
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 535–542

ISBN 978-83-60810-14-9
ISSN 1896-7094

PAFSV: A Process Algebraic Framework for
SystemVerilog

K. L. Man
Centre for Efficiency-Oriented Languages (CEOL)

Department of Computer Science
University College Cork (UCC), Ireland

Email: pafsv.team@gmail.com

Abstract—We develop a process algebraic framework, called
process algebraic framework for IEEE 1800

TM SystemVerilog
(PAFSV), for formal specification and analysis of IEEE1800

TM

SystemVerilog designs. The formal semantics ofPAFSV is
defined by means of deduction rules that associate a time
transition system with a PAFSV process. A set of properties of
PAFSV is presented for a notion of bisimilarity. PAFSV may
be regarded as the formal language of a significant subset of IEEE
1800

TM SystemVerilog. To show thatPAFSV is useful for the
formal specification and analysis of IEEE1800

TM SystemVerilog
designs, we illustrate the use ofPAFSV with some examples: a
MUX, a synchronous reset D flip-flop and an arbiter.

I. I NTRODUCTION

T HE goal of developing a formal semantics is to provide a
complete and unambiguous specification of the language.

It also contributes significantly to the sharing, portability and
integration of various applications in simulation, synthesis
and formal verification.Formal languageswith a semantics
formally defined inComputer Scienceincrease understanding
of systems and clarity of specifications; and help solving
problems and remove errors. Over the years, several flavours
of formal languages have been gaining industrial acceptance.
Process algebras[1] are formal languages that have formal
syntax and semantics for specifying and reasoning about
different systems. They are also useful tools for verification
of various systems. Generally speaking, process algebras de-
scribe the behaviour of processes and provide operations that
allow to compose systems to obtain more complex systems.
Moreover, the analysis and verification of systems described
using process algebras can be partially or completely carried
out by mathematical proofs using equational theory.

In addition, the strength of the field of process algebras
lies in the ability to usealgebraic reasoning[1] (also known
as equational reasoning) that allows rewriting processes using
axioms (e.g. for commutativity and associativity) to a simpler
form. By using axioms, we can also perform calculations
with processes. These can be advantageous for many forms
of analysis. Process algebras have also helped to achieve a
deeper understanding of the nature of concepts like observable
behaviour in the presence of non-determinism, system com-
position by interconnection of system components modelled
as processes in a parallel context and notions of behavioural
equivalence (e.g. bisimulation [1]) of such systems.

Serious efforts have been made in the past to deal with
systems (e.g. real-time systems [2] and hybrid systems [3],[4])
in a process algebraic way. Over the years, process algebras
have been successfully used in a wide range of problems and
in practical applications in both academia and industry for
analysis of many different systems.

On the other hand, the need for a formal and well-defined
semantics of aHardware Description Languages(HDL) is
widely accepted and desirable for architects, engineers and
researchers in the electronic design community. IEEE1800TM

SystemVerilog[5] (in what follows, we abbreviate the IEEE
1800TM SystemVerilog as SystemVerilog) is the industry’s
first unified hardware description and verification language
(HDVL) standard; and SystemVerilog is a major extension
of the established IEEE1364TM Verilog language [6] (see
also [7]).

However, the standard semantics of SystemVerilog is in-
formal. We believe that the fundamental tenets of process
algebras are highly compatible with the behavioural approach
of systems described in SystemVerilog. Hence, in this paper,
we present a process algebraic framework calledPAFSV that
is suitable for modelling and analysis of systems described
in SystemVerilog (in a formal way).PAFSV covers the
main features of SystemVerilog (i.e. a significant subset of
SystemVerilog) including decision statements and immediate
assertions; and also aims to achieve a satisfactory level of
abstraction and a more faithful modelling of concurrency.
Although it is desirable and very important to have pure paral-
lelism for hardware simulation, the SystemVerilog simulators
“ in-use” at this moment still implement parallelism via non-
determinism.

Therefore, we realise that it is more fruitful to develop
our process algebraic framework for SystemVerilog such that
the execution of a system described in such a framework
(PAFSV) consists of interleaving transitions from concur-
rent processes. Moreover, we adopt the view that a system
described inPAFSV is a system in which an instantaneous
state transition occurs on the system performing an action and
a delay takes place on the system idling between performing
successive actions. A technical advantage of our work is that,
in contrast to other attempts to formalise semantics of Sys-
temVerilog and HDLs, specifications described inPAFSV

can be directly executable.

978-83-60810-14-9/08/$25.00c© 2008 IEEE 535

536 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

The formal semantics ofPAFSV is defined by means of
deduction rules in a standard structured operational semantics
(SOS) [9] style that associate aTime Transition System(TTS)
with a PAFSV process. A set of properties ofPAFSV is
presented for a notion of bisimilarity. Overview of process
algebras, Verilog and SystemVerilog is not given in this
paper. Some familiarity with them is required. The desirable
background can, for example, be found in [1], [5], [6].

Over the years, different formal approaches have been
studied and investigated for VHDL [10], Verilog [11], [12]
and SystemC [14], [15]. Most of these works could only be
considered as theoretical frameworks, except a few trails ([13],
[17]), because they are not executable. Research work in the
formal semantics of SystemVerilog based onAbstract State
Machines(ASMs) [16] and rewrite rules already exist [5].
Also, ASM specifications and rewrite rules are not directly
executable. It is also generally believed that a structured
operational semantics (SOS) provides more clear intuitions;
and ASM specifications and rewrite rules appear to be less
suited to describe the dynamic behaviour of processes.

