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Abstract—The explosion of capabilities and new products
within the sphere of Information Technology (IT) has fostered
widespread, overly optimistic opinions regarding the industry,
based on common but unjustified assumptions of quality and
correctness of software. These assumptions are encouragedby
software producers and vendors, who at this late date have not
succeeded in finding a way to overcome the lack of an automated,
mathematically sound way to develop correct systems from
requirements. NASA faces this dilemma as it envisages advanced
mission concepts that involve large swarms of small spacecraft
that will engage cooperatively to achieve science goals. Such
missions entail levels of complexity that beg for new methods
for system development far beyond today’s methods, which are
inadequate for ensuring correct behavior of large numbers of
interacting intelligent mission elements. New system development
techniques recently devised through NASA-led research will offer
some innovative approaches to achieving correctness in complex
system development, including autonomous swarm missions that
exhibit emergent behavior, as well as general software products
created by the computing industry.

I. I NTRODUCTION

SOFTWARE has become pervasive. We encounter it in
our everyday lives: the average electric razor contains

the equivalent of more than 100,000 lines of code, several
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high-end cars contain more software than the onboard systems
of the Space Shuttle. We are reliant on software for our
transportation and entertainment, to wash our clothes and cook
our meals, and to keep us in touch with the outside world via
the Internet and our mobile phones.

The Information Technology industry, driven by software
development, has made remarkable advances. In just over
half a century, it has developed into a trillion-dollar-per-year
industry, continually breaking its own records [17], [27].

Some breathtaking statistics have been reported for the
hardware and software industries [16], [46]:

• The Price-to-Performance ratio halves every 18 months,
with a 100-fold increase in performance every decade.

• Performance progress in the next 18 months will equal
all progress made to date.

• New storage available equals the sum of all previously
available storageever.

• New processing capability equals the sum of all previous
processing power.

Simultaneously, a number of flawed assumptions have arisen
regarding the way we build both software and hardware
systems [38], [46], which include:

• Human beings can achieve perfection; they can avoid
making mistakes during installation, maintenance and
upgrades.

• Software will eventually be bug-free; the focus of com-
panies has been to hire better programmers, and the
focus of universities is to better train software engineers
in development lifecycle models.

• Mean-time between failure (MTBF) is already very large
(approximately 100 years) and will continue to increase.

• Maintenance costs are a function of the purchase price
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Fig. 1. Contrasting availability of Telephone Systems, Computer Systems,
Internet, and Mobile Phones.

of hardware; and, as such, decreasing hardware costs
(price/performance) results in decreases in maintenance
costs.

II. SOFTWARE PROBLEMS

With the situation stated this way, many flawed assumptions
regarding the IT industry come into view. The situation is
even worse if we focus primarily on software. The Computing
industry has failed to avoid software-related catastrophes.
Notable examples include:

• Therac-25, where cancer patients were given lethal doses
of radiation during radiation therapy [33].

• Ariane 5, where it was assumed that the same launch
software used in the prior version (Ariane 4) could be
reused. The result was the loss of the rocket within
seconds of launch [34].

• The Mars Polar Lander, where failure to initialize a
variable resulted in the craft crash landing on the
Martian surface, instead of reverse thrusting and landing
softly [29].

Progress in software regularly lags behind hardware. In the
last decade, for example, two highly software-intensive appli-
cations, namely Internet communications and mobile phone
technology, have suffered reduced availability and increased
down time, while their hardware counterparts, computer hard-
ware and telephony systems, have continued to improve.
Figure 1 illustrates this trend [17].

A. An Historic Problem

The realization that software development has lagged
greatly behind hardware is hardly a new one [6], nor is the
realization that our software development processes have some
severe deficiencies.

Brooks, in a widely quoted and much-referenced article [7],
warns of complacency in software development. He stresses
that, unlike hardware development, we cannot expect to
achieve great advances in productivity in software develop-
ment unless we concentrate on more appropriate development
methods. He highlights how software systems can suddenly
turn from being well-behaved to behaving erratically and
uncontrollably, with unanticipated delays and increased costs.
Brooks sees software systems as “werewolves” and rightly

points out that there is no single technique, no Silver Bullet,
capable of slaying such monsters [6].

