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Abstract—We develop a process algebraic framework, called Serious efforts have been made in the past to deal with
process algebraic framework for IEEE 1800™™ SystemVerilog - systems (e.g. real-time systems [2] and hybrid system$4B],
(PAFSV), for formal specification and analysis of IEEE 1800 in a process algebraic way. Over the years, process algebras

SystemVerilog designs. The formal semantics oPAFSV is - .
defined by means of deduction rules that associate a time have been successfully used in a wide range of problems and

transition system with a PAFSV process. A set of properties of N practical applications in both academia and industry for
PAFSYV is presented for a notion of bisimilarity. PAFSV may analysis of many different systems.

be regarded as the formal language of a significant subset oEEE On the other hand, the need for a formal and well-defined
1800 SystemVerilog. To show thatPAFSYV is useful for the semantics of aHardware Description LanguagegHDL) is

formal specification and analysis of IEEE1800™ SystemVerilog . ) . .
designs, we illustrate the use oPAFSV with some examples: a widely accepted and desirable for architects, engineeds an

MUX, a synchronous reset D flip-flop and an arbiter. researchers in the electronic design community. IEE@®™
SystemVerilodg5] (in what follows, we abbreviate the IEEE
I. INTRODUCTION 1800™ SystemVerilog as SystemVerilog) is the industry’s

first unified hardware description and verification language

T HE goal of developing a formal semantics is to provide ¢dDVL) standard; and SystemVerilog is a major extension

complete and unambiguous specification of the langua@#.the established IEEE364™ Verilog language [6] (see
It also contributes significantly to the sharing, portapitnd also [7]).
integration of various applications in simulation, syrise = However, the standard semantics of SystemVerilog is in-
and formal verificationFormal languageswith a semantics formal. We believe that the fundamental tenets of process
formally defined inComputer Sciencicrease understandingalgebras are highly compatible with the behavioural apgtoa
of systems and clarity of specifications; and help solvingf systems described in SystemVerilog. Hence, in this paper
problems and remove errors. Over the years, several flavowks present a process algebraic framework caitdd*SV that
of formal languages have been gaining industrial acceptanis suitable for modelling and analysis of systems described
Process algebra$l] are formal languages that have formain SystemVerilog (in a formal way)PAFSV covers the
syntax and semantics for specifying and reasoning abouoiin features of SystemVerilog (i.e. a significant subset of
different systems. They are also useful tools for verif@ati SystemVerilog) including decision statements and imntedia
of various systems. Generally speaking, process algeleras akssertions; and also aims to achieve a satisfactory level of
scribe the behaviour of processes and provide operati@is thbstraction and a more faithful modelling of concurrency.
allow to compose systems to obtain more complex systemgthough it is desirable and very important to have pure para
Moreover, the analysis and verification of systems desdribklism for hardware simulation, the SystemVerilog simoiat
using process algebras can be partially or completelyegérri‘in-us¢ at this moment still implement parallelism via non-
out by mathematical proofs using equational theory. determinism.

In addition, the strength of the field of process algebrasTherefore, we realise that it is more fruitful to develop
lies in the ability to usealgebraic reasoningl] (also known our process algebraic framework for SystemVerilog such tha
as equational reasoning) that allows rewriting processeggju the execution of a system described in such a framework
axioms (e.g. for commutativity and associativity) to a sienp (PAFSYV) consists of interleaving transitions from concur-
form. By using axioms, we can also perform calculation®nt processes. Moreover, we adopt the view that a system
with processes. These can be advantageous for many foascribed inPAFSV is a system in which an instantaneous
of analysis. Process algebras have also helped to achiev&tade transition occurs on the system performing an action a
deeper understanding of the nature of concepts like ohisiervaa delay takes place on the system idling between performing
behaviour in the presence of non-determinism, system cosuccessive actions. A technical advantage of our work is tha
position by interconnection of system components modell@d contrast to other attempts to formalise semantics of Sys-
as processes in a parallel context and notions of behaviousmVerilog and HDLs, specifications described PAFSV
equivalence (e.g. bisimulation [1]) of such systems. can be directly executable.
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The formal semantics dPAFSV is defined by means of Il. PAFSV
deduction rules in a standard structured operational seosan  opyiously, it is not possible to cover all the aspects of