Since processes are the basic units of execution within
SystemVerilog that are used to simulate the behaviour of a
system, a process algebraic framework in a SOS style is
a more immediate choice to give the formal semantics of
SystemVerilog (these motivated us to developPAFSV in a
process algebraic way with SOS deduction rules). Based on the
similar motivations and needs, three years ago,SystemCFL

[17], [18], [19] (a timed process algebra) was introduced
for formal specification and analysis of SystemC designs.
SystemCFL initiated an attempt to extend the knowledge
and experience of the field of process algebras to SystemC
designs. Clearly, SystemVerilog and SystemC are similar
and our research work in this direction was highly inspired
by the theoretical aspects ofSystemCFL. Hence, a formal
comparison between them is indispensable (as future work).
Furthermore, an introduction (paper) ofPAFSV can be found
in [20]. Such a paper only informally presented the syntax and
semantics ofPAFSV. Also, no deduction rules were given,
validation of the semantics was not discussed and no analysis
example ofPAFSV specifications was provided.

This paper is organised as follows. Section II shows the
goals, the data types, formal syntax and formal semantics of
our process algebraic frameworkPAFSV. To illustrate the
use, effectiveness and applicability of the deduction rules, in
Section III, some simple specifications ofPAFSV are pro-
vided. In Section IV, the correctness of the formal semantics of
PAFSV defined in Subsection II-E is discussed; and a notion
of equivalence is defined, which is shown to be a congruence
for all PAFSV operators. Also, a set of useful properties
of closedPAFSV process terms is given in the same sec-
tion. Samples (modelling some SystemVerilog designs) of the
application ofPAFSV are shown in Section V. A formal
analysis (by means of a complete mathematical proof) of a
SystemVerilog design viaPAFSV is presented in Section VI.
Finally, concluding remarks are made in Section VII and the
direction of future work is pointed out in the same section.

II. PAFSV

Obviously, it is not possible to cover all the aspects of
SystemVerilog and define a process algebraic framework for
it in one paper. Hence, in this section, we outline the goals to
achieve in this paper.

We propose a process algebraic framework namely
PAFSV that has a formal and compositional semantics
based on a time transition system for formal specification
and analysis of SystemVerilog designs. The intention of our
process algebraic frameworkPAFSV is as follows:

• to give a formal semantics to a significant subset of
SystemVerilog using the operational approach of [9];

• to serve as a mathematical basis for improvement of
design strategies of SystemVerilog and possibilities to
analyse SystemVerilog designs;

• to serve as a coherent first step for a semantics interop-
erability analysis on semantics domain such as SystemC
andSystemCFL;

• to initiate an attempt to extend the knowledge and expe-
rience of the field of process algebras to SystemVerilog
designs;

• to be used as the formal language for a significant subset
of SystemVerilog.

A. Data types

In order to define the semantics of processes, we need to
make some assumptions about the data types:

1) Let Var denote the set of all variables
(x0, . . . , xn, time). Besides the variablesx0, . . . , xn,
the existence of the predefined reserved global variable
time which denotes the current time, the value of
which is initially zero, is assumed. This variable cannot
be declared.

2) Let Value denote the set of all possible values
(v0, . . . , vm, ⊥) that contains at least allIntegers,
all Reals, all Shortreals, all 2 − statevalues and all
4 − statevalues as defined in SystemVerilog (see [5]
for details); allBooleans and⊥, where⊥ denotes the
“undefinedness”.

3) We then define avaluation as a partial function from
variables to values. Syntactically, a valuation is denoted
by a set of pairs{x0 7→ v0, . . . , xn, 7→ vn, time 7→ t},
where xi represents a variable andvi its associating
value; andt ∈ R≥0.

4) Further to this, the set of all valuations is denoted byΣ.
Note that the type “array” in SystemVerilog is not for-

malised yet inPAFSV. However, the behaviour of elements
in an array in SystemVerilog can be modelled inPAFSV

by introducing fresh variables. As an example, for an array
A[0:10] in SystemVerilog, we can introduce fresh variables
A0, . . . , A10 in PAFSV to associate correspondingly A[0]
with A0, A[1] with A1 and so on.

B. Formal syntax

To avoid confusion with the definition of a process in Sys-
temVerilog, it is important to clearly state that, in our process

K. L. MAN: PAFSV: A PROCESS ALGEBRAIC FRAMEWORK FOR SYSTEMVERILO 537

algebraic frameworkPAFSV, we choose the terminology
“a process term” as a formal term (generated restrictively
through the formal syntax ofPAFSV) to describe the pos-
sible behaviour of aPAFSV process (see Subsection II-E)
and not a process as defined in SystemVerilog.

