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_Abstract—The explosion of capabilities and new products high-end cars contain more software than the onboard sgstem
within the sphere of Information Technology (IT) has fosteed of the Space Shuttle. We are reliant on software for our
widespread, overly optimistic opinions regarding the induwstry, transportation and entertainment, to wash our clothes aokl ¢

based on common but unjustified assumptions of quality and | d to k in touch with th tsid Id vi
correctness of software. These assumptions are encouragéyg our meals, and to keep us in touch wi € outside world via

software producers and vendors, who at this late date have no the Internet and our mobile phones.

succeeded in finding a way to overcome the lack of an automated ~ The Information Technology industry, driven by software
mathematically sound way to develop correct systems from development, has made remarkable advances. In just over
requirements. NASA faces this dilemma as it envisages adveed |, ¢ o century, it has developed into a trillion-dollar-yerar
mission concepts that involve large swarms of small spaceaft . ! .

that will engage cooperatively to achieve science goals. Qu Industry, continually breaking its own records [17], [27].
missions entail levels of complexity that beg for new methal ~ Some breathtaking statistics have been reported for the
for system development far beyond today's methods, which & hardware and software industries [16], [46]:

inadequate for ensuring correct behavior of large numbers 6
interacting intelligent mission elements. New system del@ment
techniques recently devised through NASA-led research wibffer
some innovative approaches to achieving correctness in cqhex
system development, including autonomous swarm missionidt
exhibit emergent behavior, as well as general software pragtts
created by the computing industry.

e The Price-to-Performance ratio halves every 18 months,
with a 100-fold increase in performance every decade.

e Performance progress in the next 18 months will equal
all progress made to date.

e New storage available equals the sum of all previously

available storagever.
I. INTRODUCTION e New processing capability equals the sum of all previous
OFTWARE has become pervasive. We encounter it in ~ ProCessing power.
our everyday lives: the average electric razor containsSimultaneously, a number of flawed assumptions have arisen
the equivalent of more than 100,000 lines of code, severabarding the way we build both software and hardware
systems [38], [46], which include:
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e Human beings can achieve perfection; they can avoid
making mistakes during installation, maintenance and
upgrades.

e Software will eventually be bug-free; the focus of com-
panies has been to hire better programmers, and the
focus of universities is to better train software engineers
in development lifecycle models.

e Mean-time between failure (MTBF) is already very large
(approximately 100 years) and will continue to increase.

e Maintenance costs are a function of the purchase price
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HA points out that there is no single technique, no Silver Bulle

T Telephone SYS_‘_G"_I_S ——— - capable of slaying such monsters [6].
——— On the contrary, more and more complex systems are

% 99.99% run on highly distributed, heterogeneous networks, stitigec

% s\(a(“s strict performance, fault tolerance, and security coigisa
g e xet o B all of which may conflict. Many engineering disciplines must
i Mabile-plines \ contribute to the development of complex systems in an
Internet - attempt to satisfy all of these requirements. No single tech

% nigue is adequate to address all issues of complex system
1950 1960 1970 1580 1990 2000

. . I development; rather, different techniques must be appaied
Fig. 1. Contrasting availability of Telephone Systems, @ater Systems, diff fd | d th h he d |
Internet, and Mobile Phones. ifferent stages of development (and throughout the devel-
opment process) to ensure unambiguous requirements state-
ments, precise specifications that are amenable to analydis
of hardware: and. as such. decreasing hardware CO%staluation, implementations that satisfy the requiresmeamd
: ’ ' : 9! . various (often conflicting) goals, re-use, re-engineetamgl
(price/performance) results in decreases in malntenanr Cerse engineering of legacy code, appropriate integrati
costs. with existing systems, ease-of-use, predictability, dejadil-
. L . . __Brooks [7] differentiates between tlessencdthat is, prob-
With the situation stated this way, many flawed assUMPUIONG g that are necessarily inherent in the nature of sofiveara
regarding the IT industry come into view. The situation i

. . . ﬁccidents(that is, problems that are secondary and caused by
even worse if we focus primarily on software. The Computin