On the contrary, more and more complex systems are
run on highly distributed, heterogeneous networks, subject to
strict performance, fault tolerance, and security constraints,
all of which may conflict. Many engineering disciplines must
contribute to the development of complex systems in an
attempt to satisfy all of these requirements. No single tech-
nique is adequate to address all issues of complex system
development; rather, different techniques must be appliedat
different stages of development (and throughout the devel-
opment process) to ensure unambiguous requirements state-
ments, precise specifications that are amenable to analysisand
evaluation, implementations that satisfy the requirements and
various (often conflicting) goals, re-use, re-engineeringand
reverse engineering of legacy code, appropriate integration
with existing systems, ease-of-use, predictability, dependabil-
ity, maintainability, fault tolerance, etc. [6].

Brooks [7] differentiates between theessence(that is, prob-
lems that are necessarily inherent in the nature of software) and
accidents(that is, problems that are secondary and caused by
current development environments and techniques). He points
out the great need for appropriate means of coming to grips
with the conceptual difficulties of software development—that
is, for appropriate emphasis on specification and design, rather
than on coding and testing.

In his article [7], he highlights some successes that have
been achieved in gaining improvements in productivity, but
points out that these address problems in the current develop-
ment process, rather than the problems inherent in softwareit-
self. In this category, he includes: the advent of high-level pro-
gramming languages, time-sharing, and unified programming
environments. Object-oriented programming, techniques from
artificial intelligence, expert systems, automatic programming,
program verification, and the advent of workstations, he sees
as non-bullets, as they will not help in slaying the werewolf.

He sees software reuse, rapid prototyping, incremental
development, and the employment of top-class designers as
potential starting points for the Silver Bullet, but warns that
none in itself is sufficient.

Brooks’ article has been very influential, and remains one of
the classics of software engineering. His viewpoint has been
criticized, however, as being overly pessimistic and for failing
to acknowledge some promising developments [6].

Harel, in an equally influential paper, written as a rebuttal
to Brooks [19], points to developments in Computer-Aided
Software Engineering (CASE) and visual formalisms [18] as
potentialbullets. Harel’s view is far more optimistic. He writes
five years after Brooks, and has seen the developments in that
period. The last forty years of system development have been
equally difficult, according to Harel, and, using a conceptual
vanilla framework, the development community has devised
means of overcoming many difficulties. As we address more
complex systems, Harel argues that we must devise similar
frameworks that are applicable to the classes of system we
are developing.
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Harel, along with many others, including the authors of
this paper, believes that appropriate techniques for modeling
must have a rigorous mathematical semantics, and appropriate
means for representing constructs. This differs greatly from
Brooks, who sees representational issues as mainlyaccidental.

III. N EW CHALLENGES FORSOFTWARE ENGINEERING

Clearly there have been significant advances in software
engineering tools, techniques, and methods, since the time
of Brooks’ and Harel’s papers. In many cases, however, the
advantages of these developments have been mitigated by
corresponding increases in demand for greater, more complex
functionality, stricter constraints on performance and reaction
times, and attempts to increase productivity and reduce costs,
while simultaneously pushing systems requirements to their
limits. NASA, for example, continues to build more and more
complex systems, with impressive functionality, and increas-
ingly autonomous behavior. In the main, this is essential.
NASA missions are pursuing scientific discovery in ways
that require autonomous systems. While manned exploration
missions are clearly in NASA’s future (such as the Exploration
Initiative’s plans to return to the moon and put Man on Mars),
several current and future NASA missions, for reasons that
we will explain below, necessitate autonomous behavior by
unmanned spacecraft.

We will describe some of the challenges for software
engineering emerging from new classes of complex systems
being developed by NASA and others. We will discuss these in
Section III-A with reference to a NASA concept mission that is
exemplary of many of these new systems. Then, in Section IV
we will present some techniques that we are addressing, which
may lead towards a Silver Bullet.