Furthermore, process termsp ∈ P are the core elements of
thePAFSV. The semantics of those process terms is defined
in terms of the core process terms given in this subsection. The
set of process termsP is defined according to the following
grammar for the process termsp ∈ P :

p ::= deadlock | skip | x := e
| delay(n) | any p | if(b) p elsep
| p; p | wait(b) p | while(b) p
| assignw := e | @(η1(l1),...,ηn(ln)) p
| p ⊛ p | p ‖ p | repeat p
| assert(b) p | p disrupt p

Here,x andw are variables taken fromVar andn∈R≥0. b and
e denote a boolean expression and an expression over variables
from Var, respectively. Moreover,η1, . . . , ηn represent boolean
functions with corresponding parametersl1, . . . , ln ∈ Var.

In PAFSV, we allow the use of common arithmetic
operators (e.g.+, −), relational operators (e.g.=, ≥) and
logical operators (e.g.∧, ∨) as in mathematics to con-
struct expressions over variables fromVar. The operators
are listed in descending order of their binding strength as
follows: {if(_)_else_, wait(_)_, while(_)_, assert(_)_}, _; _,
disrupt, {_⊛_, _‖ _}. The operators inside the braces have
equal binding strength. In addition, operators of equal binding
strength associate to the right, and parentheses may be used
to group expressions. For example,p; q ; r meansp; (q ; r),
wherep, q, r ∈ P . Apart from process terms:deadlock, skip,
any_, _disrupt_, and _⊛ _, all other syntax elements in
PAFSV are the formalisation of the corresponding language
elements (based on classical process algebra tenets) in Sys-
temVerilog.

Process termsdeadlock and skip; and operator _⊛ _ are
mainly introduced for calculation and axiomatisation purposes.
The any_ operator was originally introduced in Hybrid Chi
[3] (to be precise, in Hybrid Chi, such an operator is called
“ the any delay operator” and denoted by “[]”). It is used to
give an arbitrary delay behaviour to a process term. We can
make use of this operator to simplify our deduction rules in a
remarkable way. The _disrupt_ is inspired by the analogy of
the disrupt operator in HyPA [4]. This can be used to model
event controls inPAFSV in a very efficient way. A concise
explanation of the formal syntax ofPAFSV is given below.
Subsection II-E gives a more detailed account of its meaning.

C. Atomic process terms

The atomic process terms ofPAFSV are process term
constructors that cannot be split into smaller process terms.
They are:

1) The deadlockprocess termdeadlock is introduced as
a constant, which represents no behaviour. This means
that it cannot perform any actions or delays.

2) Theskipprocess termskip can only perform the internal
actionτ to termination, which is not externally visible.

3) Theprocedural assignmentprocess termx := e assigns
the value of expressione to variablex (in an atomic
way).

4) Thecontinuous assignmentprocess termassignw := e
continuously watches for changes of the variables that
occur on the expressione. Whenever there is a change,
the value ofe is re-evaluated and then propagated it
immediately tow.

5) Thedelayprocess termdelay(n) denotes a process term
that first delays forn time units, and then terminates by
means of the internal actionτ .

D. Operators

Atomic process terms can be combined using the following
operators. The operators are:

1) By means of the application of theany operator to
process termp ∈ P (i.e. any p), delay behaviour of
arbitrary duration can be specified. The resulting be-
haviour is such that arbitrary delays are allowed. As
a consequence, any delay behaviour ofp is neglected.
The action behaviour ofp remains unchanged. This
operator can even be used to add arbitrary behaviour
to an undelayable process term.

2) Theif_elseprocess termif(b) p elseq first evaluates the
boolean expressionb. If b evaluates totrue, then p is
executed, otherwiseq ∈ P is executed.

3) The sequential compositionof process termsp and q
(i.e. p; q) behaves as process termp until p terminates,
and then continues to behave as process termq.

4) Thewait process termwait(b) p can perform whatever
p can perform under the condition that the boolean
expressionb evaluates totrue. Otherwise, it is blocked
until b becomestrue.

5) Similarly, thewhile process termwhile(b) p can perform
whateverp can do under the condition that the boolean
expressionb evaluates totrue and then followed by the
original iteration process term (i.e.while(b) p). In case
b evaluates tofalse, the while process termwhile(b) p
terminates by means of the internal actionτ .

6) Theeventprocess term@(η1(l1),...,ηn(ln)) p can perform
whateverp can do under the condition that any of the
boolean functionsη1(l1), . . . , ηn(ln) returns to true.
If there is no such a function,p will be triggered
by η1(l1), . . . , ηn(ln). Intuitively, functionsη1, . . . , ηn

are used to model event changes as event controls
levelchange , posedge andnegedge in SystemVerilog.

7) The alternative compositionof process termsp and q
(i.e. p ⊛ q) allows a non-deterministic choice between
different actions of the process term eitherp or q.

8) Theparallel compositionof process termsp andq (i.e.
p ‖ q) executesp and q concurrently in an interleaved
fashion. For the time behaviour, the participants in the
parallel composition have to synchronise.

538 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

9) Therepeatprocess termrepeat p represents the infinite
repetition of process termp. Note that the idea behind
the repeatstatement in SystemVerilog is slightly differ-
ent from repeat p in PAFSV. The repeat statement
specifies the number of times of a loop to be repeated.
The same goal can be achieved by using the repeat
process term in combination with the if_else process
term in PAFSV.

10) Theassertprocess termassert(b) p checks immediately
the propertyb (expressed as a boolean expression). Ifb
holds,p is executed.