. i . Qurrent development environments and techniques). Hagoin
industry has failed to avoid software-related catastreph%ut the great need for appropriate means of coming to grips
Notable examples include:

with the conceptual difficulties of software developmenitatt

e Therac-25, where cancer patients were given lethal dosgSfor appropriate emphasis on specification and desiginera
of radiation during radiation therapy [33]. than on coding and testing.

e Ariane 5, where it was assumed that the same launchy his article [7], he highlights some successes that have
software used in the prior version (Ariane 4) could bgeen achieved in gaining improvements in productivity, but
reused. The result was the loss of the rocket withigoints out that these address problems in the current develo
seconds of launch [34]. ment process, rather than the problems inherent in softivare

e The Mars Polar Lander, where failure to initialize &gf. |n this category, he includes: the advent of highdlgve-
variable resulted in the craft crash landing on thgramming languages, time-sharing, and unified programming
Martian surface, instead of reverse thrusting and landiggyironments. Object-oriented programming, techniques f
softly [29]. artificial intelligence, expert systems, automatic progmng,

Progress in software regularly lags behind hardware. In theogram verification, and the advent of workstations, hes see
last decade, for example, two highly software-intensiveliap as non-bullets, as they will not help in slaying the werewolf
cations, namely Internet communications and mobile phoneHe sees software reuse, rapid prototyping, incremental
technology, have suffered reduced availability and ineeda development, and the employment of top-class designers as
down time while their hardware counterparts, computer harghotential starting points for the Silver Bullet, but warrmeit
ware and telephony systems, have continued to improvane in itself is sufficient.

Figure 1 illustrates this trend [17]. Brooks' article has been very influential, and remains one of
the classics of software engineering. His viewpoint hasbee
criticized, however, as being overly pessimistic and fdirfg

The realization that software development has laggénl acknowledge some promising developments [6].
greatly behind hardware is hardly a new one [6], nor is the Harel, in an equally influential paper, written as a rebuttal
realization that our software development processes lawe s to Brooks [19], points to developments in Computer-Aided
severe deficiencies. Software Engineering (CASE) and visual formalisms [18] as

Brooks, in a widely quoted and much-referenced article [7potentialbullets Harel's view is far more optimistic. He writes
warns of complacency in software development. He stresse® years after Brooks, and has seen the developments in that
that, unlike hardware development, we cannot expect period. The last forty years of system development have been
achieve great advances in productivity in software developqually difficult, according to Harel, and, using a conceptu
ment unless we concentrate on more appropriate developmeatilla framework, the development community has devised
methods. He highlights how software systems can suddenhgans of overcoming many difficulties. As we address more
turn from being well-behaved to behaving erratically andomplex systems, Harel argues that we must devise similar
uncontrollably, with unanticipated delays and increasest frameworks that are applicable to the classes of system we
Brooks sees software systems as “werewolves” and rightlye developing.

A. An Historic Problem
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Harel, along with many others, including the authors aif the classic properties of autonomic systems, being self-
this paper, believes that appropriate techniques for niroglel protecting, self-healing, self-configuring, and selfiopting.
must have a rigorous mathematical semantics, and appt®pridany of these missions will be sent to parts of the solar
means for representing constructs. This differs greatlynfr system where manned missions are simply not possible, and to
Brooks, who sees representational issues as maadiglental where the round-trip delay for communications to spacécraf
exceeds 40 minutes, meaning that the decisions on responses
to problems and undesirable situations must be madstu