(SOS) [9] style that associateTeme Transition SystefT TS)  system\Verilog and define a process algebraic framework for
with a PAFSV process. A set of properties #AFSV is it in one paper. Hence, in this section, we outline the gaals t
presented for a notion of bisimilarity. Overview of procesgchieve in this paper.
algebras, Verilog and SystemVerilog is not given in this e propose a process algebraic framework namely
paper. Some familiarity with them is required. The deskablpAFSV that has a formal and compositional semantics
background can, for example, be found in [1], [5], [6]. based on a time transition system for formal specification
Over the years, different formal approaches have begRd analysis of SystemVerilog designs. The intention of our
studied and investigated for VHDL [10], Verilog [11], [12] process algebraic framewolRAFSYV is as follows:
and SystemC [14], [15]. Most of these works could only be | 1, give a formal semantics to a significant subset of
considered as theoretical frameworks, except a few trdify,( SystemVerilog using the operational approach of [9]:
[17]), because they are not executable. Research work in the 1 sarve as a mathematical basis for improvement of

formal semantics of SystemVerilog based Abstract State design strategies of SystemVerilog and possibilities to
Machines(ASMs) [16] and rewrite rules already exist [5]. analyse SystemVerilog designs;
Also, ASM specifications and rewrite rules are not directly | (4 sarve as a coherent first step for a semantics interop-

execut_able. It is a_lso generally pelieved that a s.,trugt.ured erability analysis on semantics domain such as SystemC
operational semantics (SOS) provides more clear intistion . SystemCFL:

and ASM specifications and rewrite rules appear to be less,
suited to describe the dynamic behaviour of processes.

Since processes are the basic units of execution within
SystemVerilog that are used to simulate the behaviour of a,
system, a process algebraic framework in a SOS style is
a more immediate choice to give the formal semantics of
SystemVerilog (these motivated us to devePAFSV in a A. Data types
process algebraic way with SOS deduction rules). Basedeon thIn order to define the semantics of processes, we need to
similar motivations and needs, three years agigstemC™ make some assumptions about the data types:

[17], [18], [19] (a timed process algebra) was introduced 1) Let Var denote the set of all variables
for formal specification and analysis of SystemC designs. (o, ..., xn, time). Besides the variables,, ..., z,,
SystemC*" initiated an attempt to extend the knowledge  the existence of the predefined reserved global variable
and experience of the field of process algebras to SystemC +time which denotes the current time, the value of
designs. Clearly, SystemVerilog and SystemC are similar  which is initially zero, is assumed. This variable cannot
and our research work in this direction was highly inspired be declared.

by the theoretical aspects &fystemC*". Hence, a formal  2) Let Value denote the set of all possible values

to initiate an attempt to extend the knowledge and expe-
rience of the field of process algebras to SystemVerilog
designs;

to be used as the formal language for a significant subset
of SystemVerilog.

comparison between them is indispensable (as future work). (vo, ..., vm, L) that contains at least allntegers,

_FUl’thel'mOI’E, an intrOdUCtiC_)n (paper)PAFSV can be found all Reals, all Shortreals, all 2 — statevalues and all

in [20]. Such a paper only informally presented the syntack an 4 — statevalues as defined in SystemVerilog (see [5]

semantics oPAFSV. Also, no deduction rules were given, for details); allBooleans and L, where L denotes the

validation of the semantics was not discussed and no asalysi  “yndefinednegs

example of PAFSV specifications was provided. 3) We then define aaluationas a partial function from
This paper is organised as follows. Section Il shows the  variables to values. Syntactically, a valuation is denoted

goals, the data types, formal syntax and formal semantics of py a set of pairs{zo — vo, . .., Tn,— Uy, time — t},

our process algebraic framewolRAFSV. To illustrate the where z; represents a variable ang its associating

use, effectiveness and applicability of the deductionsuie value; andt € Rx.