A. Challenges of Future NASA Missions

Future NASA missions will exploit new paradigms for
space exploration, heavily focused on the (still) emergingtech-
nologies of autonomous and autonomic systems. Traditional
missions, reliant on one large spacecraft, are being superceded
or complemented by missions that involve several smaller
spacecraft operating in collaboration, analogous to swarms
in nature. This offers several advantages: the ability to send
spacecraft to explore regions of space where traditional craft
simply would be impractical, increased spatial distribution of
observations, greater redundancy, and, consequently, greater
protection of assets, and reduced costs and risk, to name but
a few. Planned missions entail the use of several unmanned
autonomous vehicles (UAVs) flying approximately one meter
above the surface of Mars, covering as much of the surface
of Mars in seconds as the now famous Mars rovers did in
their entire time on the planet; the use of armies of tetrahedral
walkers to explore the Mars and Lunar surface; constellations
of satellites flying in formation; and the use of miniaturized
pico-class spacecraft to explore the asteroid belt.

These new approaches to exploration missions simultane-
ously pose many challenges. The missions will be unmanned
and necessarily highly autonomous. They will also exhibit all

of the classic properties of autonomic systems, being self-
protecting, self-healing, self-configuring, and self-optimizing.
Many of these missions will be sent to parts of the solar
system where manned missions are simply not possible, and to
where the round-trip delay for communications to spacecraft
exceeds 40 minutes, meaning that the decisions on responses
to problems and undesirable situations must be madein situ
rather than from ground control on Earth.

Verification and Validation (V&V) for complex systems still
poses a largely unmet challenge in the field of Computing,
yet the challenge is magnified with increasing degrees of
system autonomy. It is an even greater open question as to the
extent to which V&V is feasible when the system possesses
the ability to adapt and learn, particularly in environments
that are dynamic and not specially constrained. Reliance on
testing as the primary approach to V&V becomes untenable as
systems move towards higher levels of complexity, autonomy,
and adaptability in such environments. Swarm missions will
fall into this category, and an early concern in the design and
development of swarms will be the problem of predicting, or
at least bounding, and controlling emergent behavior.

The result is that formal specification techniques and formal
verification will play vital roles in the future developmentof
NASA space exploration missions. The role of formal methods
will be in the specification and analysis of forthcoming mis-
sions, enabling software assurance and proof of correctness of
the behavior of these systems, whether or not this behavior is
emergent (as a result of composing a number of interacting
entities, producing behavior that was not foreseen). Formally
derived models may also be used as the basis for automating
the generation of much of the code for the mission. To
address the challenge in verifying the above missions, a NASA
project, Formal Approaches to Swarm Technology (FAST), is
investigating the requirements of appropriate formal methods
for use in such missions, and is beginning to apply these
techniques to specifying and verifying parts of a future NASA
swarm-based mission.

B. ANTS: A NASA Concept Mission

The Autonomous Nano-Technology Swarm (ANTS) mis-
sion will involve the launch of a swarm of autonomous pico-
class (approximately 1kg) spacecraft that will explore the
asteroid belt for asteroids with certain characteristics.Figure 2
gives an overview of the ANTS mission [47]. In this mission,
a transport ship, launched from Earth, will travel to a point
in space where gravitational forces on small objects (such
as pico-class spacecraft) are all but negligible. Objects that
remain near such a point (termed a Lagrangian point) are in
a stable orbit about the Sun and will have a fixed geometrical
relationship to the Sun-Earth system. From the transport ship
positioned at such a point, 1000 spacecraft that have been
assembled en route from Earth will be launched into the
asteroid belt.