Clearly there have been significant advances in softwaigher than from ground control on Earth.
engineering tools, techniques, and methods, since the timé/erification and Validation (V&V) for complex systems still
of Brooks’ and Harel’'s papers. In many cases, however, theses a largely unmet challenge in the field of Computing,
advantages of these developments have been mitigatedyby the challenge is magnified with increasing degrees of
corresponding increases in demand for greater, more campdgstem autonomy. It is an even greater open question as to the
functionality, stricter constraints on performance anaction extent to which V&V is feasible when the system possesses
times, and attempts to increase productivity and reducts,coshe ability to adapt and learn, particularly in environneent
while simultaneously pushing systems requirements tar théiat are dynamic and not specially constrained. Reliance on
limits. NASA, for example, continues to build more and mortesting as the primary approach to V&V becomes untenable as
complex systems, with impressive functionality, and iasre systems move towards higher levels of complexity, autonomy
ingly autonomous behavior. In the main, this is essenti@nd adaptability in such environments. Swarm missions will
NASA missions are pursuing scientific discovery in wayfall into this category, and an early concern in the desigh an
that require autonomous systems. While manned exploratid&velopment of swarms will be the problem of predicting, or
missions are clearly in NASA' future (such as the Explarmati at least bounding, and controlling emergent behavior.
Initiative’s plans to return to the moon and put Man on Mars), The result is that formal specification techniques and féorma
several current and future NASA missions, for reasons thagrification will play vital roles in the future developmeoi
we will explain below, necessitate autonomous behavior INASA space exploration missions. The role of formal methods
unmanned spacecraft. will be in the specification and analysis of forthcoming mis-

We will describe some of the challenges for softwarsions, enabling software assurance and proof of corrextrfes
engineering emerging from new classes of complex systethge behavior of these systems, whether or not this behawior i
being developed by NASA and others. We will discuss these@émergent (as a result of composing a number of interacting
Section I1I-A with reference to a NASA concept mission thgt ientities, producing behavior that was not foreseen). Filyma
exemplary of many of these new systems. Then, in Section &¢érived models may also be used as the basis for automating
we will present some techniques that we are addressinghwhibe generation of much of the code for the mission. To
may lead towards a Silver Bullet. address the challenge in verifying the above missions, alNAS

o project, Formal Approaches to Swarm Technology (FAST), is
A. Challenges of Future NASA Missions investigating the requirements of appropriate formal meth

Future NASA missions will exploit new paradigms forfor use in such missions, and is beginning to apply these
space exploration, heavily focused on the (still) emerggntp- techniques to specifying and verifying parts of a future MAS
nologies of autonomous and autonomic systems. Traditiosatarm-based mission.
missions, reliant on one large spacecraft, are being segedc o
or complemented by missions that involve several smallfr ANTS: A NASA Concept Mission
spacecraft operating in collaboration, analogous to swarm The Autonomous Nano-Technology Swarm (ANTS) mis-
in nature. This offers several advantages: the ability tedsesion will involve the launch of a swarm of autonomous pico-
spacecraft to explore regions of space where traditioredt crclass (approximately 1kg) spacecraft that will explore the
simply would be impractical, increased spatial distribotof asteroid belt for asteroids with certain characteristégure 2
observations, greater redundancy, and, consequentlgtegregives an overview of the ANTS mission [47]. In this mission,
protection of assets, and reduced costs and risk, to name dutansport ship, launched from Earth, will travel to a point
a few. Planned missions entail the use of several unmannedspace where gravitational forces on small objects (such
autonomous vehicles (UAVs) flying approximately one meters pico-class spacecraft) are all but negligible. Objelotd t
above the surface of Mars, covering as much of the surfaeenain near such a point (termed a Lagrangian point) are in
of Mars in seconds as the now famous Mars rovers did @nstable orbit about the Sun and will have a fixed geometrical
their entire time on the planet; the use of armies of tetredledrelationship to the Sun-Earth system. From the transpapt sh
walkers to explore the Mars and Lunar surface; constefiatiopositioned at such a point, 1000 spacecraft that have been
of satellites flying in formation; and the use of miniatudzeassembled en route from Earth will be launched into the
pico-class spacecraft to explore the asteroid belt. asteroid belt.