Section IIl, some simple specifications BAFSV are pro-  4) Further to this, the set of all valuations is denotedby
vided. In Section IV, the correctness of the formal semardfc  Note that the type drray” in SystemVerilog is not for-
PAFSV defined in Subsection II-E is discussed; and a notigfjjised yet inPAFSV. However, the behaviour of elements
of equivalence is defined, which is shown to be a congruengegp, array in SystemVerilog can be modelled PAFSV

for all PAFSV operators. Also, a set of useful propertiegy introducing fresh variables. As an example, for an array
of closed PAFSV process terms is given in the same Seg0:10] in SystemVerilog, we can introduce fresh variables

tion. Samples (modelling some SystemVerilog designs) ef “}10, ..., Ao in PAFSV to associate correspondingly A[0]
application of PAFSV are shown in Section V. A formal \yith Ao, A[1] with A; and so on.

analysis (by means of a complete mathematical proof) of a

SystemVerilog design VIRAFSV is presented in Section V1. B. Formal syntax

Finally, concluding remarks are made in Section VII and the To avoid confusion with the definition of a process in Sys-
direction of future work is pointed out in the same section. temVerilog, it is important to clearly state that, in our pess
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algebraic frameworkPAFSV, we choose the terminology 2)
“a process term” as a formal term (generated restrictively
through the formal syntax dPAFSV) to describe the pos-
sible behaviour of @AFSV process (see Subsection II-E)
and not a process as defined in SystemVerilog.
Furthermore, process termpsc P are the core elements of 4)
the PAFSV. The semantics of those process terms is defined
in terms of the core process terms given in this subsectiba. T
set of process term® is defined according to the following
grammar for the process termpse P:

3)

p == deadlock | skip | z:=¢ 5)
| delay(n) | anyp | if(b) pelsep
| pip | wait()p | while(d)p
| assignw:=c | Q). () P
| p®p | pllp | repeatp
| asser(b) p | p disrupt p
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Theskipprocess ternskip can only perform the internal
actionr to termination, which is not externally visible.
The procedural assignmergrocess ternx: := e assigns
the value of expression to variablex (in an atomic
way).

The continuous assignmemirocess ternassignw := e
continuously watches for changes of the variables that
occur on the expressian Whenever there is a change,
the value ofe is re-evaluated and then propagated it
immediately tow.

Thedelayprocess terndelay(n) denotes a process term
that first delays forn time units, and then terminates by
means of the internal action

D. Operators

Atomic process terms can be combined using the following

Here,z andw are variables taken froiviar andn € R>(. band Operators. The operators are:

e denote a boolean expression and an expression over variablel)
from Var, respectively. Moreovery,. . ., n, represent boolean
functions with corresponding parametéys. .., [, € Var.

In PAFSV, we allow the use of common arithmetic
operators (e.g+, —), relational operators (e.g=, >) and
logical operators (e.gA, V) as in mathematics to con-
struct expressions over variables frowar. The operators
are listed in descending order of their binding strength as
follows: {if(_)_else , wait(_)_, while(_)_,asser(_)_}, _;_,
_disrupt_, {_®_, _|| _}. The operators inside the braces have
equal binding strength. In addition, operators of equatlisig
strength associate to the right, and parentheses may be useg)
to group expressions. For example, ¢; » meansp; (q; r),
wherep, g, € P. Apart from process termsteadlock skip,
any_, _disrupt_, and _® _, all other syntax elements in 4)
PAFSV are the formalisation of the corresponding language
elements (based on classical process algebra tenets) in Sys
temVerilog.

Process termsleadlock and skip; and operator ® _ are
mainly introduced for calculation and axiomatisation mses.
The any_ operator was originally introduced in Hybrid Chi
[3] (to be precise, in Hybrid Chi, such an operator is called
“the any delay operatdrand denoted by [‘]"). It is used to
give an arbitrary delay behaviour to a process term. We can
make use of this operator to simplify our deduction rules in a 6)
remarkable way. Thedisrupt_is inspired by the analogy of
the disrupt operator in HyPA [4]. This can be used to model
event controls iIPAFSYV in a very efficient way. A concise
explanation of the formal syntax @#AFSV is given below.
Subsection II-E gives a more detailed account of its meaning

2)

5)

C. Atomic process terms

7)
The atomic process terms &AFSV are process term
constructors that cannot be split into smaller process germ
They are: 8)

1) The deadlockprocess terndeadlock is introduced as
a constant, which represents no behaviour. This means
that it cannot perform any actions or delays.