Because of their small size, each ANTS spacecraft will
carry just one specialized instrument for collecting a specific
type of data from asteroids in the belt. As a result, spacecraft



642 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

2

Lagrangian point
habitat

Earth

Asteroid belt

Asteroid(s)

3

4
5

Rulers

Workers Messengers

Workers Workers

Messenger
X-ray worker

Mag worker

IR
worker

1

Fig. 2. NASA’s Autonomous Nano Technology Swarm (ANTS) mission
scenario.

must cooperate and coordinate using a hierarchical social
behavior analogous to colonies or swarms of insects, with
some spacecraft directing others. To implement this mission,
a heuristic approach is being considered that provides for a
social structure to the swarm based on the above hierarchy.
Artificial intelligence technologies such as genetic algorithms,
neural nets, fuzzy logic and on-board planners are being
investigated to assist the mission to maintain a high level
of autonomy. Crucial to the mission will be the ability to
modify its operations autonomously to reflect the changing
nature of the mission and the distance and low-bandwidth
communications back to Earth.

Approximately 80 percent of the spacecraft will be workers
that will carry the specialized instruments (e.g., a magnetome-
ter, x-ray, gamma-ray, visible/IR, neutral mass spectrometer)
and will obtain specific types of data. Some will be coor-
dinators (called rulers) that have rules that decide the types
of asteroids and data the mission is interested in, and that
will coordinate the efforts of the workers. The third type of
spacecraft are messengers that will coordinate communication
between the rulers and workers, and communications with
the Earth ground station, including requests for replacement
spacecraft with specialized instruments as these are required.
The swarm will form sub-swarms under the direction of a
ruler, which contains models of the types of science that it
wants to perform. The ruler will coordinate workers each of
which uses its individual instrument to collect data on specific
asteroids and feed this information back to the ruler who will
determine which asteroids are worth examining further. If the
data matches the profile of a type of asteroid that is of interest,
an imaging spacecraft will be sent to the asteroid to ascertain
the exact location and to create a rough model to be used by
other spacecraft for maneuvering around the asteroid. Other
teams of spacecraft will then coordinate to finish the mapping
of the asteroid to form a complete model.

C. Problematic Issues

1) Size and Complexity:While the use of a swarm of
miniature spacecraft is essential for the success of ANTS,

it simultaneously poses several problems in terms of adding
significantly to the complexity of the mission.

The mission will launch 1000 pico-class spacecraft, many of
which possibly will be destroyed by collisions with asteroids,
since the craft, having no means of maneuvering other than
solar sails, will be very limited in their collision-avoidance
capabilities. The several hundred surviving spacecraft must
be organized into effective groups that will collect science
data and make decisions as to which asteroids warrant further
investigation. These surviving spacecraft effectively form a
wireless sensor network [23] tens of millions of miles from
Earth. The overhead for communications is clearly significant.

To keep the spacecraft small, each craft only carries a
single instrument. That is why several craft must coordinate
to investigate particular asteroids and collect differenttypes
of science data. Again, while miniaturization is important, the
use of such a scheme has a major drawback: we have noa
priori knowledge as to which instruments will be lost during
normal operations (where we expect to regularly lose craft due
to collisions).

The need to identify lost capabilities and instruments, and
then replace them, presents an extremely complex problem.
In the case of lost messengers and rulers, other craft may
be promotedto replace them. It is merely the software that
differentiates messengers and rulers from other workers, so
mobile code serves to overcome this problem. When an
instrument is lost, however, we have a rather different problem.
A worker with a damaged instrument can be reserved for use
as a ruler, and another spacecraft with an identical instrument
can replace it.

An alternative would be add more features (instruments)
into each spacecraft, but this would increase both their size
(a problem in such a constrained environment) and their
power requirements. The addition of features, of course, also
increases complexity, as identified by Lawson [32].

2) Emergent Behavior:In swarm-based systems, interact-
ing agents (often homogeneous or near homogeneous agents)
are developed to take advantage of their emergent behavior.
Each of the agents is given certain parameters that it tries to
maximize. Bonabeau et al. [4], who studied self-organization
in social insects, state that “complex collective behaviors
may emerge from interactions among individuals that exhibit
simple behaviors” and describe emergent behavior as “a set
of dynamical mechanisms whereby structures appear at the
global level of a system from interactions among its lower-
level components.”