These new approaches to exploration missions simultaneBecause of their small size, each ANTS spacecraft will
ously pose many challenges. The missions will be unmannegtry just one specialized instrument for collecting a ffjmec
and necessarily highly autonomous. They will also exhibit aype of data from asteroids in the belt. As a result, spafecra

IIl. NEW CHALLENGES FORSOFTWARE ENGINEERING
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, e 42 it simultaneously poses several problems in terms of adding
w ‘\ significantly to the complexity of the mission.
Asteroid belt 1
e~
D

The mission will launch 1000 pico-class spacecraft, many of

5 L — g Which possibly will k_)e destroyed by collisions Wi_th astei
Asteroid(s) habitat since the craft, having no means of maneuvering other than
Workers  &gessgnacrs solar sails, will be very limited in their collision-avoidee
- )WW'S Horers Earh capabilities. The several hundred surviving spacecrafstmu
4 v4 be organized into effective groups that will collect scienc
R SV — 5 data and make decisions as to which asteroids warrant furthe
‘ . P investigation. These surviving spacecraft effectivelynfoa
" wireless sensor network [23] tens of millions of miles from

worker

Earth. The overhead for communications is clearly significa

Fig. 2. NASAs Autonomous Nano Technology Swarm (ANTS) nuss ,TO Keep the Spacecr?ﬁ small, each craft only carrl-es a
scenario. single instrument. That is why several craft must coordinat

to investigate particular asteroids and collect differges
of science data. Again, while miniaturization is importahe

. . . , use of such a scheme has a major drawback: we have no
must cooperate and coordinate using a hierarchical social

. . . .&wori knowledge as to which instruments will be lost during
behavior analogous to colonies or swarms of insects, wi

some spacecraft directing others. To implement this missic?ooggﬁlils?oprgf“ons (where we expect to regularly lose cradt d

a heuristic approach is being considered that provides for %rhe need to identify lost capabilities and instruments, and
social structure to the swarm based on the above hierarcp '

Artificial intelligence technologies such as genetic aitons, e replace them, presents an extremely complex problem.
.In the case of lost messengers and rulers, other craft may

neural n fuzzy logic and on-board planners ar i .
eural nets, fuzzy logic and on-board planners are beB promotedto replace them. It is merely the software that

investigated to assist the mission to maintain a high Ievgn‘ferentiates messengers and rulers from other workers, s

of autonomy. Crucial to the mission will be the ability to ) .
P . .mobile code serves to overcome this problem. When an
modify its operations autonomously to reflect the changlrﬁI

C ; . Jiistrument is lost, however, we have a rather different j@mob
nature of the mission and the distance and low-bandwi ; :
worker with a damaged instrument can be reserved for use

communications back to Earth. . X o
. . as a ruler, and another spacecraft with an identical ingnim
Approximately 80 percent of the spacecraft will be workers

. L . Can replace it.
that will carry the specialized instruments (e.g., a magmet b

ter, x-ray, gamma-ray, visible/IR, neutral mass spectiare An alternative would be add more features (instruments)
’ Y: 9 Y, ' b into each spacecraft, but this would increase both the# siz

and will obtain specific types of data. Some will be coor(—a problem in such a constrained environment) and their

dinators (called rulers) that have rules that decide thesyp . "
\ o e . wer r irements. Th ition of f r f rsm al
of asteroids and data the mission is interested in, and tlg)acl)t er requirements e addition of features, of cou a

will coordinate the efforts of the workers. The third type Opcreases complexity, as identified by Lawson [32].

. . o 2) Emergent Behaviorin swarm-based systems, interact-
spacecraft are messengers that will coordinate commiumicat
o ing agents (often homogeneous or near homogeneous agents)
between the rulers and workers, and communications wi . .
are developed to take advantage of their emergent behavior.

the Earth grc_)und station, m_cludmg requests for replactEm_eEaCh of the agents is given certain parameters that it toes t
spacecraft with specialized instruments as these arermhu'maximize. Bonabeau et al. [4], who studied self-organizati

The swarm will form sub-swarms under the direction of a o ’ . .
|q social insects, state that “complex collective behavior

ruler, which contains models of the types of science that | : ) A o
. . ay emerge from interactions among individuals that exhibi
wants to perform. The ruler will coordinate workers each orp