11) The disrupt process termp disrupt q intends to give
priority of the execution of process termp over process
term q. The need and use of this operator will be
illustrated in Section VI.

E. Formal semantics

In this subsection, we give a formal semantics to the
syntax defined forPAFSV in the previous subsection, by
constructing a kind of time transition system (TTS), for each
process term and each possible valuation of variables.

Definition 1 We use the convention〈p,σ〉 to write aPAFSV

process, wherep ∈ P and σ ∈ Σ.

Definition 2 The set of actionsAτ contains at leastaa(x, v)
and τ , whereaa(x, v) is the assignment action (i.e. the value
of v is assigned tox) andτ is the internal action. The setAτ

is considered as a parameter ofPAFSV that can be freely
instantiated.

Definition 3 We give a formal semantics forPAFSV pro-
cesses in terms of a time transition system (TTS), and define
the following transition relations on processes ofPAFSV:

• _
_
−→ 〈X, _〉 ⊆ (P × Σ) × Aτ × Σ, denotes termination,

whereX is used to indicate a successful termination, and
X is not a process term;

• _
_
−→ _ ⊆ (P × Σ) × Aτ × (P × Σ), denotes action

transition;
• _

_
7−→ _ ⊆ (P × Σ) × R>0 × (P × Σ), denotes time

transition (so-called delay).

For p, p′ ∈ P ; σ,σ′ ∈ Σ, a ∈ Aτ andd ∈ R>0, the three kinds
of transition relations can be explained as follows:

1) Firstly, a termination〈p,σ〉
a
−→ 〈X, σ′〉 is that the process

executes the actiona followed by termination.
2) Secondly, an action transition〈p, σ〉

a
−→ 〈p′, σ′〉 is that

the process〈p,σ〉 executes the actiona starting with the
current valuationσ and by this executionp evolves into
p′, whereσ′ represents the accompanying valuation of
the process after the actiona is executed.

3) Thirdly, a time transition〈p, σ〉
d

7−→ 〈p′, σ′〉 is that the
process〈p, σ〉 may idle during ad time units and then
behaves like〈p′, σ′〉.

F. Deduction rules

The above transition relations are defined through deduction
rules (SOS style). These rules (of the formpermises

conclusions
) have

two parts: on the top of the bar we putpremisesof the rule,
and below it theconclusions. If the premise(s) hold(s), then
we infer that the conclusion(s) hold(s) as well. In case there
is no premise, the deduction rule becomes an axiom.

Apart from the syntax restriction as already shown in
Subsection II-B (e.g.x, w ∈ Var), for all deduction rules, we
further require thatp, q, p′, q′ ∈ P ; σ, σ′, σ′′ ∈ Σ; a, b ∈ Aτ ,
d ∈ R>0, dom(σ) = dom(σ′) = dom(σ′′); σ, σ′, σ′′ andσ̄(e)
are defined, where the notation̄σ(e) is used to represent the
value of expressione in σ.

Also, we make use of the sets of variablesVar− = {x− |
x ∈ Var} andVar+ = {x+ | x ∈ Var}, modelling the current
and future value of a variable, respectively. Similarly,e− and
e+ are used to represent the current and future value ofe
respectively.

In order to increase the readability of thePAFSV deduc-
tion rules, the notation

z
։ is used as a short-hand for

a
−→

and
d

7−→.
Deduction rules: It is not our intention to define deduction

rules for all inductive cases for all operators in this paper. For
simplicity, only relevant deduction rules for the use of this
paper are shown in this subsection.

1) Procedural assignment:

〈x := e, σ〉
aa(x,σ̄(e))
−−−−−−→ 〈X, σ[σ̄(e)/x]〉

1

By means of a procedural assignment (see Rule 1), the value
of e is assigned tox. Notice thatσ[σ̄(e)/x] denotes the update
of valuationσ such that the new value of variablex is σ̄(e).

2) Sequential composition:

〈p, σ〉
a
−→ 〈X, σ′〉

〈p; q, σ〉
a
−→ 〈q, σ′〉

2
〈p, σ〉

z
։ 〈p′, σ′〉

〈p; q, σ〉
z
։ 〈p′ ; q, σ′〉

3

The process termq is executed after (successful) termination
of the process termp as defined by Rules 2 and 3.

3) Parallel composition:

〈p, σ〉
a
−→ 〈X, σ′〉

〈p ‖ q, σ〉
a
−→ 〈q, σ′〉

4
〈q, σ〉

a
−→ 〈X, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p, σ′〉

5

〈p, σ〉
a
−→ 〈p′, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p′ ‖ q, σ′〉

6
〈q, σ〉

a
−→ 〈q′, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p ‖ q′, σ′〉

7

〈p, σ〉
d

7−→ 〈p′, σ′〉, 〈q, σ〉
d

7−→ 〈q′, σ′〉

〈p ‖ q, σ〉
d

7−→ 〈p′ ‖ q′, σ′〉
8

The parallel composition of the process termsp andq (i.e.
p ‖ q) has as its behaviour with respect to action transitions
the interleaving of the behaviours of process termsp and q
(see from Rule 4 to Rule 7). If both process termsp and q
can perform the same delay, then the parallel composition of
process termsp andq (i.e. p ‖ q) can also perform that delay,
as defined by Rule 8.

