed availability indices
detect the load imbalance. An imbalance is characterized ¥)e K-Means algorithm allows to classify a distributionsof
too big dispersion of the availability indices of workseats 5)ues intok categories by choosink centers for categories.
composing the network. It is difficult to fix a threshold not tGye \want to classify workstations into the categories: over-
be overpassed to characterize a load imbalance. But we ¢gaed, normally loaded and underloaded. For this, we use
define an interval in which the dispersion of the availapilityn;g algorithm by taking the computed availability indicesd
indices remains acceptable at a given moment. We are gojng. 3, to obtain 3 categories finally.
to be interested in the gap between the minimal and maximalrhe three centers that we choose are the minimum, average
availability indices found during a series of measureshf t 30d maximum availability indices. The average index is $fmp
distance between these values is too big, we conclude that average of indices measured during the last series of
there is a load imbalance, which can to be considered usig@asures over the whole network. By comparing the distances
the following condition: of workstations availability indices from the three cester
the three categories of workstations will be identified. The
center represented by the minimum index builds the category

If this inequallity is verified, the availability indices actose of overloaded workstations, the center using the average on
enough not to present a too big imbalance. Otherwise, thgids the category of normally loaded workstations andl§ina
range of the values is too big and an imbalance of worklogge center based on the maximum index is used to build the
between workstations is detected. The central point of trggtegory of underloaded workstations. The important théng
inequality is the value taken by the coefficiemt We tried therefore to have the overloaded and underloaded categorie
to clarify it first by using statistical tools then by using an order to be able to move the load from the overloaded

experimental way. We cannot finally give a unique valuggrkstations to the underloaded workstations.
for this coefficient. Nevertheless, we can restrict its galo

the interval[1.5 . .. 2.5]. These experimental values give goo®: Choice of candidates for migration

results because they are neither too restrictive nor t@vant To correct load imbalance, we have to migrate the load

for the load imbalance. from overloaded workstations to underloaded workstations
The tolerance for the load imbalance among all workstatioRérstly, we must identify the load that we want to migrateeTh

depends directly on the value of the coefficienfThe smaller loads are represented by the activities of the objects wdwieh

this coefficient is, the more we are demanding as to the loathning on the JVMs. We need to select an object on each

balance between workstations. Indeed, a low coefficieatall JVM in the overloaded nodes. Let's see how to choose such

V1. CORRECTION OF LOAD IMBALANCE

Indavailability = Indpower * %T?:TTLSCPU

Sta’blllty = (max(lndavailability) S a*min(lndavailability))

464 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

an object, so that its migration changes the load baland®ein bbjects on the JVM) and
network. W Py; = OGI(0bj, 0bj) + I1(0bj) + OLI(0bj).

The migrated entity is necessarily a global object becauseThese formulas allow to compute the attraction of an object
it is not intrinsically linked to the JVM on which it curregtl to the local JVM in order to compare it with the attractions
runs. Among the global objects in a JVM, some of them hawd other objects of this JVM. The comparison formulas are:
more suitable characteristics to be migrated. These ctearac . The percentage of the global attraction:
istics are related with the other computer objects and taé lo

guantity carried out. Two relations are involved: Yattr(obj) = Z“”Lbﬁ
« the attraction of a global object to the JVM, ocv i Attr(0)
« the weight of the global object. « The percentage of distance, compared to the average

The attraction of a global object to a JVM is expressed duantity of work of the object:
in terms of communication links, which it shares with other distomy p(0b))
global objects_, ms_lde the same JVM on the c_:om_putlng _n_ode. A > ey s Qistmyp(0)
strong attraction involves frequent communication, whigh
Finally, we compute the weighted sum of these relations in

be realized as remote communication after object migrationrd f to determine the most interesting obiect to miarate:
This communication will then have a higher cost than thig'der o aete € the most interesting object to migrate-

current cost. A small attraction will permit to leave a glbba Classification(obj) =
object the current computing node and to run it on another one - . .
Wit]hout introducing signific?int amount of additional remot Qater * oattr(b]) + (1 = Qattr) * Yodistmu » (9])
communication. So, the less the object is attracted by theaa: is a real between 0 and 1. Its choice remains exper-
current JVM, the more interesting it is to be selected asimental. Let us notice however that the bigger. is, the
migration candidate. bigger is the added weight to the object attraction.