. Lo : . simple behaviors” and describe emergent behavior as “a set
which uses its individual instrument to collect data on #jxec . .
asteroids and feed this information back to the ruler whd wﬁf dynamical mechanisms whereby structures appear at the
) . . L global level of a system from interactions among its lower-
determine which asteroids are worth examining furtheméf t ,,
. . . . level components.
data matches the profile of a type of asteroid that is of istere . : . .
) . ) . ) Intelligent swarms [3] use swarms of simple intelligent
an imaging spacecraft will be sent to the asteroid to ascerta .
. ents. Swarms have no central controller: they are self-
the exact location and to create a rough model to be used

. : organizing based on the emergent behaviors of the simple
other spacecraft for maneuvering around the asteroid.rOth 9 9 P

: : i “ifteractions. There is no external force directing thetrdgor
teams of spacecraft will then coordinate to finish the magpin : )
of the asteroid to form a complete model and no one agent has a global view of the intended macro-
P ' scopic behavior. Though current NASA swarm missions differ
from true swarms as described above, they do have many of
the same attributes and may exhibit emergent behavior. In
1) Size and ComplexityWhile the use of a swarm of addition, there are a number of US government projects that

miniature spacecraft is essential for the success of ANT&ge looking at true swarms to accomplish complex missions.

C. Problematic Issues
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3) Autonomy: Autonomous operation is essential for theéhey occur. Once they do occur, it can also be very difficult
success of the ANTS mission concept. to recreate the errors since they are usually data and time

Round trip communications delays of up to 40 minuteslependent.
and limited bandwidth on communications with Earth, mean As part of the FAST project, NASA is investigating the
that effective control from the ground station is impossibl use of formal methods and formal techniques for verification
Ground controllers would not be able to react sufficientlgnd validation of these classes of mission, and is beginning
quickly during encounters with asteroids to avoid collisio to apply these techniques to specifying and verifying pafts
with asteroids and even other ANTS spacecraft. Moreovéine ANTS concept mission. The role of formal methods will
the delay in sending instructions to the spacecraft would be in the specification and analysis of forthcoming missions
So great that situations would likely have changed drarallific while offering the ability to perform software assurancel an
by the time the instructions were received. proof of correctness of the behavior of the swarm, whether

But autonomy implies absence of centralized control. Ithis behavior is emergent or not.
dividual ANTS spacecraft will operate autonomously as part
of a subgroup under the direction of that subgroupikr.
That ruler will itself autonomously make decisions regagdi A. Autonomicity
asteroids of interest, and formulate plans for continuimg t Autonomy may be considered as bestowing the properties
mission of collecting science data. The success of the amissbf self-governance and self-direction, i.e., control ovee’s
is predicated on the validity of the plans generated by taals [15], [26], [43]. Autonomicity is having the ability
rulers, and requires that the rulers generate sensible @t to self-manage through properties such as self-configuring
will collect valid science data, and then make valid inde’nese|f-hea|ing’ self-optimizing, and self-protecting. Sheare
decisions. achieved through other self-properties such as self-awase

That autonomy is possible is not in doubt. What is in doulgincluding environment awareness), self-monitoring, ast-
is that autonomous systems can be relied upon to operagfusting [45].
correctly, in particular in the absence of a full and complet |ncreasingly, self-management is seen as the only viable
specification of what is required of the system. way forward to cope with the ever increasing complexity

4) Testing and VerificationAs can be seen from the briefof systems. From one perspective, self-management may be
exposition above, ANTS is a highly complex system thafonsidered a specialism of self-governance, i.e., autgnom
poses many significant challenges. Not least amongst thesevghere the goals/tasks are specific to management roles [46].
the complex interactions between heterogeneous companewét from the wider context, an autonomic element (AE),
the need for continuous re-planning, re-configuration, ar@nsisting of an autonomic manager and managed component,
re-optimization, the need for autonomous operation withoghay still have its own specific goals, but also the additional
intervention from Earth, and the need for assurance of thgsponsibility of management tasks particular to the wider
correct operation of the mission. system environment.