Intelligent swarms [3] use swarms of simple intelligent
agents. Swarms have no central controller: they are self-
organizing based on the emergent behaviors of the simple
interactions. There is no external force directing their behavior
and no one agent has a global view of the intended macro-
scopic behavior. Though current NASA swarm missions differ
from true swarms as described above, they do have many of
the same attributes and may exhibit emergent behavior. In
addition, there are a number of US government projects that
are looking at true swarms to accomplish complex missions.
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3) Autonomy: Autonomous operation is essential for the
success of the ANTS mission concept.

Round trip communications delays of up to 40 minutes,
and limited bandwidth on communications with Earth, mean
that effective control from the ground station is impossible.
Ground controllers would not be able to react sufficiently
quickly during encounters with asteroids to avoid collisions
with asteroids and even other ANTS spacecraft. Moreover,
the delay in sending instructions to the spacecraft would be
so great that situations would likely have changed dramatically
by the time the instructions were received.

But autonomy implies absence of centralized control. In-
dividual ANTS spacecraft will operate autonomously as part
of a subgroup under the direction of that subgroup’sruler.
That ruler will itself autonomously make decisions regarding
asteroids of interest, and formulate plans for continuing the
mission of collecting science data. The success of the mission
is predicated on the validity of the plans generated by the
rulers, and requires that the rulers generate sensible plans that
will collect valid science data, and then make valid informed
decisions.

That autonomy is possible is not in doubt. What is in doubt
is that autonomous systems can be relied upon to operate
correctly, in particular in the absence of a full and complete
specification of what is required of the system.

4) Testing and Verification:As can be seen from the brief
exposition above, ANTS is a highly complex system that
poses many significant challenges. Not least amongst these are
the complex interactions between heterogeneous components,
the need for continuous re-planning, re-configuration, and
re-optimization, the need for autonomous operation without
intervention from Earth, and the need for assurance of the
correct operation of the mission.

As mission software becomes increasingly more complex,
it also becomes more difficult to test and find errors. Race
conditions in these systems can rarely be found by inputting
sample data and checking whether the results are correct.
These types of errors are time-based and only occur when
processes send or receive data at particular times, or in a
particular sequence, or after learning occurs. To find these
errors, the software processes involved have to be executed
in all possible combinations of states (state space) that the
processes could collectively be in. Because the state space
is exponential (and sometimes factorial) to the number of
states, it becomes untestable with a relatively small number
of processes. Traditionally, to get around the state explosion
problem, testers have artificially reduced the number of states
of the system and approximated the underlying software using
models.

One of the most challenging aspects of using swarms is how
to verify that the emergent behavior of such systems will be
proper and that no undesirable behaviors will occur. In addition
to emergent behavior in swarms, there are also a large number
of concurrent interactions between the agents that make up
the swarms. These interactions can also contain errors, such
as race conditions, that are very difficult to ascertain until

they occur. Once they do occur, it can also be very difficult
to recreate the errors since they are usually data and time
dependent.

As part of the FAST project, NASA is investigating the
use of formal methods and formal techniques for verification
and validation of these classes of mission, and is beginning
to apply these techniques to specifying and verifying partsof
the ANTS concept mission. The role of formal methods will
be in the specification and analysis of forthcoming missions,
while offering the ability to perform software assurance and
proof of correctness of the behavior of the swarm, whether
this behavior is emergent or not.

IV. SOME POTENTIALLY USEFUL TECHNIQUES

A. Autonomicity

Autonomy may be considered as bestowing the properties
of self-governance and self-direction, i.e., control overone’s
goals [15], [26], [43]. Autonomicity is having the ability
to self-manage through properties such as self-configuring,
self-healing, self-optimizing, and self-protecting. These are
achieved through other self-properties such as self-awareness
(including environment awareness), self-monitoring, andself-
adjusting [45].