By means of the application of thany operator to
process ternp € P (i.e. any p), delay behaviour of
arbitrary duration can be specified. The resulting be-
haviour is such that arbitrary delays are allowed. As
a consequence, any delay behaviourpaf neglected.
The action behaviour ofp remains unchanged. This
operator can even be used to add arbitrary behaviour
to an undelayable process term.

Theif_elseprocess ternif (b) p elseq first evaluates the
boolean expressioh. If b evaluates tarue, thenp is
executed, otherwise € P is executed.

The sequential compositionf process termg and ¢
(i.e. p; q) behaves as process tegiruntil p terminates,
and then continues to behave as process term
Thewait process ternwait(b) p can perform whatever

p can perform under the condition that the boolean
expressiory evaluates tarue. Otherwise, it is blocked
until b becomesirue.

Similarly, thewhile process termvhile(b) p can perform
whateverp can do under the condition that the boolean
expressiord evaluates tarue and then followed by the
original iteration process term (i.ehile(b) p). In case

b evaluates tdfalse, the while process terrwhile(b) p
terminates by means of the internal action
Theeventprocess tern@,, ;,)......(1,)) P can perform
whateverp can do under the condition that any of the
boolean functionsy; (11), ..., n(l,) returns to true.

If there is no such a functionp will be triggered
by n1(l1), ..., m.(ln). Intuitively, functionsn, ..., n,

are used to model event changes as event controls
levelchange, posedge and negedge in SystemVerilog.

The alternative compositiorof process termg and ¢
(i.e. p ® q) allows a non-deterministic choice between
different actions of the process term eitheor q.

The parallel compositiorof process termg andq (i.e.

p || ¢) executep and g concurrently in an interleaved
fashion. For the time behaviour, the participants in the
parallel composition have to synchronise.
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9) Therepeatprocess ternmepeat p represents the infinite F. Deduction rules

repetition of process term. Note that the idea behind  The apove transition relations are defined through deductio
the repeatstatement in SystemVerilog is slightly differ-, e (SOS style). These rules (of the fo,ﬁ%) have
ent fromrepeat p in PAFSV. The repeat statementyyo parts: on the top of the bar we patemisesof the rule,
specifies the number of times of a loop to be repeateghq pelow it theconclusions|f the premise(s) hold(s), then
The same goal can be achieved by using the repg@ infer that the conclusion(s) hold(s) as well. In caseeher
process term in combination with the if_else process no premise, the deduction rule becomes an axiom.
term in PAFSV. Apart from the syntax restriction as already shown in
10) Theassertprocess ternasser{b) p checks immediately sypsection I1-B (e.gz,w € Var), for all deduction rules, we
the propertyb (expressed as a boolean expression). Iffyrther require thap, ¢, p'.¢ € P; 0,0',0" € 3, a,b € A,
holds, p is executed. d € R+, dom(o) = dom(c’) = dom(c”); o, 0/, ¢’ anda(e)
11) Thedisrupt process termp disrupt ¢ intends to give are defined, where the notatiarie) is used to represent the
priority of the execution of process termover process yajye of expression in o.

term ¢. The need and use of this operator will be Also, we make use of the sets of variablésr— = {z~ |

illustrated in Section VI. x € Var} andVart = {2t | z € Var}, modelling the current
and future value of a variable, respectively. Similary, and
E. Formal semantics et are used to represent the current and future value of
respectively.

In this subsection, we give a formal semantics to the |n order to increase the readability of tlRAFSV deduc-
syntax defined foPAFSV in the previous subsection, by;ion rules, the notation» is used as a short-hand fob
constructing a kind of time transition system (TTS), forlea

d
. . : Cand L.
process term and each possible valuation of variables.

Deduction rules: It is not our intention to define deduction
Definition 1 We use the conventidp, o) to write aPAFSV rules for all inductive cases for all operators in this paper
process, where € P ando € ¥. simplicity, only relevant deduction rules for the use ofsthi
paper are shown in this subsection.