The computational weight of migrated global object giveé

the quantity of load to be removed from the current ma- i))
chine. An object, whose quantity of work is big i.e. shows The migration of global objects reduces the load of a JVM

a continuous activity, should not be migrated. In additioy running on an overloaded workstation and therefore theaglob
migrating a too big quantity of work (load), we could reversl?f"‘d cost of '[hIS. workstation. The questlo-n now is: _where
the role of the involved machines (the source will beconfBigrate these objects? Naturally, the potential desbnatare
target and vice-versa). In contrast, the migration of arectpj ©N€ Or more underloaded workstations. However, the chdice o
with small quantity of a work does not bring significant loa@"€ ©f these computing nodes can be more or less convenient
variation improvements. Furthermore, the migration coitit wTom the point of view of work and communication quantity
not be compensated with the new generated load distributi& the object to migrate. For an object selected for migratio
In conclusion, the decision should be to move an object who&§ must find the best target according to these criteria.
quantity of work is neither too big, nor too small. Thus, the The first criterion to quality as a target is the attraction
smaller the distance is to the average object loads, the mBfethe selected object to this workstation. We say that the
the object is interesting for migration. attraction of an object — candidate for migration, is big whe

The observation of the objects activity is done by countirlfy COmmunicates a lot with the global objects in the target
the activation methods. These activations can be done M- A relationship of attraction of the global objeet; to
global or local objects. The observation of a global object M is defined as follows:

(only these objects are observable), includes: attrext; = Z (OGI(objeat, obj)+OGI(obj, objext))
« observation of object invocations to each global object, objexte JVM;

including h'm: oGl (QutpthIoba}llnvocat|on), i The more the object is externally attracted by an under-
« the observation of object_ invocations to all local objectgy,qeq machine, the more it is interesting that this machine
OLI (OutputLocallnvocation), _ chosen as a migration destination for it. This criterionitio
« the observation of others objects invocations to the Ot pe the only one during selection of target for migration.
sidered object: II (Inputinvocation). In fact, it is possible that two underloaded workstationgeha
The attraction of the global objeeb; to the actual JVM: the same amount of communication with the candidate for
. . . migration. In this case, the second criterion will be the
attr(obj) = Z (OGI(obj, 0) + OGI(0, 0bj)) Wogrkstations’ availability indices. We naturally preféretone
oe VM whose availability index is the highest, because it is distua
Distance compared to the average quantity of work of thre least loaded.
obj: To complete discussion of the criteria for choosing a target
distmy p(0bF) = |W Popj — mw p| for migration, we should take into account the number of
D WPy, (waiting) threads in the JVM of the potential targets. We
%J (n is the number of global consider them, however, as potential load, which must bentak

Yodistmy, »(0bj) =

Selection of the target for migration

wheremyp =

RICHARD OLEJNIK ET. AL: LOAD BALANCING IN THE SOAJA WEB SERVCE PLATFORM 465

under consideration with the related load currently donéhen VII. CONCLUSIONS
machine. .)) This paper has presented the mechanisms and algorithms,
These three points are obvious constraints to be met by igich ensure automatic support for Java distributed progra
target machine: execution on Grids. It includes initial placement of the ap-
« the external attraction of the object is maximal to thgjication objects to the current used host system configurat
target machine, and further dynamic program execution adaptation in respon
« the quantity of work on the target machine is minimal,to the computing system evolution and to modifications of
« the number of waiting Java threads is minimal. the resource availability. The proposed program execution

These three conditions are gathered in a formula in ordggtimization mechanisms provide control to adjust theiahit
to designate the underloaded workstation, which is the m@ftnularity of the application program parallelizationdan
favorable for the selected object migration. Firstly, weséha the dynamic re-distribution of the application on the Grid
to normalize all the values related in the inter{al. . 1]. We patform. The SOAJA infrastructure with its observationaine
then obtain: anisms provides components and services enabling static an

attrext;
Yattrext; = =——— dynamic load balancing using idle CPU time of the nodes of
> attrext;
J J a Grid. The system is currently under implementation based
BoInd?, opitice. = Indy, giapitity, inside the GRID 5000 project.
avartadriity; *
Zj Indavailabilityj REFERENCES
where . - S
[1] I.Alshabani, R. Olejnik and B. TourseRarallel Tools for a Distributed
Ind* — Component FrameworKst International Conference on Information &
availability Communication Technologies: from Theory to ApplicatiofSTTA04).
NbT hreadyqit Damascus, Syria, April 2004.
Indgvaitabitity — INdavailabitity * 4NbThreadt ol [2] J. Cao et al.,Grid load balancing using intelligent agentsuture
ota.

e . Generation Computer Systems, 21 (2005), pp. 135-149.
The availability index was corrected by the potential work{3] k. Devine et al.,New challenges in dynamic load balancjnipplied

of the workstation, represented by the waiting threads. We Numerical Mathematics, 52 [2005], pp. 133-152, Elsevier.