As mission software becomes increasingly more complex,|t is envisaged that in an autonomic environment the AEs
it also becomes more difficult to test and find errors. Rag®@mmunicate to ensure a managed environment that is rliabl
conditions in these systems can rarely be found by inputtiagd fault tolerant and meets high level specified policies
sample data and checking whether the results are corr¢gfhere a policy consists of a set of behavioral constraints
These types of errors are time-based and only occur whenpreferences that influences the decisions made by an au-
processes send or receive data at particular times, or inoAomic manager [10]) with an overarching vision of system-
particular sequence, or after learning occurs. To find theggde policy-based self-management. This may result in AEs
errors, the software processes involved have to be executeshitoring or watching out forother AEs. In terms of au-
in all possible combinations of states (state space) th&t #nomy and the concern of undesirable emergent behavior, an
processes could collectively be in. Because the state spa@@ironment that dynamically and continuously monitors ca
is exponential (and sometimes factorial) to the number gksist in detecting race conditions and reconfiguring tadavo
states, it becomes untestable with a relatively small numhgamage (self-protecting, self-healing, self-configurietg.).
of processes. Traditionally, to get around the state eignos As such, autonomicity becoming mainstream in the industry
problem, testers have artificially reduced the number déstacan only assist in improving techniques, tools, and praess
of the system and approximated the underlying softwaregusifor autonomy [44].
models.

One of the most challenging aspects of using swarms is h&y Hybrid Formal Methods
to verify that the emergent behavior of such systems will be The majority of formal notations currently available were
proper and that no undesirable behaviors will occur. Intamtdi developed in the 1970s and 1980s and reflect the types of
to emergent behavior in swarms, there are also a large numtistributed systems being developed at that time. Current
of concurrent interactions between the agents that make diptributed systems are evolving and may not be able to
the swarms. These interactions can also contain errorf, sbe specified in the same way that past systems have been
as race conditions, that are very difficult to ascertain luntleveloped. Because of this, it appears that many people

IV. SOME POTENTIALLY USEFUL TECHNIQUES
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are combining formal methods into integrated approachesequivalence between the requirements stated at the ouidet a
address some of the new features of distributed systems (eegher the model or the code they generate.
mobile agents, swarms, and emergent behavior). Traditional approaches to automatic code generation, in-
Integrated approaches have been very popular in specifyitigding those embodied in commercial products such as
concurrent and agent-based systems. Integrated appeoadiiatiab [35], in system development toolsets such as the B-
often combine a process algebra or logic-based approdaolkit [31] or the VDM++ toolkit [28], or in academic
with a model-based approach. The process algebra or logiesearch projects, presuppose the existence of an explicit
based approach allows for easy specification of concurréfirmal) model of reality that can be used as the basis
systems, while the model-based approach provides strenfgth subsequent code generation. While such an approach is

in specifying the algorithmic part of a system. reasonable, the advantages and disadvantages of the ssariou
Some recent hybrid approaches include: modeling approaches used in computing are well known and
e CSP-0Z, a combination of CSP and Object-Z [11] certain mpdels can serve well to highlight certqin issuettewh
e Object-Z and Statecharts [8] suppressing other less releyant details [37]. _It is cl_eat the
e Timed Communicating Object Z [13] converse is also true. Certaln models Qf reality, while sase
e Temporal B [5] fully dgtaﬂmg many of the issues _of interest to developers
o Temporal Petri Nets (Temporal Logic and Petri Nets) [1§" fail to capture some important issues, or perhaps eeen th

e ZCCS, a combination of Z and CCS [14] Most important issues.