L ) ) 1) Procedural assignment:
Definition 2 The set of actionsl, contains at leastia(z, v)

and 7, whereaa(z,v) is the assignment action (i.e. the value ] aa(w,5(e)) _

of v is assigned ta:) and 7 is the internal action. The set, (@ :=e0) <_‘/’ olo(e)/=])

is considered as a parameter BFAFSV that can be freely By means of a procedural assignment (see Rule 1), the value
instantiated. of e is assigned ta:. Notice thatr[7(e)/«] denotes the update

of valuationo such that the new value of variahleis G (e).
2) Sequential composition:

1

Definition 3 We give a formal semantics fd##AFSV pro- .
cesses in terms of a time transition system (TTS), and define  (p,0) — (v',0’)
the following transition relations on processesIPAFSV: (p; q,0) % (g,0")

(p,o) = (', 0")
(p; q,0) = (P'; ¢,0")
o _= (v, ) C(PxZX)x A; x X, denotes termination, The process term is executed after (successful) termination

wherev” is used to indicate a successful termination, angf the process termp as defined by Rules 2 and 3.

v/ is not a process term; 3) Parallel composition:

e _ = _C (P xX)x A; x (P x ), denotes action a a

transition: (p,0) —>a<\/a0'> 4 (q,0) —>a<\/,0'>
« = _C(PxYX) xRy x (P xX), denotes time pllgo)={g,0) (pllao)—={po)

transition (so-called delay).

2 3

o) & (g,0) = (¢, o)

Forp,p’ € P; 0,0’ € ¥, a € A, andd € R+, the three kinds p.2) -
wllgod) (plao)—=(ld )

a
o,
of transition relations can be explained as follows: Pllgo) =
1) Firstly, a terminatior{p, o) < (v, o) is that the process (. 0) ,i>< /o'y, (g, 0) ,i>< ' ")
executes the action followed by termination. P, P A i 4

2) Secondly, an action transitiofp, o) = (p/, o’) is that (pllqo)— @ | q,0")

the procesgp, o) executes the action starting with the 5 parallel composition of the process termandy (i.e.
CtJ”ent Va“fatlom and by this executiop evolves into , |y has as its behaviour with respect to action transitions
p', whereo' represents the accompanying valuation Qhe interleaving of the behaviours of process tegmand g
the process after the actianis eéecuted. (see from Rule 4 to Rule 7). If both process termand ¢

3) Thirdly, a time transition(p, o) — (p’,0’) is that the can perform the same delay, then the parallel composition of
process(p, o) may idle during ad time units and then process termg andq (i.e. p || ¢) can also perform that delay,
behaves like(p’, o’). as defined by Rule 8.

8
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I1l. EXAMPLES deduction rules. In general, TSSs with negative premises

) ) might not bemeaningful(see [22] for details).
Deduction rules offer preciseness, because they come Wltms we know that no negative premise is used in our

a mathematically defined semantics. Formal specificatians SHeduction rules foPAFSV. So. it is not hard to see that
be analysed using deduction rules providing an absolutemoty . arm deduction system ®AFSV is well-defined. This

of correctness. ) means that the system defines a unique transition system for
Also, these deduction rules can ensure the correctngss closed process term BAFSV.

of PAFSV specifications and can help modellers to make
correct specifications. B. Bisimilarity

In order to demonstrate the effectiveness and applicpbilit Two closedPAFSV process terms are considered equiva-
of the deduction rules, two toy specifications PAFSV lent if they have the same behaviour (in the bisimulatiorsegn
are given in this section. These specifications also show hénem the current state.
(illustrated by means of transition traces) process ewlve We also assume that the valuation (of the current state)
during transitions. contains at least the free occurrences of variables in tloe tw

Using the deduction rules, for instance, we can show thattosedPAFSYV process terms being equivalent.