K. L. MAN: PAFSV: A PROCESS ALGEBRAIC FRAMEWORK FOR SYSTEMVERILO 539

III. E XAMPLES

Deduction rules offer preciseness, because they come with
a mathematically defined semantics. Formal specifications can
be analysed using deduction rules providing an absolute notion
of correctness.

Also, these deduction rules can ensure the correctness
of PAFSV specifications and can help modellers to make
correct specifications.

In order to demonstrate the effectiveness and applicability
of the deduction rules, two toy specifications inPAFSV

are given in this section. These specifications also show how
(illustrated by means of transition traces) process evolves
during transitions.

Using the deduction rules, for instance, we can show that:

1) the process〈x := 5; y := 7, {x 7→ 0, y 7→ 1}〉 can ter-
minate successfully after a finite number of transitions.

• Transition traces: According to Rule 1, the process
〈x := 5, {x 7→ 0, y 7→ 1}〉 can always perform
an assignment action to a terminated process as

follows: 〈x := 5,{x 7→ 0, y 7→ 1}〉
aa(x,5)
−−−−→ 〈X,{x 7→

5, y 7→ 1}〉. Due to this, we can apply Rule 3 to

obtain 〈x := 5; y := 7, {x 7→ 0, y 7→ 1}〉
aa(x,5)
−−−−→

〈y := 7, {x 7→ 5, y 7→ 1}〉. Applying Rule 1 again,

we have〈y := 7,{x 7→ 5, y 7→ 1}〉
aa(y,7)
−−−−→ 〈X,{x 7→

5, y 7→ 7}〉.

2) the process〈(x := 1 ‖ y := 2); z := 3, σ〉 cannot
terminate successfully in two transitions.

• Semantical proof: We assume to have〈(x := 1 ‖
y := 2); z := 3, σ〉

a
−→ 〈z := 3, σ′〉 for somea and

σ′ in such a way that the process can terminate
successfully in two transitions. This means that we
must have the action transition〈x := 1 ‖ y :=
2, σ〉

a
−→ 〈X, σ′〉 as a premise necessarily for Rule 2.

However, this is not possible due to Rules 4 and 5.

IV. VALIDATION OF THE SEMANTICS

This section first shows that the term deduction system of
PAFSV is well-defined. Then a notion of equivalence called
Stateless Bisimilarityis defined (see also [3], [21]).

It is also shown that this relation is an equivalence and a
Congruence[1] (which also means that compositionality pre-
served operationally inPAFSV) for all PAFSV operators.

A set of useful properties ofPAFSV is sound with respect
to the stateless bisimilarity that is also introduced.

A. Well-definedness of the semantics

The deduction rules defined forPAFSV constitute a
Transition System Specification(TSS) as described in [22].
The transitions that can be proven from a TSS define a time
transition system (TTS).

The TTS of PAFSV contains terminations, action tran-
sitions and time transitions that can be proven from the

deduction rules. In general, TSSs with negative premises1

might not bemeaningful(see [22] for details).
As we know that no negative premise is used in our

deduction rules forPAFSV. So, it is not hard to see that
the term deduction system ofPAFSV is well-defined. This
means that the system defines a unique transition system for
each closed process term ofPAFSV.

B. Bisimilarity

Two closedPAFSV process terms are considered equiva-
lent if they have the same behaviour (in the bisimulation sense)
from the current state.

We also assume that the valuation (of the current state)
contains at least the free occurrences of variables in the two
closedPAFSV process terms being equivalent.

Definition 4 (Stateless bisimilarity) A stateless bisimilarity
on closed process terms is a relationR ⊆ P × P such that
∀(p, q) ∈ R, the following holds:

1) ∀σ, a, σ′ : 〈p, σ〉
a
−→ 〈X, σ′〉 ⇔ 〈q, σ〉

a
−→ 〈X, σ′〉,

2) ∀σ,a,p′, σ′ : 〈p,σ〉
a
−→ 〈p′, σ′〉 ⇒ ∃q′ : 〈q,σ〉

a
−→ 〈q′, σ′〉∧

(p′, q′) ∈ R,
3) ∀σ,a, q′, σ′ : 〈q,σ〉

a
−→ 〈q′, σ′〉 ⇒ ∃p′ : 〈p,σ〉

a
−→ 〈p′, σ′〉∧

(p′, q′) ∈ R,

4) ∀σ, d, p′, σ′ : 〈p, σ〉
d

7−→ 〈p′, σ′〉 ⇒ ∃q′ : 〈q, σ〉
d

7−→
〈q′, σ′〉 ∧ (p′, q′) ∈ R,

5) ∀σ, d, q′, σ′ : 〈q, σ〉
d

7−→ 〈q′, σ′〉 ⇒ ∃p′ : 〈p, σ〉
d

7−→
〈p′, σ′〉 ∧ (p′, q′) ∈ R.

Two closed process termsp and q are stateless bisimilar,
denoted byp ↔ q, if there exists a stateless bisimilarity
relation R such that(p, q) ∈ R.

Stateless bisimilarity is proved to be a congruence with
respect to allPAFSV operators. As a consequence, algebraic
reasoning is facilitated, since it is allowed to replace equals
by equals in any context.

Theorem 1 (Congruence)Stateless bisimilarity is a congru-
ence with respect to allPAFSV operators.