These and new hybrid formal methods are being investigatgg-rhat is why, we believe, future approaches to automatic

e de generation must be based on Formal Requirements-Based
to address swarm and other complex NASA missions [41]'Progrgmming [39] q

C. Automatic Programming D. Formal Requirements Based Programming

For many years, automatic programming has referred, pri-Requirements-Based Programming refers to the develop-
marily, to the use of very high-level languages to descrillgent of complex software (and other) systems, where each
solutions to problems, which could then be translated dowiage of the development is fully traceable back to the regui
and expressed as code in more traditional (lower level) pnments given at the outset. In essence, Requirements-Based
gramming languages. Parnas [36] implies that the term BP$ogramming takes Model-Based Development and adds a
glamorous, rather than having any real meaning, preciséfgnt end[40].
because it is the solution that is being specified ratherthean  The difference is that Model-Based Development holds that
problem that must be solved. Brooks [7] supports this viewmphasis should be placed on building a model of the system
and equally criticizes the field of visual programming, angu with such high quality that automatic code generation iblgia
that it will never produce anything of value. While this has worked well, and made automatic code gener-

Writing just five years after Brooks, Harel [19] disagreestion feasible, there is still the largmalysis-specificatiogap
faulting Brooks for failing to recognize advances Visual that remains unaddressed. Requirements-Based Progrgmmin
formalisms Now, writing almost two decades after Brooksaddresses that issue and ensures that there is a directngappi
we argue that automatic code generation is not only a vialitem requirements to design, and that this design (modej) ma
option, it is essential to the development of the classes thien be used as the basis for automatic code generation.
complex system we are discussing here, and as exemplified’here have been calls for the community to address
by ANTS. Requirements-Based Programming, as it offers perhaps the

Autonomous and autonomic systems, exhibiting complewost promising approach to achieviegrrect systems [20].
emergent behavior, cannot, in general, be fully specified Atthough the use of Requirements-Based Programming does
the outset. The roles and behaviors of the system will vampt specifically presuppose the existence of an underlying f
greatly over time. While we may try to write specificationsnalism, the realization that proof of correctness is nosjiis
that constrain the system, it is clear that not all behavar cwithout formalism [2] certainly implies that Requirements
be specified in advance. Consequently, the classes of sysimsed Programming should be formal.
we are discussing will often require that code is generaied, In fact, Formal Requirements-Based Programming, coupled
modified, during execution. As a result, the classes of systevith a graphical representation for system requirements,(e
we are describing here witequire automatic code generation.UML use cases) possesses the features and advantages of a

Several tools already exist that successfully generate codsual formalism described by Harel [18].
from a given model. Unfortunately, many of these tools have 1) R2D2C: R2D2C, or Requirements-to-Design-to-
been shown to generate code, portions of which are new@wde [22], [39], is a NASA patent-pending approach to
executed, or portions of which cannot be justified from eith&equirements-Based Programming.
the requirements or the model. Moreover, existing tools doln R2D2C, engineers (or others) may write specifications
not and cannot overcome the fundamental inadequacy a#f scenarios in constrained (domain-specific) naturaliage,
all currently available automated development approgches in a range of other notations (including UML use cases).
which is that they include no means to establish a provabldese will be used to derive a formal model (Figure 3) that is
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perform the inference. The embedding will be the topic

|::> ) of a future paper.
D4 Analysis: Based on the formal model, various analyses
<:| can be performed, using currently available commer-
cial or public domain tools, and specialized tools that

. . . are planned for development. Because of the nature of
Fig. 3. The R2D2C approach, generating a formal model fragnirements .
and producing code from the formal model, with automatieerse engineer- CSP, the model may be analyzed at different levels of

ing. abstraction using a variety of possible implementation
environments. This will be the subject of a future paper.
D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well
understood. The present modeling approach is suitable
for the application of existing code generation tech-
niques, whether using a tool specifically developed for
the purpose, or existing tools such as FDR [12], or
converting to other notations suitable for code generation

guaranteed to be equivalent to the requirements stateceat th
outset, and which will subsequently be used as a basis fa& cod
generation. The formal model can be expressed using ayariet
of formal methods. Currently we are using CSP, Hoare’s
language of Communicating Sequential Processes [24], [25]
which is suitable for various types of analysis and investig ) .
tion, and as the basis for fully formal implementations a#l we e.g., cqnvertlng CSP to B [9]) and then using the code
as for use in automated test case generation, etc. generating capabilities of the B Toolkit.