1) th_e processa := b; y =T, {fE o 0,y —1}) can t(_a_r- Definition 4 (Stateless bisimilarity) A stateless bisimilarity
minate successfully after a finite number of transitions; . .
on closed process terms is a relatidhC P x P such that

« Transition traces: According to Rule 1, the processy(p, ¢) € R, the following holds:
(x = 5_, {z — O,y_H 1}) can qlways perform 1) Yo,a,0": (p,0) % (v, 0"y & (q,0) % (v, o),
an assignment action to a terminated process 39) Vo,a,p',0" : (p,0) S 0,0’y = 3¢ : {q,0) % (¢, o) A
follows: (x := 5,{zr—>0,y»—>1}>M<\/,{x»—> (',q¢') € R,
5,y — 1}). Due to this, we can apply Rule 3 to 3) Vo,a,¢',0" : {q,0) % (¢',0') = T : (p,d) = (0,0’ A

obtain (x :=5; y:=7,{x — 0,y — 1}) ca@d), (r'.q) € R,
(y :=7,{z — 5,y — 1}). Applying Rule 1 again, 4) Vo,d,p',o’ : {p,o) -, (', 0"y = 3¢ : (g, o) LN
we have(y :=7, {x»—>5,y»—>1}>M<\/,{x»—> (¢, o) N(P'.d) €R, ., ,
5,y — 7}) 5) VO’, d7 qla OJ : <q7 J> — <q/7 OJ> = Elp/ : <p7 J> L
2) the process((z := 1| y := 2); z := 3,0) cannot o) N d') € R.
terminate successfully in two transitions. Two closed process terms and ¢ are stateless bisimilar,

denoted byp < ¢, if there exists a stateless bisimilarity

o Semantical proof: We assume to havgz :=1 :
P Ho | relation R such that(p, ¢) € R.

y:=2); z:=3,0) % (2 := 3,0') for somea and
o’ in such a way that the process can terminate Stateless bisimilarity is proved to be a congruence with
successfully in two transitions. This means that wesspect to alPAFSV operators. As a consequence, algebraic

must have the action transitiofv := 1 || y := reasoning is facilitated, since it is allowed to replaceasu
2,0) % (v,0') as a premise necessarily for Rule 2py equals in any context.
However, this is not possible due to Rules 4 and 5.
Theorem 1 (Congruence)Stateless bisimilarity is a congru-
IV. VALIDATION OF THE SEMANTICS ence with respect to alPAFSV operators.

This section first shows that the term deduction system Bfoof: All deduction rules oPAFSYV are in the process-tyft
PAFSYV is well-defined. Then a notion of equivalence calletbrmat of [21]. It follows from [21] that stateless bisimiigy
Stateless Bisimilaritys defined (see also [3], [21]). iS a congruence.

It is also shown_that this relation is an equi\_/{ilenc_e and@ Properties
Congruencdl] (which also means that compositionality pre-
served operationally iPAFSV) for all PAFSV operators.

A set of useful properties @AFSV is sound with respect
to the stateless bisimilarity that is also introduced.

In this subsection, some properties of the operators of
PAFSV that hold with respect to stateless bisimilarity are
discussed. Most of these correspond well with our intugjon
and hence this can be considered as an additional validation
of the semantics.
It is not our intention to provide a complete list of such
The deduction rules defined foPAFSV constitute a properties (complete in the sense that every equivalence be
Transition System SpecificatiqiiSS) as described in [22]. tween closed process terms is derivable from those preggrti
The transitions that can be proven from a TSS define a time Y
transition system (TTS). we V\./r'ite a negative premise afor a/ctio/n transition(ps/@ —» for the set of
The TTS of PAFSV contains terminations, action tran—i{' ;tagsg'oﬁarosr,m;s;v(;i ;L;rﬁpdgf’mlg'nﬁgg{ﬁg’greigég f%r’ﬁgn?u?,?a
sitions and time transitions that can be proven from thed time transition.