Increasingly, self-management is seen as the only viable
way forward to cope with the ever increasing complexity
of systems. From one perspective, self-management may be
considered a specialism of self-governance, i.e., autonomy
where the goals/tasks are specific to management roles [46].
Yet from the wider context, an autonomic element (AE),
consisting of an autonomic manager and managed component,
may still have its own specific goals, but also the additional
responsibility of management tasks particular to the wider
system environment.

It is envisaged that in an autonomic environment the AEs
communicate to ensure a managed environment that is reliable
and fault tolerant and meets high level specified policies
(where a policy consists of a set of behavioral constraints
or preferences that influences the decisions made by an au-
tonomic manager [10]) with an overarching vision of system-
wide policy-based self-management. This may result in AEs
monitoring or watching out forother AEs. In terms of au-
tonomy and the concern of undesirable emergent behavior, an
environment that dynamically and continuously monitors can
assist in detecting race conditions and reconfiguring to avoid
damage (self-protecting, self-healing, self-configuring, etc.).
As such, autonomicity becoming mainstream in the industry
can only assist in improving techniques, tools, and processes
for autonomy [44].

B. Hybrid Formal Methods

The majority of formal notations currently available were
developed in the 1970s and 1980s and reflect the types of
distributed systems being developed at that time. Current
distributed systems are evolving and may not be able to
be specified in the same way that past systems have been
developed. Because of this, it appears that many people
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are combining formal methods into integrated approaches to
address some of the new features of distributed systems (e.g.,
mobile agents, swarms, and emergent behavior).

Integrated approaches have been very popular in specifying
concurrent and agent-based systems. Integrated approaches
often combine a process algebra or logic-based approach
with a model-based approach. The process algebra or logic-
based approach allows for easy specification of concurrent
systems, while the model-based approach provides strength
in specifying the algorithmic part of a system.

Some recent hybrid approaches include:

• CSP-OZ, a combination of CSP and Object-Z [11]
• Object-Z and Statecharts [8]
• Timed Communicating Object Z [13]
• Temporal B [5]
• Temporal Petri Nets (Temporal Logic and Petri Nets) [1]
• ZCCS, a combination of Z and CCS [14]

These and new hybrid formal methods are being investigated
to address swarm and other complex NASA missions [41].

C. Automatic Programming

For many years, automatic programming has referred, pri-
marily, to the use of very high-level languages to describe
solutions to problems, which could then be translated down
and expressed as code in more traditional (lower level) pro-
gramming languages. Parnas [36] implies that the term is
glamorous, rather than having any real meaning, precisely
because it is the solution that is being specified rather thanthe
problem that must be solved. Brooks [7] supports this view,
and equally criticizes the field of visual programming, arguing
that it will never produce anything of value.

Writing just five years after Brooks, Harel [19] disagrees,
faulting Brooks for failing to recognize advances invisual
formalisms. Now, writing almost two decades after Brooks,
we argue that automatic code generation is not only a viable
option, it is essential to the development of the classes of
complex system we are discussing here, and as exemplified
by ANTS.

Autonomous and autonomic systems, exhibiting complex
emergent behavior, cannot, in general, be fully specified at
the outset. The roles and behaviors of the system will vary
greatly over time. While we may try to write specifications
that constrain the system, it is clear that not all behavior can
be specified in advance. Consequently, the classes of system
we are discussing will often require that code is generated,or
modified, during execution. As a result, the classes of system
we are describing here willrequireautomatic code generation.

Several tools already exist that successfully generate code
from a given model. Unfortunately, many of these tools have
been shown to generate code, portions of which are never
executed, or portions of which cannot be justified from either
the requirements or the model. Moreover, existing tools do
not and cannot overcome the fundamental inadequacy of
all currently available automated development approaches,
which is that they include no means to establish a provable

equivalence between the requirements stated at the outset and
either the model or the code they generate.