: i . e :] R. Diekmann, B. Monien, R. Preid,oad Balancing Strategies for
have not considered this index during the classification O[fl Distributed Memory Machingsarsch/Monien/Satz (ed.): “Multi-Scale

workstations into three categories, because we want teifjtas Phenomena and their Simulation” World Scientific, pp. 265,21997.
workstations according to their measured quantity of wartt a [5] T. Erl, Service-oriented Architecture: Concepts, Technology, Besign

: . Upper Saddle River: Prentice Hall PTR, 2005. ISBN 0-13-B#56.
not a potential one. Indeed, threads waiting must be seen S V. Felea, E. Laskowski, B. Toursel, M. Tudrupptimizing Object

supplementary work about which we know nothing. They may ~ oriented Programs Based on the Byte Code-Defined Data Depeed
start executing in one second quite well as in one hour. Their Graphs Procs. of Concurrent Information Processing and Comgutin

. . . . - : (CIPC NATO ARW), Sinaia, Romania, pp. 3446, 2003.
consideration is thus justified only when we want to examm%] V. Fiolet, G. Lefait, R. Olejnik, B. TourselDptimal Grid Exploitation

our measurements in perspective as it is the case here. e thu algorithms for Data Mining In Proc. of ISPDC 2006, IEEE Computer
chose to decrease the raw indication of availability by nsean Society, July 2006, pp. 246-252.

; ; . 8] J.A. Hartigan et M.A. WongA K-Means clustering algorithmApplied
of the relationship between the number of waiting threadk a statistics, Vol. 28, pp. 100-108, 1979.

the total number of threads staying in the machine. [9] OASIS Web Services Resource Framework (WSRF) http:iivw
The aggregation function should account for the two de- oasis-open.org/committees/wsrf/

; s ; ; 0] R. Olejnik, A. Bouchi, B. Toursel.An Object Observation for a
scribed components by giving them different WelghtS. Tf{é Java Adaptative Distributed Application Platforrimtl. Conference on

balanced sum of them is: Parallel Computing in Electrical Engineering PARELEC 20pg. 171—
. % 176, Warsaw, Poland, September 2002.
Quality; = ag * %attrext; + By * %Indavailabilityi [11] R. Olejnik, F. Fortis, B. TourseWebservices Oriented Datamining in
: Knowledge ArchitectureAccepted to publication in Future Generation
with Qq and ﬁ‘l € [0' N 1] Computer System (FGCS)—The International Journal of Godh@ut-

For an object which is a candidate for migration, this ing: Theory, Methods and Applications
formula is applied to all JVM potential node targets. Th&2] R. OlejnikidB- Té)ursdegl M. Gagzha, '\g- Paprzycﬂgmbining Software
; ; oo : ; Agents and Grid MiddlewareAdvanced in Grid and Pervasive Comput-
workstation which maximizes this sum will be chosen as new ing. C. Cerin and K.-C Li Editors, LNCS 4459, pp. 678-685, iSger
location for the object. The choice of coefficients and 3, Verlag, Berlin, Heidelberg, 2007.
is experimental but the sum of the two must be equal to 1 (i8] Olejnik R., Toursel B., Tudruj M., Laskowski EByte-code scheduling

1 ; of Java programs with branches for desktop grieuture Generation
was therEformq =1 ﬁq) The weight of one or the other Computer Systems, Vol. 23, Issue 8, November 2007, pp. $2%-9

value can be increased by changing these coefficients. The @Eisevier Science.
migration of the object allows to eliminate communication o[14] M. Philippsen, M. ZengerJavaParty — Transparent Remote Objects in

; i : Java. Concurrency; Practice & Experience, Vol. 9. No. 11. pp. 1225
the network and to reduce considerably the waiting time for 5.~ November 1997,

replies. For that purpose, the coefficient must be the most [15] v. Sarkar,Partitioning and Scheduling Parallel Programs for Executi
important to promote the machines for which the attractibn o on MultiprocessorsThe MIT Press, 1989.

the object is maximal. For example, we can use the coeffiient

ag = 0.6 and g, = 0.4.