R2D2C is unique in that it allows for full formal develop- 3) Advantages of the R2D2C Approactife have not yet
ment from the outset, and maintains mathematical soundnBa§ an opportunity to apply R2D2C to ANTS, although that
through all phases of the development process, from requif® certainly our plan.
ments through to automatic code generation. The approachn addition to applying it to the HRSM procedures [39], we
may also be used for reverse engineering, that is, in réngev have applied R2D2C to LOGOS, a NASA prototype Lights-
models and formal specifications from existing code, as showut Ground Operating System, that exhibits both autonomous
in Figure 3. The approach can also be used to “paraphrase” it autonomic properties [48], [49]. We illustrate the u$e o
natural language, etc.) formal descriptions of existingteys. & Prototype tool to apply R2D2C to LOGOS in [40], and
In addition, the approach is not limited to generating higiel ~describe our success with the approach.
code. It may also be used to generate business processes ah§re, we summarize some benefits of using R2D2C, and
procedures, and we have been experimenting with using ithence of using Formal Requirements-Based Programming in
generate instructions for robotic devices that were to teelussystem development. It is our contention that R2D2C, and
on the Hubble Robotic Servicing Mission (HRSM), whichother approaches that similarly provide mathematical doun
at the time of writing, has not received a final go-ahead. Wigss throughout the development lifecycle, will:
are also experimenting with using it as a basis for an expert e Dramatically increase assurance of system success by
system verification tool, and as a means of capturing domain  ensuring
knowledge for expert systems. completeness and consistency of requirements

2) R2D2C Technical ApproachThe R2D2C approach in- that implementations are true to the requirements
volves a number of phases, which are reflected in the system  _ that automatically coded systems are bug-free; and
architecture described in Figure 4. The following des@ibe that
each of these phases. that implementation behavior is as expected

e Decrease costs and schedule impacts of ultra-high de-
pendability systems through automated development
e Decrease re-engineering costs and delays

D1 Scenarios Capture: Engineers, end users, and othees writ
scenarios describing intended system operation. The input
scenarios may be represented in a constrained natural
language using a syntax-directed editor, or may be rep- Too| Support
resented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic evenllghr? Rushby [42] argues that tools are not nrmstimpor-
are derived from the scenarios defined in phase D1. tant thing about formal methods, they are ey important

D3 Model Inference: A formal model, or formal specifi-thing about formal methods. AIthough we can sympathize, we
cation, expressed in CSP is inferred by an automafii@ not support such an extreme viewpoint. Formal methods
theorem prover — in this case, ACL2 [30] — using thavould not be practical without suitable representationanot
traces derived in phase D2. A déepmbedding of the tions, proof systems (whether automated and supported by

laws of concurrency [21] in the theorem prover giveEOOIS' or not), a user community, and evidence of successful

it sufficient knowledge of concurrency and of CSP tgpplication. .
We do agree, however, that tool support is vital, and not

1“Deep” in the sense that the embedding is semantic rather mherely jUSt for formal methods. _Struqtured des?gn metheatsk off
syntactic. when they werestandardized in the guise of UML. But
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Laws of Future
Concurrency Bespoke Tools
T
1
1
1
A Y
(Modified)
D1 X Scenarios D2 Traces D3 CSP Spec D4 CSP Spec D5
Scenarios > Traces > Model > Analyze > Code
Capture Generator Inference Generator
Theorem Visualization Existing CSP
Prover Tools Tools

Fig. 4. The entire process with D1 thru D5 illustrating theralepment approach.

it is only with the advent of tool support for UML thatcombine to push such missions far into uncharted territory
they became popular. The situation is analogous to higih- systems engineering. With approaches such as autonomic
level programming languages: while the community was watbmputing and automated requirements-based programming,
convinced of their benefits, it was only with the availapilif NASA will have greater possibilities for achieving success

commercial compilers that they became widely used. with these advanced mission concepts.
Tools are emerging for the development of complex agent-
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