Traditional approaches to automatic code generation, in-
cluding those embodied in commercial products such as
Matlab [35], in system development toolsets such as the B-
Toolkit [31] or the VDM++ toolkit [28], or in academic
research projects, presuppose the existence of an explicit
(formal) model of reality that can be used as the basis
for subsequent code generation. While such an approach is
reasonable, the advantages and disadvantages of the various
modeling approaches used in computing are well known and
certain models can serve well to highlight certain issues while
suppressing other less relevant details [37]. It is clear that the
converse is also true. Certain models of reality, while success-
fully detailing many of the issues of interest to developers,
can fail to capture some important issues, or perhaps even the
most important issues.

That is why, we believe, future approaches to automatic
code generation must be based on Formal Requirements-Based
Programming [39].

D. Formal Requirements Based Programming

Requirements-Based Programming refers to the develop-
ment of complex software (and other) systems, where each
stage of the development is fully traceable back to the require-
ments given at the outset. In essence, Requirements-Based
Programming takes Model-Based Development and adds a
front end [40].

The difference is that Model-Based Development holds that
emphasis should be placed on building a model of the system
with such high quality that automatic code generation is viable.
While this has worked well, and made automatic code gener-
ation feasible, there is still the largeanalysis-specificationgap
that remains unaddressed. Requirements-Based Programming
addresses that issue and ensures that there is a direct mapping
from requirements to design, and that this design (model) may
then be used as the basis for automatic code generation.

There have been calls for the community to address
Requirements-Based Programming, as it offers perhaps the
most promising approach to achievingcorrect systems [20].
Although the use of Requirements-Based Programming does
not specifically presuppose the existence of an underlying for-
malism, the realization that proof of correctness is not possible
without formalism [2] certainly implies that Requirements-
Based Programming should be formal.

In fact, Formal Requirements-Based Programming, coupled
with a graphical representation for system requirements (e.g.,
UML use cases) possesses the features and advantages of a
visual formalism described by Harel [18].

1) R2D2C: R2D2C, or Requirements-to-Design-to-
Code [22], [39], is a NASA patent-pending approach to
Requirements-Based Programming.

In R2D2C, engineers (or others) may write specifications
as scenarios in constrained (domain-specific) natural language,
or in a range of other notations (including UML use cases).
These will be used to derive a formal model (Figure 3) that is
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Fig. 3. The R2D2C approach, generating a formal model from requirements
and producing code from the formal model, with automatic reverse engineer-
ing.

guaranteed to be equivalent to the requirements stated at the
outset, and which will subsequently be used as a basis for code
generation. The formal model can be expressed using a variety
of formal methods. Currently we are using CSP, Hoare’s
language of Communicating Sequential Processes [24], [25],
which is suitable for various types of analysis and investiga-
tion, and as the basis for fully formal implementations as well
as for use in automated test case generation, etc.

R2D2C is unique in that it allows for full formal develop-
ment from the outset, and maintains mathematical soundness
through all phases of the development process, from require-
ments through to automatic code generation. The approach
may also be used for reverse engineering, that is, in retrieving
models and formal specifications from existing code, as shown
in Figure 3. The approach can also be used to “paraphrase” (in
natural language, etc.) formal descriptions of existing systems.
In addition, the approach is not limited to generating high-level
code. It may also be used to generate business processes and
procedures, and we have been experimenting with using it to
generate instructions for robotic devices that were to be used
on the Hubble Robotic Servicing Mission (HRSM), which,
at the time of writing, has not received a final go-ahead. We
are also experimenting with using it as a basis for an expert
system verification tool, and as a means of capturing domain
knowledge for expert systems.

2) R2D2C Technical Approach:The R2D2C approach in-
volves a number of phases, which are reflected in the system
architecture described in Figure 4. The following describes
each of these phases.

D1 Scenarios Capture: Engineers, end users, and others write
scenarios describing intended system operation. The input
scenarios may be represented in a constrained natural
language using a syntax-directed editor, or may be rep-
resented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events
are derived from the scenarios defined in phase D1.