A. Well-definedness of the semantics
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Proposition 1 (Properties) A set of properties is introduced sel
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for PAFSV described in this paper fop, ¢, € P. These

properties are sound with respect to the stateless bisiityila

1) skip = delay(0),
2) deadlock; p < deadlock,

3) (p; q); 7 = p; (q; 1),
4) any p; q = any (p; q), MUX y

5 p®qe=q®p,

6) p®q);r=p;r®q;T, b
7) p®q)®r =p®(¢®T),

8) pla=qllp

9 wlalrepllglr), Fig. 1. A MUX.
10) any p® any q = any (p ® q),

Proof: We leave out the proofs, because most of the prodfedul e sinple_nmux (
are proofs for distributivity, commutativity and assoeiy !'nPut wre a,

as in classical process algebras. Similar proofs can also k#({::

put wre b,
put wre sel,

found in [3]. output wire y

)
assigny = (sel) ? a: b;
endnodul e

Intuition behind the properties

The intuition of the above properties is as follows:

This section is a sample of the applicationRPAFSV. It
is meant to give a first impression of how one can descrit?

Since skip and delay(0) can only perform the internal  The formalPAFSV specification (as a process term) below
actionr to termination, both process terms are equivalerfan be regarded as the (formal) mathematical expressidreof t

A deadlock process term followed by some other proceggove multiplexer (described as a SystemVerilog module):
terms is equivalent to theleadlock itself because the

deadlock process term does not terminate successfully, if(sel) y == a elsey :=b

i.e. deadlockis a left-zero element for sequential com- Needless to mention that, in SystemVerilog, the condifiona
position. o o operator “(condition) ? (result if true):(result if falsegan
Sequential composition is associative. be considered as aifi(_)_else statement. In thPAFSV
The any operator distributes to the right argument of ghecification, an if_else process term is used to model the
sequential composition. behaviour of such a MUX.

Alternative composition and parallel composition are

commutative and associative. B. Synchronous reset D flip-flop

Alternative composition distributes over sequential com- Synchronous reset D flip-flops are among the basic building
position from the left, but not from the right. blocks of RTL designs. A synchronous reset D flip-flop has a
T_he any operator distributes over the alternative compgrck input (lk) in the event list, a data inpud, a reset {st)
sition. and a data output)). Figure 2 depicts such a synchronous

reset D flip-flop.
A synchronous reset D flip-flop described below (as a
module in SystemVerilog) is inferred by using posedge @daus

V. EXAMPLES OFPAFSYV SPECIFICATIONS

St the clockclk in the event list.

the behaviour of some SystemVerilog design®iAFSV (in
a complete mathematical sense). We describe the behavioufedul e df f _sync_reset (

a simple MUX and a simple synchronous reset D flip-flop.

input wre d,
input wre clk,

A. MUX input wire rst,

output reg Q

In electronic designs, a multiplexer (MUX) is a devics
that encodes information from two or more data inputs intal ways_ff @ (posedge cl k)
a single output (i.e. multiplexers function as multiplgxins i f (~reset) begin

and single-output switches). A multiplexer described telo

Q= 1'b0;
end else begin

(in SystemVerilog) has two inputs and a selector that cotsneC o -
a specific input to the single output. Figure 2 depicts suche@q
MUX. endnodul e
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I'st
EJ) grant = 0;
request = 0;
#4 request = 1,
#4 grant = 1;
d — — Q #4 request = O;
#4 $finish;
end
al ways #5 clk = ~ clk;
al ways @ (negedge cl k)
begi n
if (grant == 1) begin
CHECK_REQ WHEN_GNT:
assert(grant && request) begin
current _time = $tine;
ck — $display {‘‘Wrks as expected ’);
end
end
endnodul e

Fig. 2. A synchronous reset D flip-flop.

A formal PAFSYV specification of the above SystemVerilog

arbi

The formalPAFSYV specification (as a process term) of the

above synchronous reset D flip-flop (described as a module irg
SystemVerilog) is given as follows:

DFF =~repeat( @, . .. . (cx)OUT)
OUT = if(-rst) Q :=1'b0 else@ :=d

In the PAFSV specification (i.e. process terFF), the
behaviour of the synchronous reset D flip-flop is modelled
by means of the if_else process term usingst (active low
reset)” as the condition of such a process term.

This if_else process term is further triggered repeategly b
the event process term, which is positively sensitive to the

clock (i.e. cik). 7=
T
VI. ANALYSIS OF AN PAFSYV SPECIFICATION tion

We have already shown in Section V tHRAFSV spec-
ifications can be used to formally represent SystemVerilog
designs. Therefore, in this section, we formally analyse a,

simple arbiter described in SystemVerilog WA FSV.