Proof: All deduction rules ofPAFSV are in the process-tyft
format of [21]. It follows from [21] that stateless bisimilarity
is a congruence.

C. Properties

In this subsection, some properties of the operators of
PAFSV that hold with respect to stateless bisimilarity are
discussed. Most of these correspond well with our intuitions,
and hence this can be considered as an additional validation
of the semantics.

It is not our intention to provide a complete list of such
properties (complete in the sense that every equivalence be-
tween closed process terms is derivable from those properties).

1We write a negative premise for action transition as〈p,σ〉
a

9 for the set of
all transitions formulas¬(〈p, σ〉

a

−→ 〈p′, σ′〉), wherep, p′ ∈ P , a ∈ Aτ and
σ, σ′ ∈ Σ. In a similar way, we can define negative premises for termination
and time transition.

540 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Proposition 1 (Properties) A set of properties is introduced
for PAFSV described in this paper forp, q, r ∈ P . These
properties are sound with respect to the stateless bisimilarity.

1) skip ↔ delay(0),

2) deadlock; p ↔ deadlock,

3) (p; q); r ↔ p; (q ; r),

4) any p; q ↔ any (p; q),

5) p ⊛ q ↔ q ⊛ p,

6) (p ⊛ q); r ↔ p; r ⊛ q ; r,

7) (p ⊛ q) ⊛ r ↔ p ⊛ (q ⊛ r),

8) p ‖ q ↔ q ‖ p,

9) (p ‖ q) ‖ r ↔ p ‖ (q ‖ r),

10) any p ⊛ any q ↔ any (p ⊛ q),

Proof: We leave out the proofs, because most of the proofs
are proofs for distributivity, commutativity and associativity
as in classical process algebras. Similar proofs can also be
found in [3].

Intuition behind the properties

The intuition of the above properties is as follows:

• Since skip and delay(0) can only perform the internal
actionτ to termination, both process terms are equivalent.

• A deadlock process term followed by some other process
terms is equivalent to thedeadlock itself because the
deadlock process term does not terminate successfully,
i.e. deadlock is a left-zero element for sequential com-
position.

• Sequential composition is associative.
• The any operator distributes to the right argument of a

sequential composition.
• Alternative composition and parallel composition are

commutative and associative.
• Alternative composition distributes over sequential com-

position from the left, but not from the right.
• The any operator distributes over the alternative compo-

sition.

V. EXAMPLES OFPAFSV SPECIFICATIONS

This section is a sample of the application ofPAFSV. It
is meant to give a first impression of how one can describe
the behaviour of some SystemVerilog designs inPAFSV (in
a complete mathematical sense). We describe the behaviour of
a simple MUX and a simple synchronous reset D flip-flop.

A. MUX

In electronic designs, a multiplexer (MUX) is a device
that encodes information from two or more data inputs into
a single output (i.e. multiplexers function as multiple-inputs
and single-output switches). A multiplexer described below
(in SystemVerilog) has two inputs and a selector that connects
a specific input to the single output. Figure 2 depicts such a
MUX.

sel

a

b

yMUX

Fig. 1. A MUX.

module simple_mux (
input wire a,
input wire b,
input wire sel,
output wire y
);
assign y = (sel) ? a : b;
endmodule

The formalPAFSV specification (as a process term) below
can be regarded as the (formal) mathematical expression of the
above multiplexer (described as a SystemVerilog module):

if(sel) y := a elsey := b

Needless to mention that, in SystemVerilog, the conditional
operator “(condition) ? (result if true):(result if false)” can
be considered as anif(_)_else_ statement. In thePAFSV

specification, an if_else process term is used to model the
behaviour of such a MUX.

B. Synchronous reset D flip-flop

Synchronous reset D flip-flops are among the basic building
blocks of RTL designs. A synchronous reset D flip-flop has a
clock input (clk) in the event list, a data input (d), a reset (rst)
and a data output (Q). Figure 2 depicts such a synchronous
reset D flip-flop.

A synchronous reset D flip-flop described below (as a
module in SystemVerilog) is inferred by using posedge clause
for the clockclk in the event list.

module dff_sync_reset (
input wire d,
input wire clk,
input wire rst,
output reg Q
);
always_ff @ (posedge clk)
if (~reset) begin

Q = 1’b0;
end else begin

Q = d;
end
endmodule

K. L. MAN: PAFSV: A PROCESS ALGEBRAIC FRAMEWORK FOR SYSTEMVERILO 541

d

clk

Q

rst

Fig. 2. A synchronous reset D flip-flop.

The formalPAFSV specification (as a process term) of the
above synchronous reset D flip-flop (described as a module in
SystemVerilog) is given as follows:

DFF ≈ repeat(@(ηnegedge(clk))OUT)
OUT ≈ if(¬rst) Q := 1 ′b0 elseQ := d

In the PAFSV specification (i.e. process termDFF), the
behaviour of the synchronous reset D flip-flop is modelled
by means of the if_else process term using “¬rst (active low
reset)” as the condition of such a process term.

This if_else process term is further triggered repeatedly by
the event process term, which is positively sensitive to the
clock (i.e.clk).