D3 Model Inference: A formal model, or formal specifi-
cation, expressed in CSP is inferred by an automatic
theorem prover — in this case, ACL2 [30] — using the
traces derived in phase D2. A deep1 embedding of the
laws of concurrency [21] in the theorem prover gives
it sufficient knowledge of concurrency and of CSP to

1“Deep” in the sense that the embedding is semantic rather than merely
syntactic.

perform the inference. The embedding will be the topic
of a future paper.

D4 Analysis: Based on the formal model, various analyses
can be performed, using currently available commer-
cial or public domain tools, and specialized tools that
are planned for development. Because of the nature of
CSP, the model may be analyzed at different levels of
abstraction using a variety of possible implementation
environments. This will be the subject of a future paper.

D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well
understood. The present modeling approach is suitable
for the application of existing code generation tech-
niques, whether using a tool specifically developed for
the purpose, or existing tools such as FDR [12], or
converting to other notations suitable for code generation
(e.g., converting CSP to B [9]) and then using the code
generating capabilities of the B Toolkit.

3) Advantages of the R2D2C Approach:We have not yet
had an opportunity to apply R2D2C to ANTS, although that
is certainly our plan.

In addition to applying it to the HRSM procedures [39], we
have applied R2D2C to LOGOS, a NASA prototype Lights-
Out Ground Operating System, that exhibits both autonomous
and autonomic properties [48], [49]. We illustrate the use of
a prototype tool to apply R2D2C to LOGOS in [40], and
describe our success with the approach.

Here, we summarize some benefits of using R2D2C, and
hence of using Formal Requirements-Based Programming in
system development. It is our contention that R2D2C, and
other approaches that similarly provide mathematical sound-
ness throughout the development lifecycle, will:

• Dramatically increase assurance of system success by
ensuring

– completeness and consistency of requirements
– that implementations are true to the requirements
– that automatically coded systems are bug-free; and

that
– that implementation behavior is as expected

• Decrease costs and schedule impacts of ultra-high de-
pendability systems through automated development

• Decrease re-engineering costs and delays

E. Tool Support

John Rushby [42] argues that tools are not themostimpor-
tant thing about formal methods, they are theonly important
thing about formal methods. Although we can sympathize, we
do not support such an extreme viewpoint. Formal methods
would not be practical without suitable representation nota-
tions, proof systems (whether automated and supported by
tools, or not), a user community, and evidence of successful
application.

We do agree, however, that tool support is vital, and not
just for formal methods. Structured design methodstook off
when they werestandardized, in the guise of UML. But
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Fig. 4. The entire process with D1 thru D5 illustrating the development approach.

it is only with the advent of tool support for UML that
they became popular. The situation is analogous to high-
level programming languages: while the community was well
convinced of their benefits, it was only with the availability of
commercial compilers that they became widely used.

Tools are emerging for the development of complex agent-
based systems such as Java-based Aglets and tools for au-
tonomic systems. For automatic code generation and Formal
Requirements-Based Programming to be practical, the devel-
opment community will need commercial-quality tools.

V. CONCLUSION

The computing industry thrives on the assumption in the
marketplace that software is reliable and correct, but many
examples from experience over the decades cast doubt on the
validity of this assumption. There is no automated, general
purpose method for building correct systems that fully meet
all customer requirements. This represents a major gap that
has yet to be fully addressed by the software engineering
community. Requirements-based programming has been de-
scribed along with new automated techniques recently devised
at NASA for ensuring correctness of the system model with
respect to the requirements, as a possible way to close this
gap.

In future mission concepts that involve advanced archi-
tectures and capabilities — such as swarm missions whose
individual elements not only can learn from experience but
also must pursue science goals cooperatively — NASA faces
system development challenges that cannot be met with tech-
niques currently available in the computing industry. The chal-
lenges boil down to building reliability and correctness into
mission systems, where complexity, autonomous operation,
machine adaptation, dangerous environments, and remoteness

combine to push such missions far into uncharted territory
in systems engineering. With approaches such as autonomic
computing and automated requirements-based programming,
NASA will have greater possibilities for achieving success
with these advanced mission concepts.
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