A. An arbiter

Arbiter circuits are standard digital hardware verificatio
benchmark circuits. In general, the role of an arbiter isramg
access to the shared resource by raising the corresponding
grant signal and keeping it that way until thequest signal ¢
is removed.

A test for the arbiter can be generated by an immediate
assertion as follows:

“assertion : grant A request”.

This immediate assertion can be considered disemess
property of the arbiter. If the assertion holds, this means that
the arbiter works as expected. Below is a SystemVerilogaesi

ter is given as follows:

INIT || ARB || CLK disrupt ASSER, o ), where

INIT = clk := 0; grant := 0; request := 0
ARB = Ri; G; Ro;
R ~ delay(4); request :=1
G ~ delay(4); grant :==1
Ro ~ delay(4); request := 0
S ~ delay(4); skip
CLK = repeat(delay(5); clk := —clk)
ASSER = repeat(@(nnegedge(Clk))PROP; Sklp)
PROP = asser{grant A request) t := time

{clk — L, grant — L, request — L t+— 1 time — 0}.

he formal specification of the arbiter is a parallel composi
of process termENIT, ARB andCLK disrupt ASSER:

INIT - It assigns the initial values to variable&:, grant

and request (i.e. the initialisation).

ARB - It models the change of behaviour of variables
clk, grant and request according to time.

CLK - It models the behaviour of a clock (i.elk) which
swaps the values betweef’and “1” every 5 time units.
ASSER - It expresses the immediate assertion for the
arbiter (as indicated above).

CLK disrupt ASSER - It models the fact that the test
of the immediate assertion is executed whenever there is
a negative change inlk. When this happens, the current
time is assigned to the variable Remark: This also
explains the need and the use of thdisfupt process
term”, because the execution of process t€fhi must
have a higher priority than the execution of process term
ASSER (since the change of the clock causes the test to
be run).

of the simple arbiter as described above:

B. Formal analysis of the arbiter

nmodul e assert _i nmedi ate();
reg clk, grant, request;
time current_tine;
initial begin

cl k 0;

The arbiter described IRAFSV was analysed by means of
a complete mathematical proof via transition traces adongrd
to deduction rules ofPAFSV. The liveness property (i.e.
the immediate assertion holds at least for some times) of the
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arbiter was proved to hold. In this paper, due to the reason of
spaces, the above-mentioned proof is omitted. [1]

VIlI. CONCLUSIONS ANDFUTURE WORK
. . [2]
In order to illustrate our work clearly, only simple ex-

amples were given in this paper. Nevertheless, the use &f
PAFSV is generally applicable to all sizes and levels of
SystemVerilog designs. Nevertheless, we reached our ¢amls [4]
indicated in Section Il). We also believe that our procege-al
braic frameworkPAFSV can serve as a mathematical basid!
for improvement of the design strategies of SystemVerilog,
and possibilities to analyse SystemVerilog designs, bezaull
PAFSV

1) comprises mathematical expressions for SystemVerilog]
2) allows for analysis of specifications in a compositionatg]
way, 9
allows for equational reasoning on specifications;
contributes significantly to the investigation of in-lo]
teroperabilites of SystemVerilog with SystemC and
SystemCTL, [11]

We have the idea that, lik&ystemC™, PAFSV can
serve as aingle-formalism-multi-solutiarThis means that we [12]
can formally translate #AFSV specification to the input
languages (e.g. SMV [23], Promela [24] and timed automata
[25]) of several verification tools (e.g. SMV [23], SPIN [24](13]
and Uppaal [26]) and it can be verified in those verification
tool environments. [14]

Our future work will develop/investigate such translaion
For practical applications, we will applAFSV to formally
represent SystemVerilog designs (for formal analysis pyts)
poses) in the design flow of the projecM©OQ.A Processor:

An Entirely New Type of Processor for Modular Quantitativé”]
Analysis” as reported in [27].

3)
4)

[15]

[18]
VIII. AVAILABILITY

The full set of PAFSV deduction rules and the completd19]
mathematical proof of the correctness of the arbiter (seB vi[20]
for details) are available by email at pafsv.team@gmaih.co
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