VI. A NALYSIS OF AN PAFSV SPECIFICATION

We have already shown in Section V thatPAFSV spec-
ifications can be used to formally represent SystemVerilog
designs. Therefore, in this section, we formally analyse a
simple arbiter described in SystemVerilog viaPAFSV.

A. An arbiter

Arbiter circuits are standard digital hardware verification
benchmark circuits. In general, the role of an arbiter is to grant
access to the shared resource by raising the corresponding
grant signal and keeping it that way until therequest signal
is removed.

A test for the arbiter can be generated by an immediate
assertion as follows:

“assertion : grant ∧ request”.

This immediate assertion can be considered as aliveness
propertyof the arbiter. If the assertion holds, this means that
the arbiter works as expected. Below is a SystemVerilog design
of the simple arbiter as described above:

module assert_immediate();
reg clk, grant, request;
time current_time;
initial begin

clk = 0;

grant = 0;
request = 0;
#4 request = 1;
#4 grant = 1;
#4 request = 0;
#4 $finish;

end
always #5 clk = ~ clk;
always @ (negedge clk)
begin
if (grant == 1) begin
CHECK_REQ_WHEN_GNT:

assert(grant && request) begin
current_time = $time;
$display {‘‘Works as expected’’);
end

end
endmodule

A formalPAFSV specification of the above SystemVerilog
arbiter is given as follows:

〈 INIT ‖ ARB ‖ CLK disrupt ASSER, σ 〉, where

INIT ≈ clk := 0; grant := 0; request := 0
ARB ≈ R1 ; G; R0 ; S
R1 ≈ delay(4); request := 1
G ≈ delay(4); grant := 1
R0 ≈ delay(4); request := 0
S ≈ delay(4); skip

CLK ≈ repeat(delay(5); clk := ¬clk)
ASSER ≈ repeat(@(ηnegedge(clk))PROP; skip)
PROP ≈ assert(grant ∧ request) t := time

σ = {clk 7→ ⊥, grant 7→ ⊥, request 7→ ⊥, t 7→ ⊥,time 7→ 0}.

The formal specification of the arbiter is a parallel composi-
tion of process termsINIT, ARB andCLK disrupt ASSER:

• INIT - It assigns the initial values to variablesclk , grant

andrequest (i.e. the initialisation).
• ARB - It models the change of behaviour of variables

clk , grant andrequest according to time.
• CLK - It models the behaviour of a clock (i.e.clk) which

swaps the values between “0” and “1” every 5 time units.
• ASSER - It expresses the immediate assertion for the

arbiter (as indicated above).
• CLK disrupt ASSER - It models the fact that the test

of the immediate assertion is executed whenever there is
a negative change inclk . When this happens, the current
time is assigned to the variablet. Remark: This also
explains the need and the use of the “disrupt process
term”, because the execution of process termCLK must
have a higher priority than the execution of process term
ASSER (since the change of the clock causes the test to
be run).

B. Formal analysis of the arbiter

The arbiter described inPAFSV was analysed by means of
a complete mathematical proof via transition traces according
to deduction rules ofPAFSV. The liveness property (i.e.
the immediate assertion holds at least for some times) of the

542 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

arbiter was proved to hold. In this paper, due to the reason of
spaces, the above-mentioned proof is omitted.

VII. C ONCLUSIONS ANDFUTURE WORK

In order to illustrate our work clearly, only simple ex-
amples were given in this paper. Nevertheless, the use of
PAFSV is generally applicable to all sizes and levels of
SystemVerilog designs. Nevertheless, we reached our goals(as
indicated in Section II). We also believe that our process alge-
braic frameworkPAFSV can serve as a mathematical basis
for improvement of the design strategies of SystemVerilog,
and possibilities to analyse SystemVerilog designs, because
PAFSV

1) comprises mathematical expressions for SystemVerilog;
2) allows for analysis of specifications in a compositional

way;
3) allows for equational reasoning on specifications;
4) contributes significantly to the investigation of in-

teroperabilites of SystemVerilog with SystemC and
SystemCFL.

We have the idea that, likeSystemCFL, PAFSV can
serve as asingle-formalism-multi-solution. This means that we
can formally translate aPAFSV specification to the input
languages (e.g. SMV [23], Promela [24] and timed automata
[25]) of several verification tools (e.g. SMV [23], SPIN [24]
and Uppaal [26]) and it can be verified in those verification
tool environments.

Our future work will develop/investigate such translations.
For practical applications, we will applyPAFSV to formally
represent SystemVerilog designs (for formal analysis pur-
poses) in the design flow of the project: “MOQA Processor:
An Entirely New Type of Processor for Modular Quantitative
Analysis” as reported in [27].

VIII. A VAILABILITY

The full set ofPAFSV deduction rules and the complete
mathematical proof of the correctness of the arbiter (see VI-B
for details) are available by email at pafsv.team@gmail.com.

IX. A CKNOWLEDGEMENT

The author wishes to thank Jos Baeten, Bert van Beek,
Mohammad Mousavi, Koos Rooda, Ramon Schiffelers, Pieter
Cuijpers, Michel Reniers, Kees Middelburg, Uzma Khadim
and Muck van Weerdenburg for many stimulating and helpful
discussions focusing on process algebras for distinct systems
in the past few years.

Many thanks go to Michel Schellekens and Menouer
Boubekeur for their contributions to the introduction paper of
PAFSV (see [20]) and the industrial collaborators Solari—
Hong Kong (http://www.solari-hk.com/), International
Software and Productivity Engineering Institute—USA
(http://www.intspei.com), Intelligent Support Ltd.—United
Kingdom (http://www.isupport-ltd.co.uk) and Minteos—Italy
(http://www.minteos.com) of the research work presented in
this paper.

REFERENCES

[1] J. C. M. Baeten, W. P. Weijland,Process Algebra, Number 18 in Cam-
bridge Tracts in Theoretical Computer Science, Cambridge University
Press, 1990.

[2] J. C. M. Baeten, C. A. Middelburg,Process Algebra with Timing, in
EATCS Monographs Series, Springer-Verlag, 2002.

[3] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, R. R. H.Schif-
felers, Syntax and Consistent Equation Semantics of Hybrid Chi, in
Journal of Logic and Algebraic Programming, 68(1–2):129-210, 2006.

[4] P. J. L. Cuijpers, M. A. Reniers,Hybrid Process Algebra, in Journal of
Logic and Algebraic Programming, 62(2):191–245, 2005.

[5] IEEE Standard for SystemVerilog—Unified Hardware Design, Speci-
fication, and Verification Language, IEEE Std 1800TM-2005, IEEE
Computer Society, 2005.

[6] IEEE Standard for Verilog Hardware Description Language, IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), IEEE Computer Society,
2006.

[7] SystemVerilog 3.1a: Accellera’s Extensions to Verilog, Napa, CA, 2003.
Available in PDF form at http://www.systemverilog.com/

[8] PAFSV homepage, http://digilander.libero.it/systemcfl/pafsv/
[9] G. D. Plotkin, A Structural Approach to Operational Semantics, in Re-

port DAIMI FN-0.59, Computer Science Department, Aarhus University,
1981.

[10] P. T. Breuer, C. Delgado Kloos,Formal Semantics for VHDL, Kluwer
Academic Publishers, 1995.

[11] G. Schneider, X. Qiwen,Towards an Operational Semantics of Verilog,
UNU/IIST Report No. 147, International Institute for Software Technol-
ogy, United Nations University, Macau, 1998.

[12] G. Schneider, X. Qiwen,Towards a Formal Semantics of Verilog
Using Duration Calculus, IN A. Ravn, H. Rischel, editors, Formal
Techniques for Real-Time and Fault Tolerant Systems (FTRTFT’98),
LNCS, Springer-Verlag, 1998.

[13] J. Bowen,Animating the Semantics of Verilog Using Prolog, UNU/IIST
Report No. 176, International Institute for Software Technology, United
Nations University, Macau, 1999.

[14] W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf and W.Rosenstiehl,
The Simulation Semantics of SystemC, in Proceedings of DATE, 2001

[15] A. Salem,Formal Semantics of Synchronous SystemC, in Proceedings
of DATE, 2003.

[16] W. Mueller, M. Zambaldi, W. Ecker, T. Kruse,The Formal Simulation
Semantics of SystemVerilog, in Proceedings of the FDL, France, 2004.

[17] K. L. Man, SystemCFL: Formalization of SystemC, in IEEE Pro-
ceedings of the 12th Mediterranean Electrotechnical Conference—
MELECON 2004, Dubrovnik, Croatia, May, 2004.

[18] K. L. Man, Formal Communication Semantics ofSystemCFL, in
IEEE Proceedings of the 8th Euromicro Conference on DigitalSystem
Design—DSD05, Porto, Portugal, September, 2005.

[19] SystemCFL homepage, http://digilander.libero.it/systemcfl/
[20] K. L. Man, M. Boubekeur, M. P. Schellekens,Process Algebraic

Approach to SystemVerilog, in IEEE Proceedings of the 20th IEEE Cana-
dian Conference on Electrical and Computer Engineering, Vancouver,
British Columbia, Canada, April, 2007.

[21] M. R. Mousavi,Structuring Structural Operational Semantics, Ph. D.
Thesis, Department of Computer Science, Eindhoven University of
Technology, September 2005.

[22] L. Aceto, W. Fokkink, C. Verhoef,Structural Operational Semantics, in
Bergstra et al. BPS01, pp. 197–292, 1999.

[23] The SMV model checker and user manual, are available at http://www-2.
cs.cmu.edu/~modelcheck/

[24] G. J. Holzmann,The SPIN Model Checker, Primer and Reference
Manual, Addison-Wesley, 2004.

[25] R. Alur, D. L. Dill, A Theory of Timed Automata, Theoretical Computer
Science, Vol. 126, No. 2, pp. 183-236, April, 1994.

[26] K. G. Larsen, P. Pettersson, W. Yi,UPPAAL in a Nutshell, Journal of
Software Tools for Technology Transfer (STTT), Vol 1, No. 1-2, pp.
134–152, 1997.

[27] M. P. Schellekens, R. Agarwal, A. Fedeli, Y. F. Lam, K. L.Man,
M. Boubekeur, E. Popovici,Towards Fast and Accurate Static Average-
Case Performance Analysis of Embedded Systems: TheMOQA Ap-
proach, in IEEE Proceedings of the East-West Design and Test Interna-
tional Symposium, September, 2007.

